A Comprehensive Review of Deep-Learning-Based Methods for Image Forensics
Abstract
:1. Introduction
2. Datasets
2.1. Original Data
2.2. Falsified Data
2.3. Artificially Generated Data
3. Manipulation Detection
3.1. Median Filtering Detection
3.2. Double JPEG Compression Detection
3.3. Contrast Enhancement Detection
3.4. General-Purpose Manipulations Detection
3.5. Summary and Comparisons of Manipulation Detection Methods
4. Falsification Detection
4.1. Multipurpose Detectors
4.2. Targeted Detectors
4.2.1. Splicing Detection
4.2.2. Copy-Move Detection
4.2.3. Inpainting Detection
5. Other Specific Forensic Problems
5.1. Camera Identification
5.2. Detection of Computer Graphics Images
5.3. Deepfake Detection
6. Anti-Forensics
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, S.; Farid, H.; Gu, Y. Protecting world leaders against deep fakes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 38–45. [Google Scholar]
- Piva, A. An overview on image forensics. ISRN Signal Process. 2013, 2013, 1–22. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Bengio, Y.; Courville, A.C. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Farid, H. A survey of image forgery detection. IEEE Signal Process. Mag. 2009, 2, 16–25. [Google Scholar] [CrossRef]
- Rocha, A.; Scheirer, W.; Boult, T.; Goldenstein, S. Vision of the unseen: Current trends and challenges in digital image and video forensics. ACM Comput. Surv. 2011, 43, 1–42. [Google Scholar] [CrossRef]
- Stamm, M.C.; Wu, M.; Liu, K.R. Information forensics: An overview of the first decade. IEEE Access 2013, 1, 167–200. [Google Scholar] [CrossRef]
- Birajdar, G.K.; Mankar, V.H. Digital image forgery detection using passive techniques: A survey. Digit. Investig. 2013, 10, 226–245. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Y.; Thing, V.L. A survey on image tampering and its detection in real-world photos. J. Vis. Commun. Image Represent. 2019, 58, 380–399. [Google Scholar] [CrossRef]
- Verdoliva, L. Media forensics and deepfakes: An overview. IEEE J. Sel. Top. Signal Process. 2020, 14, 910–932. [Google Scholar] [CrossRef]
- Asghar, K.; Habib, Z.; Hussain, M. Copy-move and splicing image forgery detection and localization techniques: A review. Aust. J. Forensic Sci. 2017, 49, 281–307. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Zhou, X. A survey on passive image copy-move forgery detection. J. Inf. Process. Syst. 2018, 14, 6–31. [Google Scholar]
- Ni, X.; Chen, L.; Yao, Y. An evaluation of deep learning-based computer generated image detection approaches. IEEE Access 2019, 7, 130830–130840. [Google Scholar] [CrossRef]
- Wu, J.; Feng, K.; Tian, M. Review of imaging device identification based on machine learning. In Proceedings of the International Conference on Machine Learning and Computing, Shenzhen, China, 15–17 February 2020; pp. 105–110. [Google Scholar]
- Yang, P.; Baracchi, D.; Ni, R.; Zhao, Y.; Argenti, F.; Piva, A. A survey of deep learning-based source image forensics. J. Imaging 2020, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, G.; Stich, M. UCID—An uncompressed colour image database. In Proceedings of the SPIE: Storage and Retrieval Methods and Applications for Multimedia, San Jose, CA, USA, 20–22 January 2004; pp. 472–480. [Google Scholar]
- Bas, P.; Filler, T.; Pevny, T. Break our steganographic system: The ins and outs of organizing BOSS. In Proceedings of the International Workshop on Information Hiding, Prague, Czech Republic, 18–20 May 2011; pp. 59–70. [Google Scholar]
- Gloe, T.; Bohme, R. The Dresden image database for benchmarking digital image forensics. In Proceedings of the ACM Symposium on Applied Computing, Sierre, Switzerland, 22–26 March 2010; pp. 1584–1590. [Google Scholar]
- Dang-Nguyen, D.T.; Pasquini, C.; Conotter, V.; Boato, G. RAISE: A raw images dataset for digital image forensics. In Proceedings of the ACM Multimedia Systems Conference, Portland, OR, USA, 18–20 March 2015; pp. 219–224. [Google Scholar]
- De Marsico, M.; Nappi, M.; Riccio, D.; Wechsler, H. Mobile iris challenge evaluation (MICHE)-I, biometric iris dataset and protocols. Pattern Recognit. Lett. 2015, 57, 17–23. [Google Scholar] [CrossRef]
- IEEE Signal Processing Society. IEEE’s Signal Processing Society—Camera Model Identification Competition. 2018. Available online: https://www.kaggle.com/c/sp-society-camera-model-identification (accessed on 2 April 2021).
- Shullani, D.; Fontani, M.; Iuliani, M.; Shaya, O.A.; Piva, A. VISION: A video and image dataset for source identification. EURASIP J. Inf. Secur. 2017, 2017, 15. [Google Scholar] [CrossRef]
- Bergmann, P.; Fauser, M.; Sattlegger, D.; Steger, C. MVTec AD–A comprehensive real-world dataset for unsupervised anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9592–9600. [Google Scholar]
- Amazon Web Services Inc. Landsat on AWS. 2018. Available online: https://aws.amazon.com/public-datasets/landsat (accessed on 2 April 2021).
- Nilsback, M.; Zisserman, A. Automated flower classification over a large number of classes. In Proceedings of the Indian Conference on Computer Vision, Graphics & Image Processing, Assam, India, 18–22 December 2008; pp. 722–729. [Google Scholar]
- Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; Oliva, A. Learning deep features for scene recognition using places database. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 487–495. [Google Scholar]
- Xiao, J.; Hays, J.; Ehinger, K.; Oliva, A.; Torralba, A. Sun database: Large-scale scene recognition from abbey to zoo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3485–3492. [Google Scholar]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. arXiv 2017, arXiv:1710.10196. [Google Scholar]
- Ng, T.; Hsu, J.; Chang, S. A Data Set of Authentic and Spliced Image Blocks. 2004. Available online: http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm (accessed on 2 April 2021).
