Forgery Detection in Digital Images by Multi-Scale Noise Estimation
Abstract
:1. Introduction
2. Related Work
3. The Proposed Method
- Open the suspect image.
- Get a list of all macroblocks according to the given macroblock size and the considered stride.
- For each scale and each color channel, estimate the global NLF of the image and compare it to NLF computed at each macroblock. We are interested in the percentage of histogram bins below the global curve.
- To obtain the final result of the algorithm, the heatmaps obtained at each of the scales are combined.
Algorithm 1 Pseudo-code for the proposed method |
Input: image I of shape with C color channels. Parameters: macroblock side, stride, num_scales = 3 number of scales.
|
4. Experimental Results
4.1. Relevance of the Multi-Scale Approach
4.2. Comparison with State-of-the-Art Methods
5. Conclusions, Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
JPEG | Joint Photographic Experts Group |
PRNU | Photo-Response Non-Uniformity |
MAD | Median Absolute Deviation |
PCA | Principal Component Analysis |
SLIC | Simple Linear Iterative Clustering |
AWGN | Additive White Gaussian Noise |
NLF | Noise Level Function |
CRF | Camera Response Function |
CNN | Convolutional Neural Network |
DCT | Discrete Cosine Transform |
MCC | Matthews’ Correlation Coefficient |
IoU | Intersection Over Union |
TP | True Positive |
TN | True Negative |
FP | False Positive |
FN | False Negative |
Appendix A. Adaptation of Ponomarenko’s Noise Estimation Method
Appendix B. Optimal Macroblock Size
MCC | ||||
Retouching | Colorization | Splicing | Copy-Move | |
PB1_512 | 0.0585 | 0.0770 | 0.0246 | 0.0316 |
PB2_512 | 0.0729 | 0.0830 | 0.0268 | 0.0321 |
PB3_512 | 0.0804 | 0.0901 | 0.0291 | 0.0320 |
PB1_384 | 0.0625 | 0.0838 | 0.0242 | 0.0348 |
PB2_384 | 0.0789 | 0.0924 | 0.0284 | 0.0350 |
PB3_384 | 0.0869 | 0.1015 | 0.0289 | 0.0344 |
PB1_256 | 0.0672 | 0.0958 | 0.0276 | 0.0380 |
PB2_256 | 0.0848 | 0.1066 | 0.0310 | 0.0377 |
PB3_256 | 0.0915 | 0.1108 | 0.0316 | 0.0362 |
IoU | ||||
Retouching | Colorization | Splicing | Copy-Move | |
PB1_512 | 0.0226 | 0.0650 | 0.0113 | 0.0141 |
PB2_512 | 0.0262 | 0.0673 | 0.0120 | 0.0144 |
PB3_512 | 0.0278 | 0.0691 | 0.0124 | 0.0142 |
PB1_384 | 0.0234 | 0.0679 | 0.0110 | 0.0145 |
PB2_384 | 0.0274 | 0.0708 | 0.0120 | 0.0146 |
PB3_384 | 0.0289 | 0.0730 | 0.0122 | 0.0144 |
PB1_256 | 0.0242 | 0.0721 | 0.0112 | 0.0148 |
PB2_256 | 0.0284 | 0.0756 | 0.0122 | 0.0149 |
PB3_256 | 0.0300 | 0.0761 | 0.0123 | 0.0145 |
F1 | ||||
Retouching | Colorization | Splicing | Copy-Move | |
PB1_512 | 0.0428 | 0.1032 | 0.0215 | 0.0268 |
PB2_512 | 0.0492 | 0.1067 | 0.0229 | 0.0272 |
PB3_512 | 0.0520 | 0.1099 | 0.0235 | 0.0270 |
PB1_384 | 0.0441 | 0.1068 | 0.0211 | 0.0275 |
PB2_384 | 0.0512 | 0.1112 | 0.0229 | 0.0277 |
PB3_384 | 0.0540 | 0.1151 | 0.0232 | 0.0274 |
PB1_256 | 0.0454 | 0.1122 | 0.0216 | 0.0281 |
PB2_256 | 0.0529 | 0.1175 | 0.0234 | 0.0282 |
PB3_256 | 0.0557 | 0.1192 | 0.0236 | 0.0276 |
Appendix C. Implementation Details
References
- Singh, N.; Jain, M.; Sharma, S. A Survey of Digital Watermarking Techniques. Int. J. Mod. Commun. Technol. Res. 2013, 1, 6. [Google Scholar]
- Farid, H. Digital doctoring: How to tell the real from the fake. Significance 2006, 3, 162–166. [Google Scholar] [CrossRef]
- Popescu, A.C.; Farid, H. Statistical Tools for Digital Forensics. In Information Hiding, Proceedings of the 6th International Workshop, IH 2004, Toronto, ON, Canada, 23–25 May 2004, Selected Papers; Springer: Berlin, Germany, 2005; pp. 128–147. [Google Scholar]
