Digital Watermarking as an Adversarial Attack on Medical Image Analysis with Deep Learning
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Krawtchouk Moments
3.2. Watermark Embedding
3.3. Watermarking Adversarial Attack
4. Experimental Study
4.1. Datasets
4.2. Ablation Study
4.3. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
MRIs − MobileNetV2 − Original Accuracy = 77.6% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Bits | Embed. Strength = 50 | Embed. Strength = 100 | Embed. Strength = 200 | Embed. Strength = 300 | ||||||||
SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | |
100 | 99.9 | 0.4, 0.4 | 76.1 | 99.8 | 0.1, 0.6 | 76.6 | 99.2 | 0.6, 0.4 | 75.6 | 98.6 | 0.6, 0.6 | 73.6 |
200 | 99.8 | 0.2, 0.8 | 76.6 | 99.5 | 0.1, 0.6 | 75.8 | 98.3 | 0.6, 0.4 | 74.1 | 97.0 | 0.5, 0.7 | 70.0 |
300 | 99.7 | 0.2, 0.7 | 76.1 | 99.1 | 0.5, 0.4 | 75.3 | 97.2 | 0.6, 0.6 | 71.8 | 95.3 | 0.5, 0.7 | 66.5 |
400 | 99.6 | 0.4, 0.5 | 75.9 | 98.7 | 0.3, 0.4 | 74.8 | 96.2 | 0.6, 0.7 | 71.0 | 93.7 | 0.5, 0.7 | 65.4 |
500 | 99.5 | 0.7, 0.4 | 76.1 | 98.3 | 0.6, 0.5 | 73.3 | 95.2 | 0.5, 0.8 | 68.5 | 92,0 | 0.4, 0.7 | 63.2 |
600 | 99.4 | 0.5, 0.6 | 75.6 | 97.9 | 0.6, 0.5 | 73.8 | 94.2 | 0.5, 0.5 | 66.0 | 90.6 | 0.4, 0.5 | 60.9 |
700 | 99.2 | 0.5, 0.6 | 75.1 | 97.5 | 0.5, 0.6 | 73.1 | 93.2 | 0.5, 0.5 | 66.7 | 89.1 | 0.4, 0.5 | 60.4 |
800 | 99.0 | 0.5, 0.6 | 74.8 | 97.0 | 0.6, 0.5 | 72.6 | 92.1 | 0.4, 0.5 | 65.4 | 87.7 | 0.4, 0.5 | 58.6 |
900 | 98.9 | 0.5, 0.6 | 74.1 | 96.6 | 0.4, 0.4 | 71.3 | 91.1 | 0.4, 0.5 | 63.2 | 86.2 | 0.5, 0.5 | 56.3 |
1000 | 98.8 | 0.5, 0.6 | 74.5 | 98.8 | 0.4, 0.5 | 70.3 | 90.0 | 0.4, 0.5 | 62.6 | 84.9 | 0.4, 0.5 | 54.8 |
MRIs − DenseNet201 − Original Accuracy = 71.3% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Bits | Embed. Strength = 50 | Embed. Strength = 100 | Embed. Strength = 200 | Embed. Strength = 300 | ||||||||
SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | |
100 | 99.9 | 0.2, 0.2 | 69.8 | 99.8 | 0.7, 0.1 | 69.8 | 99.2 | 0.5, 0.8 | 69.5 | 98.6 | 0.7, 0.1 | 69.0 |
200 | 99.8 | 0.3, 0.8 | 69.8 | 99.5 | 0.7, 0.1 | 69.5 | 98.3 | 0.7, 0.5 | 69.0 | 97.0 | 0.4, 0.4 | 68.3 |
300 | 99.7 | 0.3, 0.2 | 69.5 | 99.1 | 0.7, 0.1 | 69.5 | 97.2 | 0.6, 0.9 | 68.2 | 95.3 | 0.6, 0.1 | 67.2 |
400 | 99.6 | 0.8, 0.7 | 69.5 | 98.7 | 0.7, 0.1 | 69.0 | 96.2 | 0.4, 0.6 | 68.5 | 93.7 | 0.6, 0.6 | 65.7 |
500 | 99.5 | 0.9, 0.8 | 69.8 | 98.3 | 0.6, 0.9 | 69.0 | 95.2 | 0.6, 0.9 | 68.0 | 92,0 | 0.6, 0.6 | 64.4 |
600 | 99.4 | 0.6, 0.9 | 69.5 | 97.9 | 0.5, 0.9 | 69.0 | 94.2 | 0.7, 0.7 | 66.7 | 90.6 | 0.4, 0.4 | 64.2 |
700 | 99.2 | 0.7, 0.9 | 69.5 | 97.5 | 0.6, 0.9 | 69.2 | 93.2 | 0.4, 0.5 | 64.5 | 89.1 | 0.4, 0.5 | 61.7 |
800 | 99.0 | 0.1, 0.2 | 69.5 | 97.0 | 0.9, 0.8 | 68.5 | 92.1 | 0.4, 0.5 | 64.2 | 87.7 | 0.5, 0.5 | 57.1 |
900 | 98.9 | 0.6, 0.9 | 69.0 | 96.6 | 0.9, 0.8 | 68.0 | 91.1 | 0.4, 0.5 | 63.4 | 86.2 | 0.4, 0.5 | 56.6 |
1000 | 98.8 | 0.6, 0.9 | 69.0 | 98.8 | 0.9, 0.8 | 68.7 | 90.0 | 0.4, 0.5 | 61.2 | 84.9 | 0.5, 0.5 | 55.0 |
MRIs − DenseNet169 − Original Accuracy = 69.54% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Bits | Embed. Strength = 50 | Embed. Strength = 100 | Embed. Strength = 200 | Embed. Strength = 300 | ||||||||
SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | |
100 | 99.9 | 0.5, 0.6 | 67.5 | 99.8 | 0.8, 0.5 | 68.0 | 99.2 | 0.9, 0.4 | 66.7 | 98.6 | 0.8, 0.2 | 68.0 |
200 | 99.8 | 0.7, 0.5 | 67.0 | 99.5 | 0.8, 0.4 | 68.0 | 98.3 | 0.9, 0.4 | 66.5 | 97.0 | 0.5, 0.6 | 67.2 |
300 | 99.7 | 0.7, 0.5 | 67.0 | 99.1 | 0.3, 0.5 | 67.5 | 97.2 | 0.2, 0.4 | 66.7 | 95.3 | 0.2, 0.5 | 64.7 |
400 | 99.6 | 0.8, 0.2 | 67.0 | 98.7 | 0.3, 0.5 | 67.7 | 96.2 | 0.4, 0.5 | 66.0 | 93.7 | 0.2, 0.5 | 61.9 |
500 | 99.5 | 0.9, 0.4 | 67.0 | 98.3 | 0.9, 0.5 | 67.0 | 95.2 | 0.4, 0.5 | 65.4 | 92,0 | 0.4, 0.4 | 62.1 |
600 | 99.4 | 0.7, 0.5 | 67.5 | 97.9 | 0.9, 0.5 | 66.7 | 94.2 | 0.3, 0.4 | 63.0 | 90.6 | 0.4, 0.4 | 59.6 |
700 | 99.2 | 0.9, 0.4 | 67.5 | 97.5 | 0.6, 0.6 | 65.7 | 93.2 | 0.4, 0.4 | 62.4 | 89.1 | 0.4, 0.4 | 56.6 |
800 | 99.0 | 0.9, 0.6 | 67.7 | 97.0 | 0.6, 0.6 | 66.5 | 92.1 | 0.3, 0.5 | 61.9 | 87.7 | 0.4, 0.4 | 55.0 |
900 | 98.9 | 0.9, 0.6 | 67.7 | 96.6 | 0.5, 0.6 | 65.4 | 91.1 | 0.4, 0.5 | 60.9 | 86.2 | 0.5, 0.5 | 51.2 |
1000 | 98.8 | 0.9, 0.6 | 67.2 | 98.8 | 0.5, 0.6 | 64.7 | 90.0 | 0.4, 0.5 | 58.3 | 84.9 | 0.5, 0.5 | 48.4 |
CT-Scans − MobileNetV2 − Original Accuracy = 92.2% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Bits | Embed. Strength = 50 | Embed. Strength = 100 | Embed. Strength = 200 | Embed. Strength = 300 | ||||||||
SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | |
100 | 99.2 | 0.7, 0.4 | 80.0 | 99.0 | 0.2, 0.8 | 77.9 | 98.4 | 0.8, 0.7 | 72.9 | 97.7 | 0.8, 0.8 | 67.0 |
200 | 99.1 | 0.2, 0.9 | 79.1 | 98.7 | 0.8, 0.8 | 76.6 | 97.4 | 0.7, 0.6 | 68.7 | 95.9 | 0.6, 0.7 | 62.9 |
300 | 99.0 | 0.2, 0.9 | 78.7 | 98.2 | 0.8, 0.5 | 75.4 | 96.2 | 0.9, 0.6 | 65.8 | 94.2 | 0.8, 0.6 | 60.4 |
400 | 98.8 | 0.9, 0.6 | 79.5 | 97.8 | 0.8, 0.5 | 72.9 | 95.1 | 0.9, 0.5 | 64.1 | 92.6 | 0.9, 0.4 | 57.5 |
500 | 98.7 | 0.8, 0.5 | 78.3 | 97.3 | 0.8, 0.5 | 72.5 | 94.0 | 0.8, 0.5 | 62.0 | 91.0 | 0.9, 0.5 | 55.0 |
600 | 98.5 | 0.7, 0.5 | 77.0 | 96.8 | 0.8, 0.5 | 69.5 | 92.9 | 0.9, 0.4 | 59.1 | 89.4 | 0.9, 0.5 | 54.5 |
700 | 98.3 | 0.8, 0.5 | 77.9 | 96.4 | 0.9, 0.6 | 68.3 | 91.8 | 0.9, 0.5 | 58.3 | 87.8 | 0.9, 0.5 | 53.3 |
800 | 98.2 | 0.9, 0.6 | 78.3 | 95.9 | 0.9, 0.6 | 68.3 | 90.7 | 0.9, 0.6 | 57.5 | 86.3 | 0.9, 0.5 | 52.9 |
900 | 98.0 | 0.5, 0.6 | 77.0 | 95.4 | 0.9, 0.6 | 65.3 | 89.5 | 0.9, 0.6 | 56.2 | 84.6 | 0.9, 0.5 | 52.0 |
1000 | 97.8 | 0.7, 0.5 | 76.6 | 94.9 | 0.9, 0.6 | 66.2 | 88.3 | 0.9, 0.5 | 56.2 | 83.0 | 0.9, 0.5 | 51.6 |
CT-Scans − DenseNet201 − Original Accuracy = 96.6% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Bits | Embed. Strength = 50 | Embed. Strength = 100 | Embed. Strength = 200 | Embed. Strength = 300 | ||||||||
SSIM (%) | p1, p2 | Acc. (%) | SSIM(%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | |
100 | 99.2 | 0.6, 0.8 | 89.1 | 99.0 | 0.3, 0.9 | 87.9 | 98.4 | 0.4, 0.9 | 87.0 | 97.7 | 0.7, 0.6 | 83.7 |
200 | 99.1 | 0.3, 0.2 | 89.1 | 98.7 | 0.3, 0.9 | 87.9 | 97.4 | 0.6, 0.7 | 84.5 | 95.9 | 0.6, 0.7 | 75.8 |
300 | 99.0 | 0.9, 0.9 | 88.3 | 98.2 | 0.3, 0.9 | 87.5 | 96.2 | 0.6, 0.3 | 81.2 | 94.2 | 0.7, 0.7 | 71.6 |