- Hsu, Y.F.; Chang, S.F. Detecting image splicing using geometry invariants and camera characteristics consistency. In Proceedings of the International Conference on Multimedia and Expo, Toronto, ON, Canada, 9–12 July 2006. [Google Scholar]
- Dong, J.; Wang, W. CASIA image tampering detection evaluation database. In Proceedings of the IEEE China Summit and International Conference on Signal and Information Processing, Beijing, China, 6–10 July 2013; pp. 1–5. [Google Scholar]
- IEEE IFS-TC. IEEE IFS-TC Image Forensics Challenge Dataset. 2014. Available online: http://ifc.recod.ic.unicamp.br/fc.website/index.py (accessed on 2 April 2021).
- Carvalho, T.D.; Riess, C.; Angelopoulou, E.; Pedrini, H.; de Rezende Rocha, A. Exposing digital image forgeries by illumination color classification. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1182–1194. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Kozak, M.; Robertson, E.; Lee, Y.; Yates, A.N.; Delgado, A.; Zhou, D.; Kheyrkhah, T.; Smith, J.; Fiscus, J. MFC datasets: Large-scale benchmark datasets for media forensic challenge evaluation. In Proceedings of the 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 63–72. [Google Scholar]
- NIST. Nimble Datasets. 2017. Available online: https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation (accessed on 2 April 2021).
- Korus, P.; Huang, J. Multi-scale analysis strategies in PRNU-based tampering localization. IEEE Trans. Inf. Forensics Secur. 2017, 12, 809–824. [Google Scholar] [CrossRef]
- Bianchi, T.; Piva, A. Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1003–1017. [Google Scholar] [CrossRef] [Green Version]
- Wen, B.; Zhu, Y.; Subramanian, R.; Ng, T.; Shen, X.; Winkler, S. COVERAGE—A novel database for copy-move forgery detection. In Proceedings of the IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016; pp. 161–165. [Google Scholar]
- Tralic, D.; Zupancic, I.; Grgic, S.; Grgic, M. CoMoFoD—New database for copy-move forgery detection. In Proceedings of the International Symposium on Electronics in Marine, Zadar, Croatia, 25–27 September 2013; pp. 49–54. [Google Scholar]
- Macdonald, H. NRCS Photo Gallery. 2004. Available online: http://serc.carleton.edu/introgeo/interactive/examples/morrisonpuzzle.html (accessed on 2 April 2021).
- Ng, T.; Chang, S.; Hsu, J.; Pepeljugoski, M. Columbia Photographic Images and Photorealistic Computer Graphics Dataset; ADVENT Technical Report; Columbia University: New York, NY, USA, 2005; pp. 205–2004. [Google Scholar]
- Afchar, D.; Nozick, V.; Yamagishi, J.; Echizen, I. Mesonet: A compact facial video forgery detection network. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Hong Kong, China, 11–13 December 2018; pp. 1–7. [Google Scholar]
- ABVENT. Artlantis Gallery. 2005. Available online: https://artlantis.com/en/gallery/ (accessed on 2 April 2021).
- Chaos Czech a.s. Corona Renderer Gallery. 2020. Available online: https://corona-renderer.com/gallery (accessed on 2 April 2021).
- Ltd, C.P. Learn V-Ray Gallery. 2020. Available online: https://www.learnvray.com/fotogallery/ (accessed on 21 January 2021).
- Autodesk Inc. Autodesk A360 Rendering Gallery. 2020. Available online: https://gallery.autodesk.com/a360rendering/ (accessed on 2 April 2021).
- Yang, X.; Li, Y.; Lyu, S. Exposing deep fakes using inconsistent head poses. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 8261–8265. [Google Scholar]
- Rössler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Nießner, M. Faceforensics: A large-scale video dataset for forgery detection in human faces. arXiv 2018, arXiv:1803.09179. [Google Scholar]
- Rössler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Nießner, M. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 1–11. [Google Scholar]
- Li, Y.; Yang, X.; Sun, P.; Qi, H.; Lyu, S. Celeb-DF: A large-scale challenging dataset for DeepFake forensics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 3207–3216. [Google Scholar]
- Korshunov, P.; Halstead, M.; Castan, D.; Graciarena, M.; McLaren, M.; Burns, B.; Lawson, A.; Marcel, S. Tampered speaker inconsistency detection with phonetically aware audio-visual features. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 1–5. [Google Scholar]
- deepfakes@Github. Faceswap Github. 2020. Available online: https://github.com/deepfakes/faceswap (accessed on 2 April 2021).
- Dolhansky, B.; Howes, R.; Pflaum, B.; Baram, N.; Ferrer, C.C. The deepfake detection challenge (DFDC) preview dataset. arXiv 2019, arXiv:1910.08854. [Google Scholar]
- Google AI. Deepfakes Detection Dataset. 2019. Available online: https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html (accessed on 2 April 2021).