- Choi, C.H.; Choi, J.H.; Lee, H.K. CFA Pattern Identification of Digital Cameras Using Intermediate Value Counting. In Proceedings of the Thirteenth ACM Multimedia Workshop on Multimedia and Security, MM&Sec ’11, Buffalo, NY, USA, 29–30 September 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 21–26. [Google Scholar] [CrossRef]
- Shin, H.J.; Jeon, J.J.; Eom, I.K. Color filter array pattern identification using variance of color difference image. J. Electron. Imaging 2017, 26, 043015. [Google Scholar] [CrossRef]
- Bammey, Q.; Gioi, R.G.v.; Morel, J.M. An Adaptive Neural Network for Unsupervised Mosaic Consistency Analysis in Image Forensics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Lin, Z.; Wang, R.; Tang, X.; Shum, H.Y. Detecting Doctored Images Using Camera Response Normality and Consistency; Association for Computing Machinery, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Hsu, Y.F.; Chang, S.F. Image Splicing Detection Using Camera Response Function Consistency and Automatic Segmentation. In Proceedings of the International Conference on Multimedia and Expo, Beijing, China, 2–5 July 2007. [Google Scholar]
- Ye, S.; Sun, Q.; Chang, E.C. Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2–5 July 2007; pp. 12–15. [Google Scholar]
- Bianchi, T.; De Rosa, A.; Piva, A. Improved DCT coefficient analysis for forgery localization in JPEG images. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 2444–2447. [Google Scholar]
- Krawetz, N.; Solutions, H.F. A picture’s worth. Hacker Factor Solut. 2007, 6, 2. [Google Scholar]
- Nikoukhah, T.; Anger, J.; Ehret, T.; Colom, M.; Morel, J.M.; Grompone von Gioi, R. JPEG grid detection based on the number of DCT zeros and its application to automatic and localized forgery detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 110–118. [Google Scholar]
- Castillo Camacho, I.; Wang, K. A Comprehensive Review of Deep-Learning-Based Methods for Image Forensics. J. Imaging 2021, 7, 69. [Google Scholar] [CrossRef]
- Rao, Y.; Ni, J.; Zhao, H. Deep Learning Local Descriptor for Image Splicing Detection and Localization. IEEE Access 2020, 8, 25611–25625. [Google Scholar] [CrossRef]
- Bi, X.; Wei, Y.; Xiao, B.; Li, W. RRU-Net: The Ringed Residual U-Net for Image Splicing Forgery Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 30–39. [Google Scholar]
- Rodriguez-Ortega, Y.; Ballesteros, D.M.; Renza, D. Copy-Move Forgery Detection (CMFD) Using Deep Learning for Image and Video Forensics. J. Imaging 2021, 7, 59. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, Q.; Zhao, X. Copy-move Forgery Detection based on Convolutional Kernel Network. Multimed. Tools Appl. 2018, 77, 18269–18293. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Huang, J. Localization of Deep Inpainting Using High-Pass Fully Convolutional Network. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28 October 2019. [Google Scholar]
- Wang, X.; Niu, S.; Wang, H. Image Inpainting Detection Based on Multi-task Deep Learning Network. IETE Tech. Rev. 2021, 38, 149–157. [Google Scholar] [CrossRef]
- Wu, Y.; AbdAlmageed, W.; Natarajan, P. ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries with Anomalous Features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [Google Scholar] [CrossRef] [Green Version]
- Huh, M.; Liu, A.; Owens, A.; Efros, A.A. Fighting Fake News: Image Splice Detection via Learned Self-Consistency. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Foi, A.; Trimeche, M.; Katkovnik, V.; Egiazarian, K. Practical Poissonian–Gaussian Noise Modeling and Fitting for Single-Image Raw-Data. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 2008, 17, 1737–1754. [Google Scholar] [CrossRef] [Green Version]
- Colom, M. Multiscale Noise Estimation and Removal for Digital Images. Ph.D. Thesis, Universitat de les Illes Balears, Balearic Islands, Spain, 2014. [Google Scholar]