400 | 98.8 | 0.9, 0.2 | 88.7 | 97.8 | 0.3, 0.9 | 88.3 | 95.1 | 0.6, 0.3 | 79.5 | 92.6 | 0.6, 0.5 | 70.8 |
500 | 98.7 | 0.5, 0.1 | 89.1 | 97.3 | 0.4, 0.6 | 87.5 | 94.0 | 0.6, 0.4 | 76.6 | 91.0 | 0.7, 0.4 | 65.8 |
600 | 98.5 | 0.7, 0.2 | 88.3 | 96.8 | 0.4, 0.6 | 87.0 | 92.9 | 0.7, 0.5 | 76.6 | 89.4 | 0.6, 0.5 | 65.8 |
700 | 98.3 | 0.8, 0.9 | 88.7 | 96.4 | 0.4, 0.6 | 86.2 | 91.8 | 0.7, 0.5 | 75.8 | 87.8 | 0.6, 0.6 | 65.8 |
800 | 98.2 | 0.7, 0.4 | 88.7 | 95.9 | 0.4, 0.6 | 85.8 | 90.7 | 0.7, 0.5 | 75.0 | 86.3 | 0.7, 0.5 | 65.4 |
900 | 98.0 | 0.5, 0.9 | 88.3 | 95.4 | 0.4, 0.6 | 85.8 | 89.5 | 0.7, 0.5 | 75.0 | 84.6 | 0.6, 0.5 | 65.8 |
1000 | 97.8 | 0.9, 0.6 | 88.3 | 94.9 | 0.4, 0.6 | 86.2 | 88.3 | 0.7, 0.5 | 75.0 | 83.0 | 0.9, 0.5 | 65.8 |
CT-Scans − DenseNet169 − Original Accuracy = 95.8% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Bits | Embed. Strength = 50 | Embed. Strength = 100 | Embed. Strength = 200 | Embed. Strength = 300 | ||||||||
SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | |
100 | 99.2 | 0.4, 0.2 | 89.5 | 99.0 | 0.2, 0.3 | 87.9 | 98.4 | 0.4, 0.8 | 82.9 | 97.7 | 0.3, 0.3 | 77.0 |
200 | 99.1 | 0.7, 0.2 | 89.5 | 98.7 | 0.3, 0.3 | 87.5 | 97.4 | 0.3, 0.1 | 79.5 | 95.9 | 0.3, 0.3 | 73.7 |
300 | 99.0 | 0.7, 0.2 | 89.5 | 98.2 | 0.3, 0.1 | 86.6 | 96.2 | 0.4, 0.1 | 79.1 | 94.2 | 0.4, 0.3 | 70.0 |
400 | 98.8 | 0.7, 0.2 | 90.0 | 97.8 | 0.3, 0.1 | 87.0 | 95.1 | 0.4, 0.2 | 78.7 | 92.6 | 0.4, 0.3 | 70.0 |
500 | 98.7 | 0.5, 0.8 | 90.0 | 97.3 | 0.4, 0.1 | 86.2 | 94.0 | 0.4, 0.1 | 80.0 | 91.0 | 0.4, 0.4 | 69.1 |
600 | 98.5 | 0.7, 0.2 | 89.5 | 96.8 | 0.3, 0.1 | 85.4 | 92.9 | 0.1, 0.4 | 75.8 | 89.4 | 0.4, 0.5 | 67.0 |
700 | 98.3 | 0.9, 0.9 | 89.5 | 96.4 | 0.1, 0.4 | 86.2 | 91.8 | 0.1, 0.4 | 76.6 | 87.8 | 0.4, 0.5 | 65.8 |
800 | 98.2 | 0.1, 0.3 | 89.1 | 95.9 | 0.1, 0.3 | 86.6 | 90.7 | 0.1, 0.4 | 75.8 | 86.3 | 0.4, 0.5 | 67.0 |
900 | 98.0 | 0.9, 0.9 | 89.5 | 95.4 | 0.1, 0.5 | 84.5 | 89.5 | 0.1, 0.4 | 74.1 | 84.6 | 0.1, 0.5 | 64.5 |
1000 | 97.8 | 0.9, 0.9 | 89.1 | 94.9 | 0.1, 0.3 | 85.0 | 88.3 | 0.1, 0.5 | 72.0 | 83.0 | 0.1, 0.5 | 65.0 |
X-rays | ||||
---|---|---|---|---|
Attack | SSIM (%) | Acc. (%) | ||
MobileNetV2 | DenseNet201 | DenseNet169 | ||
FGSM ϵ = 0.01 | 98.9 | 95.3 | 95.2 | 96.2 |
FGSM ϵ = 0.03 | 94.6 | 86.1 | 94.3 | 95.0 |
FGSM ϵ = 0.05 | 82.8 | 65.9 | 94.0 | 80.4 |
FGSM ϵ = 0.07 | 73.6 | 54.9 | 90.5 | 71.3 |
FGSM ϵ = 0.09 | 60.1 | 42.9 | 90.2 | 65.3 |
FGSM ϵ = 0.12 | 45.7 | 36.0 | 87.7 | 62.1 |
FGSM ϵ = 0.15 | 35.3 | 36.9 | 80.7 | 60.2 |
PGD ϵ = 0.01 | 99.2 | 95.9 | 95.2 | 95.6 |
PGD ϵ = 0.03 | 96.3 | 90.9 | 95.9 | 95.3 |
PGD ϵ = 0.05 | 88.5 | 70.3 | 93.7 | 87.0 |
PGD ϵ = 0.07 | 81.7 | 55.5 | 92.5 | 75.7 |
PGD ϵ = 0.09 | 70.1 | 41.6 | 89.3 | 68.5 |
PGD ϵ = 0.12 | 55.9 | 34.0 | 84.2 | 62.8 |
PGD ϵ = 0.15 | 44.3 | 33.4 | 79.8 | 60.0 |
Sq. At ϵ = 0.01 | 99.3 | 97.5 | 95.9 | 95.9 |
Sq. At ϵ = 0.03 | 95.9 | 97.1 | 96.2 | 95.9 |
Sq. At ϵ = 0.05 | 85.9 | 82.0 | 95.0 | 93.4 |
Sq. At ϵ = 0.07 | 78.5 | 65.0 | 92.4 | 89.3 |
Sq. At ϵ = 0.09 | 70.0 | 54.9 | 91.8 | 85.5 |
Sq. At ϵ = 0.12 | 56.9 | 53.3 | 88.0 | 83.6 |
Sq. At ϵ = 0.15 | 48.0 | 53.0 | 87.0 | 79.8 |
MRIs | ||||
---|---|---|---|---|
Attack | SSIM (%) | Acc. (%) | ||