- Rahmouni, N.; Nozick, V.; Yamagishi, J.; Echizen, I. Distinguishing computer graphics from natural images using convolution neural networks. In Proceedings of the IEEE Workshop on Information Forensics and Security, Rennes, France, 4–7 December 2017; pp. 1–6. [Google Scholar]
- Chen, J.; Kang, X.; Liu, Y. Median filtering forensics based on convolutional neural networks. IEEE Signal Process. Lett. 2015, 22, 1849–1853. [Google Scholar] [CrossRef]
- Tang, H.; Ni, R.; Zhao, Y.; Li, X. Median filtering detection of small-size image based on CNN. J. Vis. Commun. Image Represent. 2018, 51, 162–168. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Popescu, A.; Farid, H. Statistical tools for digital forensics. In Proceedings of the International Workshop on Information Hiding, Toronto, ON, Canada, 23–25 May 2004; pp. 128–147. [Google Scholar]
- Wang, Q.; Zhang, R. Double JPEG compression forensics based on a convolutional neural network. EURASIP J. Inf. Secur. 2016, 2016, 23. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Agarwal, N.; Khanna, N. DCT-domain deep convolutional neural networks for multiple JPEG compression classification. Signal Process. Image Commun. 2018, 67, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Barni, M.; Bondi, L.; Bonettini, N. Aligned and non-aligned double JPEG detection using convolutional neural networks. J. Vis. Commun. Image Represent. 2017, 49, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Amerini, I.; Uricchio, T.; Ballan, L.; Caldelli, R. Localization of JPEG double compression through multi-domain convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–16 July 2017; pp. 1865–1871. [Google Scholar]
- Park, J.; Cho, D.; Ahn, W.; Lee, H. Double JPEG detection in mixed JPEG quality factors using deep convolutional neural network. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 636–652. [Google Scholar]
- Stamm, M.C.; Liu, K.R. Forensic detection of image manipulation using statistical intrinsic fingerprints. IEEE Trans. Inf. Forensics Secur. 2010, 5, 492–506. [Google Scholar] [CrossRef]
- Barni, M.; Costanzo, A.; Nowroozi, E.; Tondi, B. CNN-based detection of generic contrast adjustment with JPEG post-processing. In Proceedings of the IEEE International Conference on Image Processing, Athens, Greece, 7–10 October 2018; pp. 3803–3807. [Google Scholar]
- Sun, J.; Seung-Wook, K.; Sang-Won, L.; Sung-Jea, K. A novel contrast enhancement forensics based on convolutional neural networks. Signal Process. Image Commun. 2018, 63, 149–160. [Google Scholar] [CrossRef]
- Shan, W.; Yi, Y.; Huang, R.; Xie, Y. Robust contrast enhancement forensics based on convolutional neural networks. Signal Process. Image Commun. 2019, 71, 138–146. [Google Scholar] [CrossRef]
- Bayar, B.; Stamm, M.C. Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2691–2706. [Google Scholar] [CrossRef]
- Camacho, I.C.; Wang, K. A simple and effective initialization of CNN for forensics of image processing operations. In Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, Paris, France, 3–5 July 2019; pp. 107–112. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Camacho, I.C.; Wang, K. Data-dependent scaling of CNN’s first layer for improved image manipulation detection. In Proceedings of the International Workshop on Digital-forensics and Watermarking, New York, NY, USA, 6–11 December 2020; pp. 1–15. [Google Scholar]
- Zhang, Y.; Goh, J.; Win, L.; Thing, V. Image region forgery detection: A deep learning approach. In Proceedings of the Singapore Cyber-Security Conference, Singapore, 14–15 January 2016; pp. 1–11. [Google Scholar]
- Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233–243. [Google Scholar] [CrossRef]
- Fridrich, J.; Kodovsky, J. Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 868–882. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.; Ni, J. A deep learning approach to detection of splicing and copy-move forgeries in images. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Abu Dhabi, United Arab Emirates, 4–7 December 2016; pp. 1–6. [Google Scholar]
- Cozzolino, D.; Poggi, G.; Verdoliva, L. Recasting residual-based local descriptors as convolutional neural networks: An application to image forgery detection. In Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, Philadelphia, PA, USA, 20–21 June 2017; pp. 159–164. [Google Scholar]
- Bunk, J.; Bappy, J.; Mohammed, T.M.; Nataraj, L.; Flenner, A.; Manjunath, B.; Chandrasekaran, S.; Roy-Chowdhury, A.K.; Peterson, L. Detection and localization of image forgeries using resampling features and deep learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–16 July 2017; pp. 1881–1889. [Google Scholar]
- Bappy, J.; Simons, C.; Nataraj, L.; Manjunath, B.; Roy-Chowdhury, A.K. Hybrid LSTM and encoder–decoder architecture for detection of image forgeries. IEEE Trans. Image Process. 2019, 28, 3286–3300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Bondi, L.; Lameri, S.; Güera, D.; Bestagini, P.; Delp, E.J.; Tubaro, S. Tampering detection and localization through clustering of camera-based CNN features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–16 July 2017; pp. 1855–1864. [Google Scholar]
- Cozzolino, D.; Verdoliva, L. Camera-based image forgery localization using convolutional neural networks. In Proceedings of the European Signal Processing Conference, Rome, Italy, 3–7 September 2018; pp. 1372–1376. [Google Scholar]
- Yarlagadda, S.K.; Güera, D.; Bestagini, P.; Zhu, F.M.; Tubaro, S.; Delp, E.J. Satellite image forgery detection and localization using gan and one-class classifier. Electron. Imaging 2018, 2018, 241-1–241-9. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Han, X.; Morariu, V.; Davis, L.S. Learning rich features for image manipulation detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1053–1061. [Google Scholar]