- Mahdian, B.; Saic, S. Using noise inconsistencies for blind image forensics. Image Vis. Comput. 2009, 27, 1497–1503. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, X.; Lyu, S. Exposing Image Forgery with Blind Noise Estimation. In Proceedings of the Thirteenth ACM Multimedia Workshop on Multimedia and Security, MM&Sec ’11, Buffalo, NY, USA, 29–30 September 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 15–20. [Google Scholar] [CrossRef]
- Cozzolino, D.; Poggi, G.; Verdoliva, L. Splicebuster: A New Blind Image Splicing Detector. In Proceedings of the 2015 IEEE International Workshop on Information Forensics and Security (WIFS), Rome, Italy, 16–19 November 2015. [Google Scholar] [CrossRef]
- Cozzolino, D.; Verdoliva, L. Noiseprint: A CNN-based camera model fingerprint. arXiv 2018, arXiv:1808.08396. Available online: https://arxiv.org/abs/1808.08396 (accessed on 1 July 2021).
- Colom, M.; Buades, A. Analysis and Extension of the Ponomarenko et al. Method, Estimating a Noise Curve from a Single Image. Image Process. On Line 2013, 3, 173–197. [Google Scholar] [CrossRef] [Green Version]
- Colom, M.; Lebrun, M.; Buades, A.; Morel, J. Nonparametric Multiscale Blind Estimation of Intensity-Frequency-Dependent Noise. IEEE Trans. Image Process. 2015, 24, 3162–3175. [Google Scholar] [CrossRef] [PubMed]
- Lukás, J.; Fridrich, J.; Goljan, M. Digital Camera Identification From Sensor Pattern Noise. IEEE Trans. Inf. Forensics Secur. 2006, 1, 205–214. [Google Scholar] [CrossRef]
- Chen, M.; Fridrich, J.; Goljan, M.; Lukáš, J. Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 2008, 3, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Korus, P.; Huang, J. Multi-scale Analysis Strategies in PRNU-based Tampering Localization. IEEE Trans. Inf. Forensics Secur. 2017, 12, 809–824. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, Q.; Min, W.; Zhang, S. Detecting image forgery based on noise estimation. Int. J. Multimed. Ubiquitous Eng. 2014, 9, 325–336. [Google Scholar] [CrossRef]
- Pyatykh, S.; Hesser, J.; Zheng, L. Image noise level estimation by principal component analysis. IEEE Trans. Image Process. 2012, 22, 687–699. [Google Scholar] [CrossRef]
- Zeng, H.; Zhan, Y.; Kang, X.; Lin, X. Image splicing localization using PCA-based noise level estimation. Multimed. Tools Appl. 2017, 76, 4783–4799. [Google Scholar] [CrossRef]
- Lyu, S.; Pan, X.; Zhang, X. Exposing Region Splicing Forgeries with Blind Local Noise Estimation. Int. J. Comput. Vision 2014, 110, 202–221. [Google Scholar] [CrossRef]
- Zoran, D.; Weiss, Y. Scale invariance and noise innature image. In Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009. [Google Scholar]
- Liu, B.; Pun, C.M. Splicing forgery exposure in digital image by detecting noise discrepancies. Int. J. Comput. Commun. Eng. 2015, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Szeliski, R.; Kang, S.B.; Zitnick, C.; Freeman, W. Automatic Estimation and Removal of Noise from a Single Image. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Wang, S.; Zhang, X.; Qin, C.; Wang, J. Detecting image splicing based on noise level inconsistency. Multimed. Tools Appl. 2017, 76, 12457–12479. [Google Scholar] [CrossRef]
- Julliand, T.; Nozick, V.; Talbot, H. Automatic image splicing detection based on noise density analysis in raw images. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Lecce, Italy, 24–27 October 2016; Springer: Berlin, Germany, 2016; pp. 126–134. [Google Scholar]
- Julliand, T.; Nozick, V.; Echizen, I.; Talbot, H. Using The Noise Density Down Projection To Expose Splicing in JPEG Images. 2017. Available online: https://hal.archives-ouvertes.fr/hal-01589761 (accessed on 1 July 2021).