MobileNetV2 | DenseNet201 | DenseNet169 | ||
FGSM ϵ = 0.01 | 98.5 | 72.9 | 71.9 | 69.3 |
FGSM ϵ = 0.03 | 94.1 | 60.1 | 67.3 | 63.4 |
FGSM ϵ = 0.05 | 84.0 | 48.4 | 51.9 | 54.5 |
FGSM ϵ = 0.07 | 77.3 | 41.2 | 45.0 | 49.1 |
FGSM ϵ = 0.09 | 68.3 | 33.5 | 38.4 | 45.5 |
FGSM ϵ = 0.12 | 58.7 | 28.4 | 37.6 | 45.0 |
FGSM ϵ = 0.15 | 51.1 | 26.6 | 37.0 | 40.9 |
PGD ϵ = 0.01 | 98.8 | 76.5 | 74.6 | 72.1 |
PGD ϵ = 0.03 | 95.2 | 70.3 | 74.2 | 72.9 |
PGD ϵ = 0.05 | 87.2 | 65.5 | 65.7 | 59.6 |
PGD ϵ = 0.07 | 81.6 | 63.2 | 60.6 | 59.6 |
PGD ϵ = 0.09 | 73.6 | 56.3 | 54.5 | 57.0 |
PGD ϵ = 0.12 | 64.3 | 50.7 | 49.9 | 56.0 |
PGD ϵ = 0.15 | 56.5 | 47.0 | 49.1 | 57.0 |
Sq. At ϵ = 0.01 | 99.0 | 75.7 | 72.4 | 67.0 |
Sq. At ϵ = 0.03 | 95.2 | 65.5 | 69.3 | 62.1 |
Sq. At ϵ = 0.05 | 87.3 | 52.9 | 51.0 | 48.9 |
Sq. At ϵ = 0.07 | 82.7 | 42.5 | 41.5 | 42..5 |
Sq. At ϵ = 0.09 | 74.4 | 37..9 | 37.0 | 40.7 |
Sq. At ϵ = 0.12 | 67.4 | 34.0 | 33.8 | 34.8 |
Sq. At ϵ = 0.15 | 65.0 | 35.6 | 35.6 | 37.3 |
CT-Scans | ||||
---|---|---|---|---|
Attack | SSIM (%) | Acc. (%) | ||
MobileNetV2 | DenseNet201 | DenseNet169 | ||
FGSM ϵ = 0.01 | 99.6 | 92.3 | 92.0 | 93.2 |
FGSM ϵ = 0.03 | 96.7 | 83.0 | 88.6 | 94.0 |
FGSM ϵ = 0.05 | 88.0 | 63.6 | 82.6 | 84.3 |
FGSM ϵ = 0.07 | 81.0 | 58.0 | 78.8 | 81.4 |
FGSM ϵ = 0.09 | 70.2 | 54.2 | 78.0 | 80.5 |
FGSM ϵ = 0.12 | 57.8 | 53.4 | 78.8 | 78.0 |
FGSM ϵ = 0.15 | 48.3 | 53.0 | 80.0 | 78.0 |
PGD ϵ = 0.01 | 99.8 | 95.4 | 90.4 | 95.8 |
PGD ϵ = 0.03 | 98.0 | 98.8 | 86.7 | 97.5 |
PGD ϵ = 0.05 | 92.6 | 98.3 | 70.8 | 91.2 |
PGD ϵ = 0.07 | 87.3 | 98.3 | 65.0 | 79.6 |
PGD ϵ = 0.09 | 70.0 | 97.9 | 61.7 | 75.0 |
PGD ϵ = 0.12 | 66.7 | 97.5 | 62.5 | 79.2 |
PGD ϵ = 0.15 | 55.7 | 98.3 | 62.5 | 76.7 |
Sq. At ϵ = 0.01 | 99.6 | 91.1 | 91.5 | 93.2 |
Sq. At ϵ = 0.03 | 97.3 | 72.5 | 90.7 | 91.5 |
Sq. At ϵ = 0.05 | 89.9 | 55.5 | 77.1 | 80.0 |
Sq. At ϵ = 0.07 | 84.8 | 54.2 | 69.5 | 72.4 |
Sq. At ϵ = 0.09 | 76.8 | 54.2 | 61.9 | 60.6 |
Sq. At ϵ = 0.12 | 68.0 | 53.4 | 53.8 | 53.8 |
Sq. At ϵ = 0.15 | 59.8 | 54.2 | 58.9 | 55.0 |
References
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Apostolidis, K.D.; Polyzos, T.; Grigoriadis, I.; Papakostas, G.A. Evaluating Convolutional Neural Networks for No-Reference Image Quality Assessment. In Proceedings of the 2021 4th International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 24–25 November 2021; IEEE: Dubai, United Arab Emirates, 2021; pp. 68–71. [Google Scholar]
- Apostolidis, K.; Amanatidis, P.; Papakostas, G. Performance Evaluation of Convolutional Neural Networks for Gait Recognition. In Proceedings of the 24th Pan-Hellenic Conference on Informatics, Athens, Greece, 20–22 November 2020; ACM: Athens, Greece, 2020; pp. 61–63. [Google Scholar]
- Filippidou, F.P.; Papakostas, G.A. Single Sample Face Recognition Using Convolutional Neural Networks for Automated Attendance Systems. In Proceedings of the 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 21–23 October 2020; IEEE: Fez, Morocco, 2020; pp. 1–6. [Google Scholar]
- Shankar, K.; Zhang, Y.; Liu, Y.; Wu, L.; Chen, C.-H. Hyperparameter Tuning Deep Learning for Diabetic Retinopathy Fundus Image Classification. IEEE Access 2020, 8, 118164–118173. [Google Scholar] [CrossRef]