- Wu, Y.; AbdAlmageed, W.; Natarajan, P. ManTra-Net: Manipulation tracing network for detection and localization of image forgeries with anomalous features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9543–9552. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE/CVG Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Marra, F.; Gragnaniello, D.; Verdoliva, L.; Poggi, G. A full-image full-resolution end-to-end-trainable CNN framework for image forgery detection. IEEE Access 2020, 8, 133488–133502. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–16 July 2017; pp. 1251–1258. [Google Scholar]
- Zhou, P.; Chen, B.; Han, X.; Najibi, M.; Shrivastava, A.; Lim, S.; Davis, L. Generate, Segment, and Refine: Towards Generic Manipulation Segmentation. In Proceedings of the Association for the Advancement of Artificial Intelligence Conference, New York, NY, USA, 7–12 February 2020; pp. 13058–13065. [Google Scholar]
- Bappy, J.; Roy-Chowdhury, A.K.; Bunk, J.; Nataraj, L.; Manjunath, B. Exploiting spatial structure for localizing manipulated image regions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4970–4979. [Google Scholar]
- Cozzolino, D.; Verdoliva, L. Single-image splicing localization through autoencoder-based anomaly detection. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Abu Dhabi, United Arab Emirates, 4–7 December 2016; pp. 1–6. [Google Scholar]
- D’Avino, D.; Cozzolino, D.; Poggi, G.; Verdoliva, L. Autoencoder with recurrent neural networks for video forgery detection. Electron. Imaging 2017, 2017, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Abd-Almageed, W.; Natarajan, P. Deep matching and validation network: An end-to-end solution to constrained image splicing localization and detection. In Proceedings of the ACM international conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1480–1502. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Salloum, R.; Ren, Y.; Kuo, C.C.K. Image splicing localization using a multi-task fully convolutional network (MFCN). J. Vis. Commun. Image Represent. 2018, 51, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Pun, C. Locating splicing forgery by fully convolutional networks and conditional random field. Signal Process. Image Commun. 2018, 66, 103–112. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Huh, M.; Liu, A.; Owens, A.; Efros, A.A. Fighting fake news: Image splice detection via learned self-consistency. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 101–117. [Google Scholar]
- Pomari, T.; Ruppert, G.; Rezende, E.; Rocha, A.; Carvalho, T. Image splicing detection through illumination inconsistencies and deep learning. In Proceedings of the IEEE International Conference on Image Processing, Athens, Greece, 7–10 October 2018; pp. 3788–3792. [Google Scholar]
- Kniaz, V.V.; Knyaz, V.; Remondino, F. The point where reality meets fantasy: Mixed adversarial generators for image splice detection. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 215–226. [Google Scholar]
- Bi, X.; Wei, Y.; Xiao, B.; Li, W. RRU-Net: The ringed residual U-Net for image splicing forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 1–10. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Bartusiak, E.; Yarlagadda, S.; Güera, D.; Bestagini, P.; Tubaro, S.; Zhu, F.; Delp, E.J. Splicing detection and localization in satellite imagery using conditional gans. In Proceedings of the IEEE Conference on Multimedia Information Processing and Retrieval, San Jose, CA, USA, 28–30 March 2019; pp. 91–96. [Google Scholar]
- Liu, Y.; Zhu, X.; Zhao, X.; Cao, Y. Adversarial learning for constrained image splicing detection and localization based on atrous convolution. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2551–2566. [Google Scholar] [CrossRef]
- Rao, Y.; Ni, J.; Zhao, H. Deep learning local descriptor for image splicing detection and localization. IEEE Access 2020, 8, 25611–25625. [Google Scholar] [CrossRef]
- Ouyang, J.; Liu, Y.; Liao, M. Copy-move forgery detection based on deep learning. In Proceedings of the International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Shanghai, China, 14–16 October 2017; pp. 1–5. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Wu, Y.; Abd-Almageed, W.; Natarajan, P. Image copy-move forgery detection via an end-to-end deep neural network. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1907–1915. [Google Scholar]
- Wu, Y.; Abd-Almageed, W.; Natarajan, P. Busternet: Detecting copy-move image forgery with source/target localization. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 168–184. [Google Scholar]
- Barni, M.; Phan, Q.; Tondi, B. Copy move source-target disambiguation through multi-branch CNNs. arXiv 2019, arXiv:1912.12640. [Google Scholar]
- Liu, Y.; Guan, Q.; Zhao, X. Copy-move forgery detection based on convolutional kernel network. Multimed. Tools Appl. 2018, 77, 18269–18293. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Chen, C.; Yan, G.; Guo, Y.; Dong, Y. AR-Net: Adaptive attention and residual refinement network for copy-move forgery detection. IEEE Trans. Ind. Inform. 2020, 16, 6714–6723. [Google Scholar] [CrossRef]
- Mattis, P.; Douze, M.; Harchaoui, Z.; Mairal, J.; Perronin, F.; Schmid, C. Local convolutional features with unsupervised training for image retrieval. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 1–13 December 2015; pp. 91–99. [Google Scholar]
- Christlein, V.; Riess, C.; Jordan, J.; Riess, C.; Angelopoulou, E. An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1841–1854. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Qian, Y.; Zhao, X.; Sun, B.; Sun, Y. A deep learning approach to patch-based image inpainting forensics. Signal Process. Image Commun. 2018, 67, 90–99. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Niu, S. An image forensic method for AI inpainting using faster R-CNN. In Proceedings of the International Conference on Artificial Intelligence and Security, Okinawa, Japan, 16–18 April 2019; pp. 476–487. [Google Scholar]
