Covariate Model of Pixel Vector Intensities of Invasive H. sosnowskyi Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Study
2.2. Imaging Methodology
- The image was transformed into a number matrix (array) .
- The numerical matrix was transformed into vectors.
- Calculations were carried out using the covariance function algorithm in a MATLAB environment. The parameters of the covariance functions were described for H. sosnowskyi, other plants and agricultural land.
- The correlation coefficient of the pixel vectors was calculated and the results were visualised.
3. Experimental Results
3.1. Image Segmentation Results
3.1.1. Supervised Image Pixel Classification
3.1.2. Image Segmentation Using Mean Spectral Signature
3.2. Results from the Correlation Function Model
3.2.1. Differences in Covariance Values for Plant Classes
3.2.2. Differences in Covariance Values between Plant Classes
- H. sosnowskyi plants and other plants (kfr12);
- Other plants and agricultural land (kfr23);
- H. sosnowskyi plants and agricultural land (kfr13).
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mårtensson, U. Introduction to Remote Sensing and Geographical Information Systems, Department of Physical Geography and Ecosystems Sciences Lund University. 2011. Available online: https://www.nateko.lu.se/sites/nateko.lu.se.sv/files/remote_sensing_and_gis_20111212.pdf (accessed on 17 December 2020).
- Thompson, B. Canonical Correlation Analysis; Sage India Pvt Ltd: New Delhi, India, 1984; Available online: https://books.google.lt/books?hl=lt&lr=&id=Dk0XINOvsw8C&oi=fnd&pg=IA1&dq=correlation+analysis&ots=3buz-30Wrd&sig=kR5N5rJw4knQipZWU38d1cOt5vQ&redir_esc=y#v=onepage&q=correlation%20analysis&f=false (accessed on 17 December 2020).
- Dematteis, N.; Giordan, D.; Allasia, P. Image Classification for Automated Image Cross-Correlation Applications in the Geosciences. Appl. Sci. 2019, 9, 2357. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Guo, Y.; Yan, C.; Sheng, H.; Cui, G.; Zhong, X. Detection and Localization for Multiple Stationary Human Targets Based on Cross-Correlation of Dual-Station SFCW Radars. Remote Sens. 2019, 11, 1428. [Google Scholar] [CrossRef] [Green Version]
- Koch, K.R. Introduction to Bayesian Statistics; Springer Verlag: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Chen, S.S.; Fang, L.G.; Liu, Q.H.; Chen, L.F.; Tong, Q.X. The design and development of spectral library of featured crops of South China. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS’05, Seoul, Korea, 25–29 July 2005; Volume 2, pp. 817–820. [Google Scholar]
- Hamada, M.A.; Kanat, Y.; Abiche, A.E. Multi-Spectral Image Segmentation Based on the K-means Clustering. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 2278–3075. [Google Scholar]
- Hölbling, D.; Eisank, C.; Albrecht, F.; Vecchiotti, F.; Friedl, B.; Weinke, E.; Kociu, A. Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors. Geoscience 2017, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Asner, G.P. Applications of remote sensing to alien invasive plant studies. Sensors 2009, 9, 4869–4889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGlone, J.C.; Mikhail, E.M.; Bethel, J.S.; Mullen, R. Manual of Photogrammetry, 5th ed.; American Society for Photogrammetry and Remote Sensing (ASPRS): Bethesda, MD, USA, 2004; pp. 451–455. [Google Scholar]
- Philpot, W. (2018) CEE 6150: Digital Image Processing, Unsupervised Classification. Available online: http://ceeserver.cee.cornell.edu/wdp2/cee6150/lectures/dip11_clustering_sp11.pdf (accessed on 17 January 2021).
- Sužiedelytė Visockienė, J.; Tumelienė, E.; Malienė, V. Identification of Heracleum sosnowskyi-invaded land using earth remote sensing data. Sustainability 2020, 12, 759. [Google Scholar]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad, P.S.; Liou, Y.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Ustin, S.L.; DiPietro, D.; Scheer, G.; Olmstead, K.; Underwood, K. Hyperspectral remote sensing for invasive species detection and mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2002, Toronto, ON, Canada, 24–28 June 2002; Volume 3, pp. 1658–1660. [Google Scholar]
- Nidamanuri, R.R.; Zbell, B. Transferring spectral libraries of canopy reflectance for crop classification using hyperspectral remote sensing data. Biosyst. Eng. 2011, 110, 231–246. [Google Scholar] [CrossRef]
- Curran, P.J. Estimating Foliar Chemical Concentration with the Airborne Visible/Infrared Imaging Spectrometer. ISPRS Congress, ISPRS Commission VI. 1989. Available online: https://www.isprs.org/proceedings/xxix/congress/part7/705_XXIX-part7.pdf (accessed on 17 December 2020).
- CABI, Invasive Species Compendium. Available online: https://www.cabi.org/isc/ (accessed on 17 December 2020).
- Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [Google Scholar] [CrossRef]
- Heiselberg, P.; Heiselberg, H. Ship-Iceberg Discrimination in Sentinel-2 Multispectral Imagery by Supervised Classification. Remote Sens. 2017, 9, 1156. [Google Scholar] [CrossRef] [Green Version]
- Synowiec, A.; Kalemba, D. Composition and herbicidal effect of Heracleum sosnowskyi essential oil. Open Life Sci. 2015, 10, 425–432. [Google Scholar] [CrossRef]
- Abyshev, A.Z.; Denisenko, P.P. The coumarin composition of H. sosnowskyi. Chem. Nat. Compd. 1973, 9, 515–516. (In Russian) [Google Scholar] [CrossRef]
- Jakubska, B.A.; Śliwiński, M.; Kobyłka, M. Identification of bioactive components of essential oils in Heracleum sosnowskyi and Heracleum mantegazzianum (Apiaceae). Arch. Biol. Sci. 2013, 65, 877–883. [Google Scholar] [CrossRef]
- Malikov, V.M.; Saidkhodzahaev, A.I.; Aripov, K.N. Coumarins: Plants, structure, properties. J. Nat. Compd. 1998, 34, 202–264. [Google Scholar] [CrossRef]
- NASA (Ed.) Landsat 7 Science Data Users Handbook Landsat Project Science Office at NASA’s Goddard Space Flight Center in Greenbelt 2011. Available online: http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf (accessed on 23 January 2021).
- Sato, S.; Bidondo, A.; Soeta, Y. MATLAB Program for Calculating the Parameters of Autocorrelation and Interaural Cross-Correlation Functions Based on a Model of the Signal Processing Performed in the Auditory Pathways; 137th Audio Engineering Society Convention: Los Angeles, CA, USA, 2017. [Google Scholar]
- Antoine, J.P. Wavelet analysis of signals and images. Rev. Cienc. Mat. 2000, 18, 113–143. [Google Scholar]
- Milieškaitė, J. The application of covariance method while analysing the digital images of land surface. Geod. Cartogr. 2011, 37, 105–110. [Google Scholar] [CrossRef]
- Skeivalas, J.; Parseliunas, E.K. On identification of human eye retinas by the covariance analysis of their digital images. Opt. Eng. 2013, 52, 073106. [Google Scholar] [CrossRef] [Green Version]
- Hao, D.; Wen, J.; Xiao, Q.; Wu, S.; Lin, X.; You, D.; Tang, Y. Modeling anisotropic reflectance over composite sloping terrain. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3903–3923. [Google Scholar] [CrossRef]
- Proy, C.; Tanre, D.; Deschamps, P.Y. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ. 1989, 30, 21–32. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C.H. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40. [Google Scholar] [CrossRef]
- Franz, M. Spaceborne Synthetic Aperture Radar—Principles, Data Access, and Basic Processing Techniques. In SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; Flores, A., Herndon, K., Thapa, R., Cherrington, E., Eds.; NASA: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Huo, C.; Zhou, Z.; Lu, H.; Pan, C.; Chen, K. Fast object-level change detection for VHR images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 118–122. [Google Scholar] [CrossRef]
- McNairn, H.; Ellis, J.; Van Der Sanden, J.J.; Hirose, T.; Brown, R.J. Providing crop information using RADARSAT-1 and satellite optical imagery. Int. J. Remote Sens. 2002, 23, 851–870. [Google Scholar] [CrossRef]
- Harfenmeister, K.; Spengler, D.; Weltzien, C. Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel-1 Backscatter Data. Remote Sens. 2019, 11, 1569. [Google Scholar] [CrossRef] [Green Version]
- Stych, P.; Jerabkova, B.; Lastovicka, J.; Riedl, M.; Paluba, D. A Comparison of WorldView-2 and Landsat 8 Images for the Classification of Forests Affected by Bark Beetle Outbreaks Using a Support Vector Machine and a Neural Network: A Case Study in the Sumava Mountains. Geoscience 2019, 9, 396. [Google Scholar] [CrossRef] [Green Version]
Crop Classes | Colour of Band | Band 2 (blue) | Band 3 (green) | Band 4 (red) | Mean Spectral Signature B3, B4 |
---|---|---|---|---|---|
H. sosnowskyi | 473 | 1090 | 822 | 956 | |
Forest | 356 | 870 | 816 | 843 | |
Pathway | 694 | 1130 | 1264 | 1197 |
Crop Classes | Euclidean Distance, Pixels | Spectral Angle, ° | Bray–Curtis Similarity, % |
---|---|---|---|
H. sosnowskyi–forest | 682 | 8 | 47 |
H. sosnowskyi–pathway | 543 | 11 | 81 |
Forest–pathway | 1166 | 12 | 43 |
Plant Classes | Mean Covariance Value (r) |
---|---|
kfr12 | ±0.10 |
kfr23 | ±0.05 |
kfr13 | ±0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daugela, I.; Suziedelyte Visockiene, J.; Tumeliene, E.; Skeivalas, J.; Kalinka, M. Covariate Model of Pixel Vector Intensities of Invasive H. sosnowskyi Plants. J. Imaging 2021, 7, 45. https://doi.org/10.3390/jimaging7030045
Daugela I, Suziedelyte Visockiene J, Tumeliene E, Skeivalas J, Kalinka M. Covariate Model of Pixel Vector Intensities of Invasive H. sosnowskyi Plants. Journal of Imaging. 2021; 7(3):45. https://doi.org/10.3390/jimaging7030045
Chicago/Turabian StyleDaugela, Ignas, Jurate Suziedelyte Visockiene, Egle Tumeliene, Jonas Skeivalas, and Maris Kalinka. 2021. "Covariate Model of Pixel Vector Intensities of Invasive H. sosnowskyi Plants" Journal of Imaging 7, no. 3: 45. https://doi.org/10.3390/jimaging7030045
APA StyleDaugela, I., Suziedelyte Visockiene, J., Tumeliene, E., Skeivalas, J., & Kalinka, M. (2021). Covariate Model of Pixel Vector Intensities of Invasive H. sosnowskyi Plants. Journal of Imaging, 7(3), 45. https://doi.org/10.3390/jimaging7030045