- Fang, R.; Cai, C. Computer vision based obstacle detection and target tracking for autonomous vehicles. MATEC Web Conf. 2021, 336, 07004. [Google Scholar] [CrossRef]
- Maliamanis, T.; Papakostas, G.A. Machine Learning Vulnerability in Medical Imaging. In Machine Learning, Big Data, and IoT for Medical Informatics; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2015, arXiv:1412.6572. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. arXiv 2019, arXiv:1706.06083. [Google Scholar]
- Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The Limitations of Deep Learning in Adversarial Settings. arXiv 2015, arXiv:1511.07528. [Google Scholar]
- Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. arXiv 2017, arXiv:1608.04644. [Google Scholar]
- Xu, W.; Evans, D.; Qi, Y. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. arXiv 2018, arXiv:1704.01155. [Google Scholar] [CrossRef] [Green Version]
- Apostolidis, K.D.; Papakostas, G.A. A Survey on Adversarial Deep Learning Robustness in Medical Image Analysis. Electronics 2021, 10, 2132. [Google Scholar] [CrossRef]
- Kuang, L.-Q.; Zhang, Y.; Han, X. A Medical Image Authentication System Based on Reversible Digital Watermarking. In Proceedings of the 2009 First International Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009; pp. 1047–1050. [Google Scholar]
- Yılmaz, I.; Baza, M.; Amer, R.; Rasheed, A.; Amsaad, F.; Morsi, R. On the Assessment of Robustness of Telemedicine Applications against Adversarial Machine Learning Attacks. In Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Kuala Lumpur, Malaysia, 26–29 July 2021; Springer: Cham, Switzerland, 2021; pp. 519–529. [Google Scholar]
- Pal, B.; Gupta, D.; Rashed-Al-Mahfuz, M.; Alyami, S.A.; Moni, M.A. Vulnerability in Deep Transfer Learning Models to Adversarial Fast Gradient Sign Attack for COVID-19 Prediction from Chest Radiography Images. Appl. Sci. 2021, 11, 4233. [Google Scholar] [CrossRef]
- Paul, R.; Schabath, M.; Gillies, R.; Hall, L.; Goldgof, D. Mitigating Adversarial Attacks on Medical Image Understanding Systems. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; IEEE: Iowa City, IA, USA, 2020; pp. 1517–1521. [Google Scholar]
- Huq, A.; Pervin, M.T. Analysis of Adversarial Attacks on Skin Cancer Recognition. In Proceedings of the 2020 International Conference on Data Science and Its Applications (ICoDSA), Bandung, Indonesia, 5–6 August 2020; IEEE: Bandung, Indonesia, 2020; pp. 1–4. [Google Scholar]
- Ma, X.; Niu, Y.; Gu, L.; Wang, Y.; Zhao, Y.; Bailey, J.; Lu, F. Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems. arXiv 2020, arXiv:1907.10456. [Google Scholar] [CrossRef]
- Ozbulak, U.; Van Messem, A.; De Neve, W. Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation. arXiv 2019, arXiv:1907.13124. [Google Scholar]
- Chen, L.; Bentley, P.; Mori, K.; Misawa, K.; Fujiwara, M.; Rueckert, D. Intelligent image synthesis to attack a segmentation CNN using adversarial learning. arXiv 2019, arXiv:1909.11167. [Google Scholar]
- Tian, B.; Guo, Q.; Juefei-Xu, F.; Chan, W.L.; Cheng, Y.; Li, X.; Xie, X.; Qin, S. Bias Field Poses a Threat to DNN-based X-ray Recognition. arXiv 2021, arXiv:2009.09247. [Google Scholar]
