Glossiness Index of Objects in Halftone Color Images Based on Structure and Appearance Distortion
Abstract
:1. Introduction
2. Related Work
3. Proposed Method
3.1. HVS Filter
3.1.1. Color Space
3.1.2. Contrast Sensitivity Function
3.2. Sdsim Distortion Detection Strategy
3.2.1. Calculation of the Locations of Visible Distortion
3.2.2. The Combination of Local Structure Errors and Visibility Map
3.3. Appearance Distortion Detection Strategy
3.3.1. Log-Gabor Decomposition
3.3.2. Compare Sub-Band Statistics
3.4. Adaptive Combination of Two Strategies
4. Experiment
4.1. Subjective Image Database and Processing
4.2. Experimental Procedure
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Floyd, R. An Adaptive Algorithm for Spatial Grey Scale. Soc. Inf. Display 1975, 17, 36–37. [Google Scholar]
- Floyd, R. An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Display 1976, 17, 75–77. [Google Scholar]
- Damera-Venkata, N.; Evans, B.L. Adaptive threshold modulation for error diffusion halftoning. IEEE Trans. Image Process. 2001, 10, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Monga, V.; Evans, B.L. Tone dependent color error diffusion. In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004; Volume 3, pp. 3–101. [Google Scholar]
- Pang, W.M.; Qu, Y.; Wong, T.T.; Cohen-Or, D.; Heng, P.A. Structure-aware halftoning. In Proceedings of the ACM SIGGRAPH 2008 Special Interest Group on Computer Graphics and Interactive Techniques Conference, Los Angeles, CA, USA, 11–15 August 2008; pp. 1–8. [Google Scholar]
- Akarun, L.; Yardunci, Y.; Cetin, A.E. Adaptive methods for dithering color images. IEEE Trans. Image Process. 1997, 6, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Hu, W.; Liu, X.; Wong, T.T. Deep halftoning with reversible binary pattern. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montrel, QC, Canada, 11–17 October 2021; pp. 14000–14009. [Google Scholar]
- Leloup, F.B.; Audenaert, J.; Hanselaer, P. Development of an image-based gloss measurement instrument. J. Coatings Technol. Res. 2019, 16, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.L.; Kim, J. Image statistics do not explain the perception of gloss and lightness. J. Vis. 2009, 9, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferwerda, J.A.; Pellacini, F.; Greenberg, D.P. Psychophysically based model of surface gloss perception. In Proceedings of the Human Vision and Electronic Imaging VI. International Society for Optics and Photonics, San Jose, CA, USA, 20–26 January 2001; Volume 4299, pp. 291–301. [Google Scholar]
- Thompson, W.; Fleming, R.; Creem-Regehr, S.; Stefanucci, J.K. Visual Perception from a Computer Graphics Perspective; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Toscani, M.; Valsecchi, M.; Gegenfurtner, K.R. Optimal sampling of visual information for lightness judgments. Proc. Natl. Acad. Sci. USA 2013, 110, 11163–11168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiebel, C.B.; Toscani, M.; Gegenfurtner, K.R. Statistical correlates of perceived gloss in natural images. Vis. Res. 2015, 115, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Pont, S.C.; Koenderink, J.J. Reflectance from locally glossy thoroughly pitted surfaces. Comput. Vis. Image Underst. 2005, 98, 211–222. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, E.C.; Chandler, D.M. Most apparent distortion: Full-reference image quality assessment and the role of strategy. J. Electron. Imaging 2010, 19, 011006. [Google Scholar]
- Li, S.; Zhang, F.; Ma, L.; Ngan, K.N. Image quality assessment by separately evaluating detail losses and additive impairments. IEEE Trans. Multimed. 2011, 13, 935–949. [Google Scholar] [CrossRef]
- Ding, K.; Ma, K.; Wang, S.; Simoncelli, E.P. Image quality assessment: Unifying structure and texture similarity. arXiv 2020, arXiv:2004.07728. [Google Scholar] [CrossRef] [PubMed]
- Ulichney, R. Digital Halftoning; MIT Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Lau, D.L.; Arce, G.R. Modern Digital Halftoning; CRC Press: Boca Raton, FL, USA, 2018; Volume 1. [Google Scholar]