- Pun, C.M.; Liu, B.; Yuan, X. Multi-scale Noise Estimation for Image Splicing Forgery Detection. J. Vis. Commun. Image Represent. 2016, 38, 195–206. [Google Scholar] [CrossRef]
- Zhu, N.; Li, Z. Blind image splicing detection via noise level function. Signal Process. Image Commun. 2018, 68, 181–192. [Google Scholar] [CrossRef]
- Mayer, O.; Bayar, B.; Stamm, M.C. Learning unified deep-features for multiple forensic tasks. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, Innsbruck, Austria, 20–22 June 2018; pp. 79–84. [Google Scholar]
- Zhou, P.; Han, X.; Morariu, V.I.; Davis, L.S. Learning rich features for image manipulation detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1053–1061. [Google Scholar]
- Liu, C.; Freeman, W.T.; Szeliski, R.; Kang, S.B. Noise Estimation from a Single Image. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Volume 1, CVPR ’06, New York, NY, USA, 17–22 June 2006; IEEE Computer Society: Washington, WA, USA, 2006; pp. 901–908. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.; Ballesteros, D.M.; Renza, D. A dataset of 1050-tampered color and grayscale images (CG-1050). Data Brief 2020, 28, 104864. [Google Scholar] [CrossRef] [PubMed]
- Krawetz, N. A Picture’s Worth . . . Digital Image Analysis and Forensics Version 2. Hacker Factor Solut. 2007, 6, 2. [Google Scholar]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote. Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Wagner, J. Noise Analysis for Image Forensics. Available online: https://29a.ch/2015/08/21/noise-analysis-for-image-forensics (accessed on 30 May 2021).
- Zampoglou, M.; Papadopoulos, S.; Kompatsiaris, Y. Large-scale evaluation of splicing localization algorithms for web images. Multimed. Tools Appl. 2017, 76, 4801–4834. [Google Scholar] [CrossRef]
Retouching | Colorization | Splicing | Copy-Move | |
---|---|---|---|---|
Average JPEG-quality | 86.9 | 86.8 | 87.3 | 86.8 |
JPEG-quality range | [71,88] | [71,88] | [71,88] | [71,88] |
MCC | ||||
Retouching | Colorization | Splicing | Copy-Move | |
PB1 | 0.0672 | 0.0958 | 0.0276 | 0.0380 |
PB2 | 0.0848 | 0.1066 | 0.0310 | 0.0377 |
PB3 | 0.0915 | 0.1108 | 0.0316 | 0.0362 |
IoU | ||||
Retouching | Colorization | Splicing | Copy-Move | |
PB1 | 0.0242 | 0.0721 | 0.0112 | 0.0148 |
PB2 | 0.0284 | 0.0756 | 0.0122 | 0.0149 |
PB3 | 0.0300 | 0.0761 | 0.0123 | 0.0145 |
F1 | ||||
Retouching | Colorization | Splicing | Copy-Move | |
PB1 | 0.0454 | 0.1122 | 0.0216 | 0.0281 |
PB2 | 0.0529 | 0.1175 | 0.0234 | 0.0282 |
PB3 | 0.0557 | 0.1192 | 0.0236 | 0.0276 |
Method | Ref. | Source Code |
---|---|---|
Mahdian | [25] | https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021) |
Pan | [26] | https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021) |
Zeng | [36] | https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021) |
Median | [52] | https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021) |
