Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Medical Image Datasets and Models
2.2. Universal Adversarial Perturbations and Natural Images
2.3. Evaluating the Performance of UAPs
3. Results
3.1. Natural Images Allow Non-Targeted Universal Adversarial Attacks on Medical Image Classification
3.2. Natural Images Allow Targeted Universal Adversarial Attacks on Medical Image Classification
3.3. Effect of Transfer Learning on Vulnerability of the UAPs from Natural Images
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 770–778. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial examples: Attacks and defenses for deep learning. IEEE Trans. Neural Networks Learn. Syst. 2019, 30, 2805–2824. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Jimenez, G.; Modas, A.; Moosavi-Dezfooli, S.-M.; Frossard, P. Optimism in the face of adversity: Understanding and improving deep learning through adversarial robustness. arXiv 2020, arXiv:2010.09624. [Google Scholar] [CrossRef]
- Kaissis, G.A.; Makowski, M.R.; Rückert, D.; Braren, R.F. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2020, 2, 305–311. [Google Scholar] [CrossRef]
- Finlayson, S.G.; Bowers, J.D.; Ito, J.; Zittrain, J.L.; Beam, A.L.; Kohane, I.S. Adversarial attacks on medical machine learning. Science 2019, 363, 1287–1289. [Google Scholar] [CrossRef]
- Matyasko, A.; Chau, L.-P. Improved network robustness with adversary critic. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 4 December 2018; pp. 10601–10610. [Google Scholar]
- Asgari Taghanaki, S.; Das, A.; Hamarneh, G. Vulnerability analysis of chest X-ray image classification against adversarial attacks. In Understanding and Interpreting Machine Learning in Medical Image Computing Applications; LNCS; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 11038, pp. 87–94. ISBN 9783030026271. [Google Scholar]
- Hirano, H.; Minagi, A.; Takemoto, K. Universal adversarial attacks on deep neural networks for medical image classification. BMC Med. Imaging 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Moosavi-Dezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 86–94. [Google Scholar] [CrossRef] [Green Version]
- Hirano, H.; Takemoto, K. Simple iterative method for generating targeted universal adversarial perturbations. Algorithms 2020, 13, 268. [Google Scholar] [CrossRef]
- Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding transfer learning for medical imaging. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 3347–3357. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR—2015 Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Nicolae, M.-I.; Sinn, M.; Tran, M.N.; Buesser, B.; Rawat, A.; Wistuba, M.; Zantedeschi, V.; Baracaldo, N.; Chen, B.; Ludwig, H.; et al. Adversarial Robustness Toolbox v1.0.0. arXiv 2018, arXiv:1807.01069. [Google Scholar]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef]
- Chang, K.; Balachandar, N.; Lam, C.; Yi, D.; Brown, J.; Beers, A.; Rosen, B.; Rubin, D.L.; Kalpathy-Cramer, J. Distributed deep learning networks among institutions for medical imaging. J. Am. Med. Inform. Assoc. 2018, 25, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Bortsova, G.; González-Gonzalo, C.; Wetstein, S.C.; Dubost, F.; Katramados, I.; Hogeweg, L.; Liefers, B.; van Ginneken, B.; Pluim, J.P.W.; Veta, M.; et al. Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Med. Image Anal. 2021, 73, 102141. [Google Scholar] [CrossRef]
- Chen, J.; Su, M.; Shen, S.; Xiong, H.; Zheng, H. POBA-GA: Perturbation optimized black-box adversarial attacks via genetic algorithm. Comput. Secur. 2019, 85, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Gardner, J.R.; You, Y.; Wilson, A.G.; Weinberger, K.Q. Simple black-box adversarial attacks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 2484–2493. [Google Scholar]
- Co, K.T.; Muñoz-González, L.; de Maupeou, S.; Lupu, E.C. Procedural noise adversarial examples for black-box attacks on deep convolutional networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; ACM: New York, NY, USA, 2019; pp. 275–289. [Google Scholar]
- Marchisio, A.; Nanfa, G.; Khalid, F.; Hanif, M.A.; Martina, M.; Shafique, M. Is Spiking Secure? A comparative study on the security vulnerabilities of spiking and deep neural networks. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Tsuzuku, Y.; Sato, I. On the structural sensitivity of deep convolutional networks to the directions of Fourier basis functions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; Computer Vision Foundation/IEEE: New York, NY, USA, 2019; pp. 51–60. [Google Scholar]