- Lee, J.; Horiuchi, T. Image quality assessment for color halftone images based on color structural similarity. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2008, 91, 1392–1399. [Google Scholar] [CrossRef]
- Mannos, J.; Sakrison, D. The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Inf. Theory 1974, 20, 525–536. [Google Scholar] [CrossRef]
- Winkler, S. Visual quality assessment using a contrast gain control model. In Proceedings of the 1999 IEEE Third Workshop on Multimedia Signal Processing (Cat. No. 99TH8451), Copenhagen, Denmark, 13–15 September 1999; pp. 527–532. [Google Scholar]
- Osberger, W.; Bergmann, N.; Maeder, A. An automatic image quality assessment technique incorporating higher level perceptual factors. In Proceedings of the 1998 International Conference on Image Processing ICIP98 (Cat. No. 98CB36269), Chicago, IL, USA, 7 October 1998; pp. 414–418. [Google Scholar]
- Násánen, R. Visibility of halftone dot textures. IEEE Trans. Syst. Man Cybern. 1984, 14, 920–924. [Google Scholar] [CrossRef]
- Damera-Venkata, N.; Kite, T.D.; Geisler, W.S.; Evans, B.L.; Bovik, A.C. Image quality assessment based on a degradation model. IEEE Trans. Image Process. 2000, 9, 636–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verevka, O.; Buchanan, J.W. Halftoning with image-based dither screens. GI 1999, 99, 167–174. [Google Scholar]
- Mullen, K.T. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J. Physiol. 1985, 359, 381–400. [Google Scholar] [CrossRef] [PubMed]
- Sharan, L.; Liu, C.; Rosenholtz, R.; Adelson, E.H. Flickr Material Database. Available online: https://people.csail.mit.edu/lavanya/fmd.html (accessed on 12 February 2022).
- Analoui, M.; Allebach, J.P. Model-based halftoning using direct binary search. In Proceedings of the SPIE/IS&T 1992 Symposium on Electronic Imaging: Science and Technology, San Jose, CA, USA, 9–14 February 1992; Volume 1666, pp. 96–108. [Google Scholar]
- Serrano, A.; Chen, B.; Wang, C.; Piovarči, M.; Seidel, H.P.; Didyk, P.; Myszkowski, K. The effect of shape and illumination on material perception: Model and applications. ACM Trans. Graph. (TOG) 2021, 40, 1–16. [Google Scholar] [CrossRef]
Halftone | ICC | 95% Confident Interval |
---|---|---|
Dithering | 0.78 | 0.72–0.84 |
Floyd | 0.82 | 0.74–0.85 |
DBS | 0.85 | 0.76–0.87 |
Index | Glossiness Images | Non-Glossiness Images | All 100 Images |
---|---|---|---|
PSNR | 0.2275 | 0.2375 | 0.102 |
CSIM | 0.1944 | −0.1492 | 0.0038 |
MAD | 0.2566 | −0.0244 | 0.0355 |
Ours | 0.7563 | 0.7707 | 0.9066 |
Index | Glossiness Images | Non-Glossiness Images | All 100 Images |
---|---|---|---|
PSNR | 0.1595 | 0.0626 | 0.0029 |
CSIM | 0.0668 | 0.5067 | 0.4053 |
MAD | 0.0896 | 0.6542 | 0.5788 |
Ours | 0.7662 | 0.8716 | 0.9131 |
Index | Glossiness Images | Non-Glossiness Images | All 100 Images |
---|---|---|---|
PSNR | −0.0954 | −0.2506 | −0.2509 |
CSIM | 0.6294 | 0.5453 | 0.7132 |
MAD | 0.5735 | 0.6154 | 0.7045 |
Ours | 0.7311 | 0.8881 | 0.9101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Tanaka, M.; Horiuchi, T. Glossiness Index of Objects in Halftone Color Images Based on Structure and Appearance Distortion. J. Imaging 2022, 8, 59. https://doi.org/10.3390/jimaging8030059
Li D, Tanaka M, Horiuchi T. Glossiness Index of Objects in Halftone Color Images Based on Structure and Appearance Distortion. Journal of Imaging. 2022; 8(3):59. https://doi.org/10.3390/jimaging8030059
Chicago/Turabian StyleLi, Donghui, Midori Tanaka, and Takahiko Horiuchi. 2022. "Glossiness Index of Objects in Halftone Color Images Based on Structure and Appearance Distortion" Journal of Imaging 8, no. 3: 59. https://doi.org/10.3390/jimaging8030059
APA StyleLi, D., Tanaka, M., & Horiuchi, T. (2022). Glossiness Index of Objects in Halftone Color Images Based on Structure and Appearance Distortion. Journal of Imaging, 8(3), 59. https://doi.org/10.3390/jimaging8030059