- Li, H.; Huang, J. Localization of deep inpainting using high-pass fully convolutional network. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 8301–8310. [Google Scholar]
- Wang, X.; Niu, S.; Wang, H. Image inpainting detection based on multi-task deep learning network. IETE Tech. Rev. 2020, 38, 1–9. [Google Scholar] [CrossRef]
- Zavrtanik, V.; Kristan, M.; Skčaj, D. Reconstruction by inpainting for visual anomaly detection. Pattern Recognit. 2021, 112, 107706. [Google Scholar] [CrossRef]
- Lu, M.; Niu, S. A detection approach using LSTM-CNN for object removal caused by exemplar-based image inpainting. Electronics 2020, 9, 858. [Google Scholar] [CrossRef]
- Bondi, L.; Baroffio, L.; Güera, D.; Bestagini, P.; Delp, E.J.; Tubaro, S. First steps toward camera model identification with convolutional neural networks. IEEE Signal Process. Lett. 2016, 24, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Tuama, A.; Comby, F.; Chaumont, M. Camera model identification with the use of deep convolutional neural networks. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Abu Dhabi, United Arab Emirates, 4–7 December 2016; pp. 1–6. [Google Scholar]
- Bayar, B.; Stamm, M.C. Towards open set camera model identification using a deep learning framework. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; pp. 2007–2011. [Google Scholar]
- Ding, X.; Chen, Y.; Tang, Z.; Huang, Y. Camera identification based on domain knowledge-driven deep multi-task learning. IEEE Access 2019, 7, 25878–25890. [Google Scholar] [CrossRef]
- Freire-Obregón, D.; Narducci, F.; Barra, S.; Castrillón-Santana, M. Deep learning for source camera identification on mobile devices. Pattern Recognit. Lett. 2019, 126, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D.; Verdoliva, L. Noiseprint: A CNN-based camera model fingerprint. IEEE Trans. Inf. Forensics Secur. 2019, 15, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Sameer, V.U.; Naskar, R. Deep siamese network for limited labels classification in source camera identification. Multimed. Tools Appl. 2020, 79, 28079–28104. [Google Scholar] [CrossRef]
- De Rezende, E.; Ruppert, G.; Carvalho, T. Detecting computer generated images with deep convolutional neural networks. In Proceedings of the SIBGRAPI Conference on Graphics, Patterns and Images, Niteroi, Brazil, 17–20 October 2017; pp. 71–78. [Google Scholar]
- Yu, I.J.; Kim, D.G.; Park, J.S.; Hou, J.U.; Choi, S.; Lee, H.K. Identifying photorealistic computer graphics using convolutional neural networks. In Proceedings of the IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017; pp. 4093–4097. [Google Scholar]
- Quan, W.; Wang, K.; Yan, D.M.; Zhang, X. Distinguishing between natural and computer-generated images using convolutional neural networks. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2772–2787. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Tieu, T.N.D.; Nguyen-Son, H.Q.; Nozick, V.; Yamagishi, J.; Echizen, I. Modular convolutional neural network for discriminating between computer-generated images and photographic images. In Proceedings of the International Conference on Availability, Reliability and Security, Hamburg, Germany, 27–30 August 2018; pp. 1–10. [Google Scholar]
- Yao, Y.; Hu, W.; Zhang, W.; Wu, T.; Shi, Y.Q. Distinguishing computer-generated graphics from natural images based on sensor pattern noise and deep learning. Sensors 2018, 18, 1296. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Jiang, X.; Sun, T.; Li, H. Computer graphics identification combining convolutional and recurrent neural networks. IEEE Signal Process. Lett. 2018, 25, 1369–1373. [Google Scholar] [CrossRef]
- Tariang, D.B.; Senguptab, P.; Roy, A.; Chakraborty, R.S.; Naskar, R. Classification of computer generated and natural images based on efficient deep convolutional recurrent attention model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 146–152. [Google Scholar]
- Nguyen, H.H.; Yamagishi, J.; Echizen, I. Capsule-forensics: Using capsule networks to detect forged images and videos. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 2307–2311. [Google Scholar]
- Sabour, S.; Frosst, N.; Hinton, G. Dynamic routing between capsules. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3856–3866. [Google Scholar]
- Zhang, R.; Quan, W.; Fan, L.; Hu, L.; Yan, D.M. Distinguishing Computer-Generated Images from Natural Images Using Channel and Pixel Correlation. J. Comput. Sci. Technol. 2020, 35, 592–602. [Google Scholar] [CrossRef]
- Meena, K.B.; Tyagi, V. A deep learning based method to discriminate between photorealistic computer generated images and photographic images. In Proceedings of the International Conference on Advances in Computing and Data Sciences, Valletta, Malta, 24–25 April 2020; pp. 212–223. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–16 July 2017; pp. 4700–4708. [Google Scholar]
- He, P.; Li, H.; Wang, H.; Zhang, R. Detection of Computer Graphics Using Attention-Based Dual-Branch Convolutional Neural Network from Fused Color Components. Sensors 2020, 20, 4743. [Google Scholar] [CrossRef]
- Quan, W.; Wang, K.; Yan, D.M.; Zhang, X.; Pellerin, D. Learn with diversity and from harder samples: Improving the generalization of CNN-Based detection of computer-generated images. Forensic Sci. Int. Digit. Investig. 2020, 35, 301023. [Google Scholar] [CrossRef]
- Tokuda, E.; Pedrini, H.; Rocha, A. Computer generated images vs. digital photographs: A synergetic feature and classifier combination approach. J. Vis. Commun. Image Represent. 2013, 24, 1276–1292. [Google Scholar] [CrossRef]
- Mo, H.; Chen, B.; Luo, W. Fake faces identification via convolutional neural network. In Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, Innsbruck, Austria, 20–22 June 2018; pp. 43–47. [Google Scholar]