- Kugler, D. Physical Attacks in Dermoscopy: An Evaluation of Robustness for clinical Deep-Learning. J. Mach. Learn. Biomed. Imaging 2021, 7, 1–32. [Google Scholar]
- Shao, M.; Zhang, G.; Zuo, W.; Meng, D. Target attack on biomedical image segmentation model based on multi-scale gradients. Inf. Sci. 2021, 554, 33–46. [Google Scholar] [CrossRef]
- Yao, Q.; He, Z.; Lin, Y.; Ma, K.; Zheng, Y.; Zhou, S.K. A Hierarchical Feature Constraint to Camouflage Medical Adversarial Attacks. arXiv 2021, arXiv:2012.09501. [Google Scholar]
- Papakostas, G.A.; Karakasis, E.G.; Koulouriotis, D.E. Novel moment invariants for improved classification performance in computer vision applications. Pattern Recognit. 2010, 43, 58–68. [Google Scholar] [CrossRef]
- Papakostas, G.A.; Boutalis, Y.S.; Karras, D.A.; Mertzios, B.G. A new class of Zernike moments for computer vision applications. Inf. Sci. 2007, 177, 2802–2819. [Google Scholar] [CrossRef]
- Kalampokas, T.; Papakostas, G.A. Moment Transform-Based Compressive Sensing in Image. arXiv 2021, arXiv:2111.07254. [Google Scholar]
- Papakostas, G.A.; Boutalis, Y.S.; Karras, D.A.; Mertzios, B.G. Efficient computation of Zernike and Pseudo-Zernike moments for pattern classification applications. Pattern Recognit. Image Anal. 2010, 20, 56–64. [Google Scholar] [CrossRef]
- Mukundan, R.; Ong, S.H.; Lee, P.A. Image analysis by Tchebichef moments. IEEE Trans. Image Process. 2001, 10, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.-T.; Paramesran, R.; Ong, S.-H. Image analysis by krawtchouk moments. IEEE Trans. Image Process. 2003, 12, 1367–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papakostas, G.A.; Tsougenis, E.D.; Koulouriotis, D.E. Moment-based local image watermarking via genetic optimization. Appl. Math. Comput. 2014, 227, 222–236. [Google Scholar] [CrossRef]
- Yang, C.; Li, J.; Bhatti, U.A.; Liu, J.; Ma, J.; Huang, M. Robust Zero Watermarking Algorithm for Medical Images Based on Zernike-DCT. Secur. Commun. Netw. 2021, 2021, 4944797. [Google Scholar] [CrossRef]
- Thakkar, F.N.; Srivastava, V.K. A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications. Multimed. Tools Appl. 2017, 76, 3669–3697. [Google Scholar] [CrossRef]
- Maliamanis, T.; Papakostas, G.A. DOME-T: Adversarial computer vision attack on deep learning models based on Tchebichef image moments. In Proceedings of the Thirteenth International Conference on Machine Vision, Rome, Italy, 4 January 2021; Volume 11605. [Google Scholar]
- Andriushchenko, M.; Croce, F.; Flammarion, N.; Hein, M. Square Attack: A Query-Efficient Black-Box Adversarial Attack via Random Search. In Proceedings of the Computer Vision–ECCV 2020, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 484–501. [Google Scholar]
- Nicolae, M.-I.; Sinn, M.; Tran, M.N.; Buesser, B.; Rawat, A.; Wistuba, M.; Zantedeschi, V.; Baracaldo, N.; Chen, B.; Ludwig, H.; et al. Adversarial Robustness Toolbox v1.0.0. arXiv 2019, arXiv:1807.01069. [Google Scholar]
- Sachin Kumar|Novice|Kaggle. Available online: https://www.kaggle.com/sachinkumar413 (accessed on 23 January 2022).