- Alzubaidi, L.; Al-Amidie, M.; Al-Asadi, A.; Humaidi, A.J.; Al-Shamma, O.; Fadhel, M.A.; Zhang, J.; Santamaría, J.; Duan, Y. Novel Transfer Learning Approach for Medical Imaging with Limited Labeled Data. Cancers 2021, 13, 1590. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Mustafa, B.; Ryan, F.; Beaver, Z.; Freyberg, J.; Deaton, J.; Loh, A.; Karthikesalingam, A.; Kornblith, S.; Chen, T.; et al. Big self-supervised models advance medical image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), New York, NY, USA, 24–26 August 2021; pp. 3478–3488. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Zhang, H.; Yu, Y.; Jiao, J.; Xing, E.; Ghaoui, L.E.; Jordan, M. Theoretically Principled Trade-Off Between Robustness and Accuracy, Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR: Long Beach, CA, USA, 2019; Volume 97, pp. 7472–7482. [Google Scholar]
- Xiao, C.; Zhong, P.; Zheng, C. Enhancing adversarial defense by k-winners-take-all. In Proceedings of the 8th International Conference Learning Represent, Vienna, Austria, 4–8 May 2020. [Google Scholar]
- Song, C.; He, K.; Wang, L.; Hopcroft, J.E. Improving the generalization of adversarial training with domain adaptation. In Proceedings of the 7th International Conference Learning Represent, ICLR, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Hwang, U.; Park, J.; Jang, H.; Yoon, S.; Cho, N.I. PuVAE: A variational autoencoder to purify adversarial examples. IEEE Access 2019, 7, 126582–126593. [Google Scholar] [CrossRef]
- Croce, F.; Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In Proceedings of the 37th International Conference Machine Learning, Long Beach, CA, USA, 3–7 May 2020. [Google Scholar]
- Carlini, N.; Wagner, D. Adversarial examples are not easily detected. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security—AISec ’17, Dallas, TX, USA, 3 November 2017; ACM Press: New York, NY, USA, 2017; pp. 3–14. [Google Scholar]
- Aldahdooh, A.; Hamidouche, W.; Fezza, S.A.; Déforges, O. Adversarial example detection for DNN models: A review and experimental comparison. Artif. Intell. Rev. 2022, 55, 1–60. [Google Scholar] [CrossRef]
- Ma, X.; Niu, Y.; Gu, L.; Wang, Y.; Zhao, Y.; Bailey, J.; Lu, F. Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognit. 2021, 110, 107332. [Google Scholar] [CrossRef]
- Subramanya, A.; Pillai, V.; Pirsiavash, H. Fooling network interpretation in image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Goldblum, M.; Fowl, L.; Goldstein, T. Adversarially robust few-shot learning: A meta-learning approach. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 17886–17895. [Google Scholar]
Medical Images | Target Class | UAP | Model Architecture | ||
---|---|---|---|---|---|
Inception V3 | ResNet50 | VGG16 | |||
Skin lesion | NV | Training | 97.9 | 99.2 | 98.7 |
ImageNet | 98.8 | 96.2 | 86.6 | ||
Open Images | 99.1 | 94.5 | 86.9 | ||
Random | 64.1 | 70.2 | 73.3 | ||
MEL | Training | 97.1 | 97.7 | 97.6 | |
ImageNet | 97.1 | 96.0 | 10.5 | ||
Open Images | 96.6 | 94.5 | 10.4 | ||
Random | 14.5 | 11.8 | 8.8 | ||
OCT | NM | Training | 98.2 | 99.4 | 98.6 |
ImageNet | 98.2 | 99.7 | 92.3 | ||
Open Images | 99.4 | 99.8 | 94.0 | ||
Random | 27.6 | 29.3 | 26.5 | ||
CNV | Training | 99.3 | 99.7 | 99.9 | |
ImageNet | 99.2 | 35.5 | 98.3 | ||
Open Images | 99.3 | 48.3 | 96.2 | ||
Random | 26.5 | 26.1 | 25.4 | ||
Chest X-ray | NORMAL | Training | 99.3 | 99.3 | 99.6 |
ImageNet | 97.6 | 100 | 95.7 | ||
Open Images | 97.0 | 99.8 | 94.3 | ||
Random | 55.7 | 54.4 | 54.8 | ||
PNEUMONIA | Training | 97.8 | 99.1 | 99.8 | |
ImageNet | 60.0 | 75.3 | 72.3 | ||
Open Images | 62.8 | 79.8 | 68.0 | ||
Random | 45.0 | 46.1 | 44.1 |
UAP/Medical Images | Skin Lesion | OCT | Chest X-ray |
---|---|---|---|
Training | 92.7 | 74.5 | 45.9 |
ImageNet | 50.0 | 75.3 | 22.2 |
Random | 7.3 | 9.9 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minagi, A.; Hirano, H.; Takemoto, K. Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning. J. Imaging 2022, 8, 38. https://doi.org/10.3390/jimaging8020038
Minagi A, Hirano H, Takemoto K. Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning. Journal of Imaging. 2022; 8(2):38. https://doi.org/10.3390/jimaging8020038
Chicago/Turabian StyleMinagi, Akinori, Hokuto Hirano, and Kauzhiro Takemoto. 2022. "Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning" Journal of Imaging 8, no. 2: 38. https://doi.org/10.3390/jimaging8020038
APA StyleMinagi, A., Hirano, H., & Takemoto, K. (2022). Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning. Journal of Imaging, 8(2), 38. https://doi.org/10.3390/jimaging8020038