Splicebuster | [27] | http://www.grip.unina.it/research/83-multimedia_forensics (accessed on 31 May 2021) |
Noiseprint | [28] | http://www.grip.unina.it/research/83-multimedia_forensics (accessed on 31 May 2021) |
Zhu | [45] | https://github.com/marigardella/Zhu_2018 (accessed on 31 May 2021) |
MCC | |||||
Retouching | Colorization | Splicing | Copy-Move | Average Ranking | |
PB3 | 0.0915 (2) | 0.1108 (1) | 0.0316 (2) | 0.0362 (1) | 1.5 |
Splicebuster | 0.1176 (1) | 0.0535 (4) | 0.0502 (1) | 0.0233 (4) | 2.5 |
Mahdian | 0.0434 (6) | 0.0566 (3) | 0.0247 (4) | 0.0257(3) | 4 |
Pan | 0.0513 (4) | 0.0681 (2) | 0.0282 (3) | 0.0306 (2) | 2.75 |
Noiseprint | 0.0558 (3) | 0.0361 (6) | 0.0182 (6) | 0.0177 (6) | 5.25 |
Median | 0.0479 (5) | 0.0469 (5) | 0.0204 (5) | 0.0195 (5) | 5 |
Zeng | 0.0180 (7) | 0.0262 (7) | 0.0119 (8) | 0.0117 (8) | 7.5 |
Zhu | 0.0147 (8) | 0.0201 (8) | 0.0180 (7) | 0.0123 (7) | 7.5 |
IoU | |||||
Retouching | Colorization | Splicing | Copy-Move | Average Ranking | |
PB3 | 0.0300 (3) | 0.0761 (1) | 0.0123 (2) | 0.0145 (2) | 2 |
Splicebuster | 0.0600 (1) | 0.0577 (2) | 0.0242 (1) | 0.0166 (1) | 1.25 |
Mahdian | 0.0168 (5) | 0.0548 (4) | 0.0102 (5) | 0.0131(5) | 4.75 |
Pan | 0.0198 (4) | 0.0576 (3) | 0.0109 (4) | 0.0138 (4) | 3.75 |
Noiseprint | 0.0312 (2) | 0.0450 (7) | 0.0114 (3) | 0.0142 (2) | 3.5 |
Median | 0.0163 (6) | 0.0513 (5) | 0.0095 (7) | 0.0123(6) | 6 |
Zeng | 0.0136 (7) | 0.0441 (8) | 0.0084 (8) | 0.0114 (8) | 7.75 |
Zhu | 0.0129 (8) | 0.0453 (6) | 0.0102 (5) | 0.0116(7) | 6.5 |
F1 | |||||
Retouching | Colorization | Splicing | Copy-Move | Average Ranking | |
PB3 | 0.0557 (3) | 0.1192 (1) | 0.0236 (2) | 0.0276 (2) | 2 |
Splicebuster | 0.1081 (1) | 0.0965 (2) | 0.0448 (1) | 0.0314 (1) | 1.25 |
Mahdian | 0.0324 (5) | 0.0902 (4) | 0.0199 (6) | 0.0250(5) | 5 |
Pan | 0.0380 (4) | 0.0946 (3) | 0.0211 (4) | 0.0264 (4) | 3.75 |
Noiseprint | 0.0588 (2) | 0.0778 (7) | 0.0222 (3) | 0.0271 (3) | 3.75 |
Median | 0.0315 (6) | 0.0857 (5) | 0.0185 (7) | 0.0236 (6) | 6 |
Zeng | 0.0264 (7) | 0.0765 (8) | 0.0165 (8) | 0.0220 (8) | 7.75 |
Zhu | 0.0250 (8) | 0.0779 (6) | 0.0200 (5) | 0.0224(7) | 6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardella, M.; Musé, P.; Morel, J.-M.; Colom, M. Forgery Detection in Digital Images by Multi-Scale Noise Estimation. J. Imaging 2021, 7, 119. https://doi.org/10.3390/jimaging7070119
Gardella M, Musé P, Morel J-M, Colom M. Forgery Detection in Digital Images by Multi-Scale Noise Estimation. Journal of Imaging. 2021; 7(7):119. https://doi.org/10.3390/jimaging7070119
Chicago/Turabian StyleGardella, Marina, Pablo Musé, Jean-Michel Morel, and Miguel Colom. 2021. "Forgery Detection in Digital Images by Multi-Scale Noise Estimation" Journal of Imaging 7, no. 7: 119. https://doi.org/10.3390/jimaging7070119
APA StyleGardella, M., Musé, P., Morel, J. -M., & Colom, M. (2021). Forgery Detection in Digital Images by Multi-Scale Noise Estimation. Journal of Imaging, 7(7), 119. https://doi.org/10.3390/jimaging7070119