- Marra, F.; Gragnaniello, D.; Cozzolino, D.; Verdoliva, L. Detection of GAN-generated fake images over social networks. In Proceedings of the IEEE Conference on Multimedia Information Processing and Retrieval, Miami, FL, USA, 10–12 April 2018; pp. 384–389. [Google Scholar]
- Chan, C.; Ginosar, S.; Zhou, T.; Efros, A.A. Everybody dance now. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 5933–5942. [Google Scholar]
- Tariq, S.; Lee, S.; Kim, H.; Shin, Y.; Woo, S.S. Detecting both machine and human created fake face images in the wild. In Proceedings of the International Workshop on Multimedia Privacy and Security, Toronto, ON, Canada, 15 October 2018; pp. 81–87. [Google Scholar]
- Güera, D.; Delp, E.J. Deepfake video detection using recurrent neural networks. In Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, Auckland, New Zealand, 27–30 November 2018; pp. 1–6. [Google Scholar]
- Amerini, I.; Galteri, L.; Caldelli, R.; Del Bimbo, A. Deepfake video detection through optical flow based CNN. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019; pp. 1–3. [Google Scholar]
- Sun, D.; Yang, X.; Liu, M.Y.; Kautz, J. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8934–8943. [Google Scholar]
- Amerini, I.; Caldelli, R. Exploiting prediction error inconsistencies through LSTM-based classifiers to detect deepfake videos. In Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, Denver, CO, USA, 22–24 June 2020; pp. 97–102. [Google Scholar]
- Ciftci, U.A.; Demir, I.; Yin, L. Fakecatcher: Detection of synthetic portrait videos using biological signals. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 1–17. [Google Scholar] [CrossRef]
- Li, Y.; Chang, M.C.; Lyu, S. In ictu oculi: Exposing AI created fake videos by detecting eye blinking. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Hong Kong, China, 11–13 December 2018; pp. 1–7. [Google Scholar]
- Agarwal, S.; Farid, H.; Fried, O.; Agrawala, M. Detecting deep-fake videos from phoneme-viseme mismatches. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 1–9. [Google Scholar]
- Mittal, T.; Bhattacharya, U.; Chandra, R.; Bera, A.; Manocha, D. Emotions don’t lie: A deepfake detection method using audio-visual affective cues. arXiv 2020, arXiv:2003.06711. [Google Scholar]
- Li, L.; Bao, J.; Zhang, T.; Yang, H.; Chen, D.; Wen, F.; Guo, B. Face X-ray for more general face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 5001–5010. [Google Scholar]
- Li, Y.; Lyu, S. Exposing deepFake videos by detecting face warping artifacts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 46–52. [Google Scholar]
- Xuan, X.; Peng, B.; Wang, W.; Dong, J. On the generalization of GAN image forensics. In Proceedings of the Chinese Conference on Biometric Recognition, Zhuzhou, China, 12–13 October 2019; pp. 134–141. [Google Scholar]
- Nguyen, H.H.; Fang, F.; Yamagishi, J.; Echizen, I. Multi-task learning for detecting and segmenting manipulated facial images and videos. In Proceedings of the IEEE International Conference on Biometrics Theory, Applications and Systems, Tampa, FL, USA, 23–26 September 2019; pp. 1–8. [Google Scholar]
- Dang, H.; Liu, F.; Stehouwer, J.; Liu, X.; Jain, A.K. On the detection of digital face manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 5781–5790. [Google Scholar]
- Ding, X.; Raziei, Z.; Larson, E.C.; Olinick, E.V.; Krueger, P.; Hahsler, M. Swapped face detection using deep learning and subjective assessment. EURASIP J. Inf. Secur. 2020, 2020, 6. [Google Scholar] [CrossRef]
- Hsu, C.C.; Zhuang, Y.X.; Lee, C.Y. Deep fake image detection based on pairwise learning. Appl. Sci. 2020, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, S.; Raj, S.; Ewetz, R.; Singh Pannu, J.; Kumar Jha, S.; Ortiz, E.; Vintila, I.; Salter, M. Detecting deepfake videos using attribution-based confidence metric. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 308–309. [Google Scholar]
- Khalid, H.; Woo, S.S. OC-FakeDect: Classifying deepfakes using one-class variational autoencoder. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 656–657. [Google Scholar]
- Wang, S.Y.; Wang, O.; Zhang, R.; Owens, A.; Efros, A.A. CNN-generated images are surprisingly easy to spot … for now. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 8695–8704. [Google Scholar]
- Li, X.; Yu, K.; Ji, S.; Wang, Y.; Wu, C.; Xue, H. Fighting against deepfake: Patch&pair convolutional neural networks (PPCNN). In Proceedings of the Web Conference 2020, Ljubljana, Slovenia, 19–23 April 2020; pp. 88–89. [Google Scholar]
- Masi, I.; Killekar, A.; Mascarenhas, R.M.; Gurudatt, S.P.; AbdAlmageed, W. Two-branch recurrent network for isolating deepfakes in videos. arXiv 2020, arXiv:2008.03412. [Google Scholar]
- Su, W.; Yuan, Y.; Zhu, M. A relationship between the average precision and the area under the ROC curve. In Proceedings of the International Conference on the Theory of Information Retrieval, Northampton, MA, USA, 27–30 September 2015; pp. 349–352. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Nguyen, A.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 427–436. [Google Scholar]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Güera, D.; Wang, Y.; Bondi, L.; Bestagini, P.; Tubaro, S.; Delp, E.J. A counter-forensic method for CNN-based camera model identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–16 July 2017; pp. 1840–1847. [Google Scholar]
- Chen, C.; Zhao, X.; Stamm, M.C. MISLGAN: An anti-forensic camera model falsification framework using a generative adversarial network. In Proceedings of the IEEE International Conference on Image Processing, Athens, Greece, 7–10 October 2018; pp. 535–539. [Google Scholar]