- Brain Tumor MRI Dataset|Kaggle. Available online: https://www.kaggle.com/masoudnickparvar/brain-tumor-mri-dataset (accessed on 23 January 2022).
- SARS-CoV-2 Ct-Scan Dataset|Kaggle. Available online: https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset (accessed on 23 January 2022).
X-rays − MobileNetV2 − Original Accuracy = 96.8% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Bits | Embed. Strength = 50 | Embed. Strength = 100 | Embed. Strength = 200 | Embed. Strength = 300 | ||||||||
SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | |
100 | 99.4 | 0.8, 0.1 | 95.3 | 99.2 | 0.9, 0.6 | 94.3 | 98.4 | 0.8, 0.6 | 93.1 | 97.5 | 0.8, 0.4 | 92.1 |
200 | 99.3 | 0.9, 0.6 | 95.0 | 98.7 | 0.8, 0.6 | 93.7 | 97.0 | 0.8, 0.4 | 91.8 | 95.2 | 0.8, 0.6 | 91.8 |
300 | 99.0 | 0.9, 0.6 | 95.0 | 98.2 | 0.8, 0.5 | 93.4 | 95.6 | 0.8, 0.5 | 90.3 | 93.0 | 0.8, 0.5 | 90.6 |
400 | 98.9 | 0.9, 0.6 | 94.3 | 97.6 | 0.8, 0.4 | 93.1 | 94.2 | 0.8, 0.4 | 89.3 | 90.9 | 0.8, 0.4 | 88.7 |
500 | 98.7 | 0.8, 0.5 | 93.7 | 97.1 | 0.8, 0.4 | 92.8 | 92.9 | 0.8, 0.4 | 89.0 | 88.9 | 0.7, 0.4 | 89.3 |
600 | 98.5 | 0.8, 0.5 | 94.0 | 96.5 | 0.7, 0.4 | 92.1 | 91.5 | 0.7, 0.5 | 87.5 | 86.9 | 0.7, 0.5 | 87.8 |
700 | 98.3 | 0.8, 0.5 | 93.7 | 95.9 | 0.7, 0.5 | 91.2 | 90.2 | 0.7, 0.3 | 86.8 | 84.9 | 0.7, 0.5 | 86.8 |
800 | 98.1 | 0.8, 0.5 | 93.4 | 95.3 | 0.7, 0.5 | 90.0 | 88.8 | 0.7, 0.5 | 87.5 | 83.0 | 0.7, 0.5 | 84.3 |
900 | 97.9 | 0.7, 0.5 | 93.1 | 96.7 | 0.7, 0.6 | 89.3 | 87.4 | 0.7, 0.5 | 83.4 | 81.0 | 0.7, 0.5 | 79.0 |
1000 | 97.6 | 0.7, 0.5 | 93.1 | 94.0 | 0.7, 0.6 | 88.1 | 85.9 | 0.7, 0.5 | 82.1 | 79.0 | 0.7, 0.5 | 78.7 |
X-rays − DenseNet201 − Original Accuracy = 96.2% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Bits | Embed. Strength = 50 | Embed. Strength = 100 | Embed. Strength = 200 | Embed. Strength = 300 | ||||||||
SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | |
100 | 99.4 | 0.8, 0.8 | 95.5 | 99.2 | 0.8, 0.4 | 95.3 | 98.4 | 0.8, 0.7 | 95.3 | 97.5 | 0.4, 0.6 | 95.0 |
200 | 99.3 | 0.8, 0.8 | 95.6 | 98.7 | 0.9, 0.1 | 95.3 | 97.0 | 0.1, 0.7 | 95.3 | 95.2 | 0.8, 0.6 | 94.3 |
300 | 99.0 | 0.8, 0.1 | 95.3 | 98.2 | 0.3, 0.5 | 95.6 | 95.6 | 0.8, 0.7 | 95.0 | 93.0 | 0.5, 0.5 | 93.1 |
400 | 98.9 | 0.9, 0.5 | 95.6 | 97.6 | 0.1, 0.7 | 95.3 | 94.2 | 0.1, 0.9 | 94.6 | 90.9 | 0.4, 0.5 | 92.1 |
500 | 98.7 | 0.1, 0.8 | 95.3 | 97.1 | 0.8, 0.6 | 95.0 | 92.9 | 0.1, 0.7 | 94.3 | 88.9 | 0.5, 0.5 | 91.2 |
600 | 98.5 | 0.8, 0.1 | 95.6 | 96.5 | 0.1, 0.7 | 95.0 | 91.5 | 0.4, 0.6 | 93.7 | 86.9 | 0.6, 0.7 | 90.6 |
700 | 98.3 | 0.8, 0.5 | 95.3 | 95.9 | 0.8, 0.9 | 95.0 | 90.2 | 0.3, 0.5 | 92.8 | 84.9 | 0.6, 0.8 | 88.7 |