- Chen, C.; Zhao, X.; Stamm, M.C. Generative adversarial attacks against deep-learning-based camera model identification. IEEE Trans. Inf. Forensics Secur. 2019, 1–16. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, P.; Ni, R.; Zhao, Y.; Li, W. Cycle GAN-based attack on recaptured images to fool both human and machine. In Proceedings of the International Workshop on Digital-Forensics and Watermarking, Hong Kong, China, 11–13 December 2018; pp. 83–92. [Google Scholar]
- Kim, D.; Jang, H.U.; Mun, S.M.; Choi, S.; Lee, H.K. Median filtered image restoration and anti-forensics using adversarial networks. IEEE Signal Process. Lett. 2017, 25, 278–282. [Google Scholar] [CrossRef]
- Wu, J.; Sun, W. Towards multi-operation image anti-forensics with generative adversarial networks. Comput. Secur. 2021, 100, 102083. [Google Scholar] [CrossRef]
- Uddin, K.; Yang, Y.; Oh, B.T. Anti-forensic against double JPEG compression detection using adversarial generative network. In Proceedings of the Korean Society of Broadcast Engineers Conference: Korea Institute of Science and Technology Information, Daejeon, Korea, 2019; pp. 58–60. [Google Scholar]
- Cui, Q.; Meng, R.; Zhou, Z.; Sun, X.; Zhu, K. An anti-forensic scheme on computer graphic images and natural images using generative adversarial networks. Math. Biosci. Eng. 2019, 16, 4923–4935. [Google Scholar] [CrossRef]
- Barni, M.; Kallas, K.; Nowroozi, E.; Tondi, B. On the transferability of adversarial examples against CNN-based image forensics. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 8286–8290. [Google Scholar]
- Cao, H.; Kot, A.C. Identification of recaptured photographs on LCD screens. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 15–19 March 2010; pp. 1790–1793. [Google Scholar]
- Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–16 July 2017; pp. 126–135. [Google Scholar]
Type | Name | Size | Format | Grayscale/Color and Bit Depth | Content Ratio | Operations | GT Mask | |||
---|---|---|---|---|---|---|---|---|---|---|
Copy-Move | Splicing | Inpainting | Others | |||||||
Original data | BossBase [16] | U-PGM | 8-bit | 10K | N/A | |||||
UCID [15] | , | U-TIFF | 24-bit | 1338 | N/A | |||||
Landsat [23] | ; | C-TIFF | 48-bit | Ongoing | N/A | |||||
MIT SUN [28] | L-JPEG | 24-bit | 130,519 | N/A | ||||||
NRCS [42] | U-TIFF, L-JPEG | 24-bit 8-bit | 11,036 | N/A | ||||||
MS COCO [25] | Various | L-JPEG | 24-bit | 328K | N/A | |||||
CelebA [29] | ; | L-JPEG | 24-bit | 200K | N/A | |||||
CelebAHQ [30] | L-JPEG | 24-bit | 30K | N/A | ||||||
RAISE [18] | C-TIFF, U-NEF | 36-bit | 8156 | N/A | ||||||
Dresden [17] | ; | L-JPEG, U-NEF | 24-bit, 36-bit | 14K | N/A | |||||
MICHE-I [19] | ; | L-JPEG | 24-bit | 3732 | N/A | |||||
Kaggle Camera [20] | ; | L-JPEG, C-TIFF | 24-bit | 2750 | N/A | |||||
Vision [21] | ; | L-JPEG | 24-bit | 34427 | N/A | |||||
Falsified data | Columbia gray [31] | U-BMP | 8-bit | 1845/912 | No | |||||
IEEE IFS-TC [34] | ; | C-PNG | 24-bit | 1050/1150 | Yes | |||||
CASIA v1 [33] | L-JPEG | 24-bit | 1725/925 | No | ||||||
CASIA v2 [33] | ; | L-JPEG, U-BMP, U-TIFF | 24-bit | 7491/5123 | No | |||||
NIST Nimble 16 [36] | ; | L-JPEG | 24-bit | 560/564 | No | |||||
NIST Nimble 17 [37] | ; | U-NEF, C-PNG, U-BMP, L-JPEG, U-TIFF | 36-bit, 24-bit | 2667/1410 | No | |||||
Coverage [40] | C-TIFF | 24-bit | 100/100 | Yes | ||||||
Columbia color [32] | ; | U-TIFF | 24-bit | 183/180 | Yes | |||||
Carvalho [35] | C-PNG | 24-bit | 100/100 | Yes | ||||||
Realistic (Korus) [38] | C-TIFF | 24-bit | 220/220 | Yes | ||||||
CoMoFoD [41] | ; | C-PNG | 24-bit | 260/260 | Yes | |||||
VIPP [39] | ; | U-TIFF | 24-bit | 68/69 | Yes |
Type | Name | Size | Format | Codec | Content Ratio | Media | |
---|---|---|---|---|---|---|---|
Video | Image | ||||||
CGI | Columbia [43] | ; | JPEG | - | 1600/1600 | ||
Rahmouni [57] | ; | JPEG | - | 1800/1800 | |||
CGI and Deepfakes | Faceforensics [50] | 480p | MP4 | H.264 | 1000/1000 | ||
Deepfakes | UADFV [49] | MP4 | H.264 | 49/49 | |||
Faceforensics++ [51] | 480p,720p, 1080p | MP4 | H.264 | 1000/4000 | |||
Afchar [44] | JPEG | - | 7250/5100 | ||||
PGGAN [30] | ; | JPEG | - | -/100 K | |||
Deepfake TIMIT [53] | ; | AVI | H.264 | -/620 | |||
CelebDF [52] | Various | MP4 | H.264 | 509/5639 | |||
DFDC [55] | 180p; 2160p | MP4 | H.264 | 1131/4113 | |||
DFD [56] | 1080p | MP4 | H.264 | 363/3068 |
Problem | Method | Network Depth | Input Feature | Special CNN Design | Input Size | Approach | Dataset | Patch Performance |
---|---|---|---|---|---|---|---|---|
MF | [58] | 5C-2F | MFR | N/A | , | Acc. 85.14 | ||
[59] | 2M-3C | Upscaled values | mlpconv | , | Acc. 89.96 | |||
DJPEG | [63] | 4C-3F | DCT features | N/A | Acc. 99.48 | |||
[62] | 2C-2F | DCT features | Customized 3 × 1 kernels | , , …, | AUC 100.00 | |||
[64] | 3C-2F | Noise residuals or DCT features | N/A | , | Acc. 96.30 | |||
[65] | 2C-2F, 3C-1F | DCT features, pixel values | Two-branch CNN | Acc. 99.60 | ||||
[66] | 4C-3F, 3F | DCT features, quantization tables | Two-branch CNN | Acc. 92.76 | ||||
CE | [68] | 9C-1F | Pixel values | N/A | AUC 99.7 | |||
[69] | 3C-2F | GLCM | N/A | TPR 99.80 | ||||
[70] | 4C-2F | GLCM | N/A | AUC 99.40 | ||||
GIPO | [71] | 5C-2F | Pixel values | Constrained 1st layer | , | Acc. 94.19 | ||
[72] | 5C-2F | Pixel values | Special init. for 1st layer | Acc. 93.71 | ||||
[74] | 5C-2F, 6C | Pixel values | Scaling for 1st layer | Acc. 96.02 |
Method | Input Feature | Init. First Layer | Input Size | Loc. Level | Dataset | Network Type | Perf. on CASIA | Perf. on NIST 16 |
---|---|---|---|---|---|---|---|---|
[78] | Pixel values | SRM filters | pixel | CNN - SVM | Acc. 97.8 | - | ||
[75] | Wavelet features | Random init. | block | Autoencoder | Acc. 91.1 | - | ||
[79] | Steganalysis features | Random init. | pixel | CNN - SVM | - | - | ||
[83] | Pixel values | Random init. | block | CNN | - | - | ||
[80] | Radon features | Random init. | , | pixel | LSTM | - | Acc. 94.9 | |
[92] | Resampling features | Random init. | pixel | CNN | - | Acc. 89.4 | ||
[86] | Pixel values, noise features | Random init. | bbox | Multi-branch | AUC 79.5 | AUC 93.7 | ||
[85] | Pixel values | Random init. | block | GAN-SVM | - | - | ||
[84] | Pixel values, Noiseprints | Random init. | , | pixel | CNN | - | - | |
[81] | Resampling features | Random init. | Resized | pixel | LSTM | - | Acc. 94.8 | |
[87] | Pixel values | SRM filters, Bayar filters, Random init. | , | pixel | Multi-branch | AUC 81.7 | AUC 79.5 | |
[89] | Pixel values, Noiseprints | Random init. | ; | pixel | CNN incremental learning | - | - | |
[91] | Pixel values | Random init. | pixel | GAN-CNN | F1 57.4 | - |
Method | Input Feature | Input Size | Dataset | Network Type | Backbone Architecture | Perf. on Carvalho | Perf. on CASIA |
---|---|---|---|---|---|---|---|
[93] | SRM features | AE | Own | - | - | ||
[95] | Pixel values | CNN | VGG-16 | - | - | ||
[94] | SRM features | AE-LSTM | Own | - | - | ||
[97] | Pixel values | FCN | VGG-16 | F1 47.9 | F1 54.1 | ||
[100] | EXIF metadata, pixel values | CNN | ResNet-v2 | mAP 51.0 | - | ||
[101] | Illuminant maps | CNN-SVM | ResNet-v1 | - | - | ||
[98] | Pixel values | FCN | VGG-16 | - | - | ||
[103] | Pixel values | CNN (U-Net) | ResNet-v1 | - | F1 84.1 | ||
[102] | Pixel values | GAN (U-Net) | VGG-16 | mAP 48.0 | mAP 74.0 | ||
[106] | Pixel values | GAN | VGG-16 | - | F1 90.8 | ||
[105] | Pixel values | GAN | Pix2Pix | - | - | ||
[107] | SRM features for 1st layer init. | CNN-SVM | Own | - | Acc. 97.0 |
Method | Input Features | Input Size | Localization Level | Dataset | Backbone Architecture | Performance Copy-Move | Performance Inpainting |
---|---|---|---|---|---|---|---|
Copy-move | |||||||
[108] | Pixel values | Detection | AlexNet | - | N.A. | ||
[110] | Pixel values | Image | VGG-16 | 31.3 / 14.6 | N.A. | ||
[113] | Keypoints | Pixel | Own | - | N.A. | ||
[111] | Pixel values | Pixel, S-T disam. | VGG-16 | 49.3 / 45.6 | N.A. | ||
[112] | Pixel values | Pixel, S-T disam. | ResNet-V1 | - | N.A. | ||
[114] | Pixel values | Pixel | VGG-16 | 50.1 / 45.5 | N.A. | ||
Inpainting | |||||||
[117] | High-pass residuals | Pixel | Own | N.A. | mAP 97.8 | ||
[118] | Pixel values | bbox | ResNet-V1 | N.A. | F1 91.5 | ||
[119] | High-pass residuals | Various | Pixel | ResNet-V1 | N.A. | F1 97.3 | |
[120] | LBP, pixel values | Pixel & bbox | Own | N.A. | mAP 97.8 | ||
[121] | Pixel values | Pixel | Own | N.A. | AUC 94.2 | ||
[122] | Pixel values | Pixel & bbox | Own | N.A. | Acc. 93.6 |
Method | Input Features | Initialization | Input Size | Dataset | Network Type | Performance |
---|---|---|---|---|---|---|
[124] | High-pass residuals | Random init. | CNN | 12: 98.0 | ||
[123] | Pixel values | Random init. | CNN-SVM | 18: 93.0 | ||
[125] | High-pass residuals | Bayar’s constrained | CNN-SVM CNN-ET | 10: 93.9 | ||
[127] | Pixel values | Random init. | CNN-SVM | 3: 91.1 | ||
[128] | Pixel values | Random init. | Siamese | 3: 100.0 | ||
[126] | High-pass residuals | Random init. | Multi-scale CNN | 14: 97.1 | ||
[129] | Pixel values | Random init. | Siamese | 10: 87.3 |
Method | Input Size | Dataset | Network Type | Backbone Architecture | Performance |
---|---|---|---|---|---|
[130] | CNN-SVM | ResNet-50 | Acc. 94.1 | ||
[131] | CNN | VGG-16 | Acc. 98.0 | ||
[57] | CNN-SVM | Own | Acc. 84.8 | ||
[132] | , …, | CNN | Own | Acc. 94.8 | |
[134] | CNN | Own | Acc. 99.9 | ||
[133] | Two-input CNN-RNN | VGG-19 | Acc. 96.5 | ||
[135] | CNN-RNN | ResNet-50 | Acc. 93.9 | ||
[136] | ,..., | A-RNN | Own | Acc. 94.9 | |
[137] | Capsule | VGG-19 | Acc. 97.0 | ||
[139] | CNN | Own | Acc. 94.2 | ||
[140] | CNN | DenseNet-201 | Acc. 94.1 | ||
[142] | , | Two-input A-CNN | Inception | Acc. 87.8 | |
[143] | Two-branch CNN | Own | HTER 1.31 |
Method | Input Size | Dataset | Network Type | Backbone Architecture | Image | Video | Cue | Performance | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spatial | GAN Trace | Physiology | Inter-Frame | Anomaly | ||||||||
[145] | CNN | Own | Acc. 99.4 | |||||||||
[146] | CNN | XceptionNet | Acc. 94.5 | |||||||||
[154] | CNN-LSTM | VGG16 | AUC 99.0 | |||||||||
[149] | CNN-LSTM | Inception V3 | Acc. 97.1 | |||||||||
[44] | CNN | Inception | Acc. 95.3 | |||||||||
[148] | CNN | VGG16, ResNet110, etc. | AUC 94.0 | |||||||||
[158] | CNN | VGG16, ResNet50,101 | AUC 97.4 | |||||||||
[147] | CNN | Own | Acc. 97.0 | |||||||||
[150] | CNN | PWC-Net | Acc. 81.6 | |||||||||
[153] | CNN | Own | Acc. 82.5 Acc. 80.6 | |||||||||
[53] | , | CNN-LSTM | Own | ERR 9.8 | ||||||||
[160] | AE-CNN | Own | Acc. 90.3 Acc. 84.9 | |||||||||
[159] | CNN | Own | Acc. 95.5 | |||||||||
[162] | CNN | ResNet18 | Acc. 99.9 | |||||||||
[155] | CNN | XceptionNet | TPR 97.8 | |||||||||
[157] | CNN | XceptionNet | AUC 98.5 | |||||||||
[161] | CNN | XceptionNet, VGG16 | AUC 99.7 | |||||||||
[152] | LSTM | Inception V3 | Acc. 94.3 | |||||||||
[164] | ABC-CNN | ResNet50 | Acc. 96.0 | |||||||||
[163] | Siamese-CNN | Own | Prec. 98.8 | |||||||||
[165] | VAE | One-Class VAE | Acc. 98.2 | |||||||||
[167] | CNN | ResNet18 | Acc. 99.4 | |||||||||
[168] | LSTM | Own | Acc. 96.4 | |||||||||
[156] | Unknown | CNN | Own | AUC 96.3 | ||||||||
[166] | CNN | ResNet50 | AP 98.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo Camacho, I.; Wang, K. A Comprehensive Review of Deep-Learning-Based Methods for Image Forensics. J. Imaging 2021, 7, 69. https://doi.org/10.3390/jimaging7040069
Castillo Camacho I, Wang K. A Comprehensive Review of Deep-Learning-Based Methods for Image Forensics. Journal of Imaging. 2021; 7(4):69. https://doi.org/10.3390/jimaging7040069
Chicago/Turabian StyleCastillo Camacho, Ivan, and Kai Wang. 2021. "A Comprehensive Review of Deep-Learning-Based Methods for Image Forensics" Journal of Imaging 7, no. 4: 69. https://doi.org/10.3390/jimaging7040069
APA StyleCastillo Camacho, I., & Wang, K. (2021). A Comprehensive Review of Deep-Learning-Based Methods for Image Forensics. Journal of Imaging, 7(4), 69. https://doi.org/10.3390/jimaging7040069