800 | 98.1 | 0.1, 0.2 | 95.3 | 95.3 | 0.5, 0.1 | 95.0 | 88.8 | 0.4, 0.5 | 92.8 | 83.0 | 0.4, 0.6 | 87.8 |
900 | 97.9 | 0.9, 0.5 | 95.0 | 96.7 | 0.1, 0.8 | 94.7 | 87.4 | 0.6, 0.6 | 92.5 | 81.0 | 0.4, 0.7 | 85.9 |
1000 | 97.6 | 0.1, 0.8 | 95.3 | 94.0 | 0.4, 0.3 | 94.4 | 85.9 | 0.4, 0.5 | 90.3 | 79.0 | 0.4, 0.5 | 82.1 |
X-rays − DenseNet169 − Original Accuracy = 95.9% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Bits | Embed. Strength = 50 | Embed. Strength = 100 | Embed. Strength = 200 | Embed. Strength = 300 | ||||||||
SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | SSIM (%) | p1, p2 | Acc. (%) | |
100 | 99.4 | 0.8, 0.4 | 95.3 | 99.2 | 0.9, 0.3 | 95.0 | 98.4 | 0.8, 0.5 | 94.0 | 97.5 | 0.8, 0.7 | 94.3 |
200 | 99.3 | 0.8, 0.4 | 95.0 | 98.7 | 0.1, 0.8 | 95.0 | 97.0 | 0.8, 0.5 | 93.7 | 95.2 | 0.8, 0.5 | 91.2 |
300 | 99.0 | 0.8, 0.4 | 95.3 | 98.2 | 0.1, 0.5 | 94.3 | 95.6 | 0.7, 0.5 | 92.5 | 93.0 | 0.8, 0.5 | 89.3 |
400 | 98.9 | 0.8, 0.8 | 95.0 | 97.6 | 0.8, 0.5 | 94.0 | 94.2 | 0.7, 0.5 | 91.5 | 90.9 | 0.8, 0.5 | 89.3 |
500 | 98.7 | 0.8, 0.5 | 94.6 | 97.1 | 0.7, 0.5 | 93.7 | 92.9 | 0.7, 0.5 | 90.3 | 88.9 | 0.7, 0.4 | 88.4 |
600 | 98.5 | 0.8, 0.4 | 95.0 | 96.5 | 0.7, 0.5 | 94.0 | 91.5 | 0.7, 0.4 | 89.6 | 86.9 | 0.6, 0.5 | 85.9 |
700 | 98.3 | 0.9, 0.3 | 94.6 | 95.9 | 0.7, 0.4 | 93.4 | 90.2 | 0.7, 0.3 | 88.4 | 84.9 | 0.6, 0.5 | 85.3 |
800 | 98.2 | 0.9, 0.3 | 95.0 | 95.3 | 0.2, 0.3 | 93.7 | 88.8 | 0.7, 0.5 | 87.8 | 83.0 | 0.6, 0.5 | 84.0 |
900 | 97.9 | 0.9, 0.4 | 94.6 | 96.7 | 0.7, 0.4 | 91.5 | 87.4 | 0.7, 0.5 | 87.1 | 81.0 | 0.6, 0.5 | 80.6 |
1000 | 97.6 | 0.8, 0.6 | 94.6 | 94.0 | 0.7, 0.4 | 91.5 | 85.9 | 0.6, 0.5 | 85.0 | 79.0 | 0.6, 0.5 | 80.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolidis, K.D.; Papakostas, G.A. Digital Watermarking as an Adversarial Attack on Medical Image Analysis with Deep Learning. J. Imaging 2022, 8, 155. https://doi.org/10.3390/jimaging8060155
Apostolidis KD, Papakostas GA. Digital Watermarking as an Adversarial Attack on Medical Image Analysis with Deep Learning. Journal of Imaging. 2022; 8(6):155. https://doi.org/10.3390/jimaging8060155
Chicago/Turabian StyleApostolidis, Kyriakos D., and George A. Papakostas. 2022. "Digital Watermarking as an Adversarial Attack on Medical Image Analysis with Deep Learning" Journal of Imaging 8, no. 6: 155. https://doi.org/10.3390/jimaging8060155
APA StyleApostolidis, K. D., & Papakostas, G. A. (2022). Digital Watermarking as an Adversarial Attack on Medical Image Analysis with Deep Learning. Journal of Imaging, 8(6), 155. https://doi.org/10.3390/jimaging8060155