Towards More Accurate and Complete Heterogeneous Iris Segmentation Using a Hybrid Deep Learning Approach
Abstract
:1. Introduction
- We proposed a bilateral segmentation backbone network that combines the benefits of Swin T with CNNs for accurate iris segmentation. Swin T is used to learn global and long-term semantic information interactions, and CNNs are used to extract fine-grained iris texture features and edge features
- We designed a parallel structure based on dilated convolution to enhance the receptive field and capture rich iris feature information. MFIEM can extract multiscale context heterogeneous iris feature information.
- In order to reduce the interference of irrelevant noise in the network, a channel attention mechanism module was used in this paper. CAMM can assign the importance of information on the channel, enhance the important features, suppress the useless features, and improve the representation ability of the network model.
2. Related Works
3. Methods
3.1. Design of the Semantic Branch
3.2. Design of the Detailed Branch and Decoder Structure
3.3. Multiscale Feature Information Extraction Module
3.4. Channel Attention Mechanism Module
4. Experimental Configurations
4.1. The Iris Image Database
4.2. Metrices Used in the Evaluation Section and Experimental Implementation
5. Experimental Results
5.1. Ablation Experiments
5.2. Comparison with Conventional Segmentation Networks
5.3. Comparison with Algorithms Based on CNNs
5.4. The Segmentation Results of Different Databases
5.5. The Universality of Network Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huo, G.; Lin, D.; Yuan, M.; Yang, Z.; Niu, Y. Heterogeneous iris segmentation method based on modified U-Net. J. Electron. Imaging 2021, 30, 063015. [Google Scholar] [CrossRef]
- He, Z.; Tan, T.; Sun, Z.; Qiu, X. Toward Accurate and Fast Iris Segmentation for Iris Biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 1670–1684. [Google Scholar] [CrossRef]
- Wang, C.; Muhammad, J.; Wang, Y.; He, Z.; Sun, Z. Towards Complete and Accurate Iris Segmentation Using Deep Multi-Task Attention Network for Non-Cooperative Iris Recognition. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2944–2959. [Google Scholar] [CrossRef]
- Nalla, P.R.; Kumar, A. Toward More Accurate Iris Recognition Using Cross-Spectral Matching. IEEE Trans. Image Process. 2017, 26, 208–221. [Google Scholar] [CrossRef]
- Jianze, W.; Huaibo, H.; Yunlong, W.; Ran, H.; Zhenan, S. Towards More Discriminative and Robust Iris Recognition by Learning Uncertain Factors. IEEE Trans. Inf. Forensics Secur. 2022, 17, 865–879. [Google Scholar] [CrossRef]
- Nguyen, K.; Fookes, C.; Sridharan, S.; Ross, A. Complex-valued Iris Recognition Network. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [Google Scholar] [CrossRef] [PubMed]
- Sahmoud, S.A.; Abuhaiba, I.S. Efficient iris segmentation method in unconstrained environments. Pattern Recognit. 2013, 46, 3174–3185. [Google Scholar] [CrossRef]
- Umer, S.; Dhara, B.C. A fast iris localization using inversion transform and restricted circular Hough transform. In Proceedings of the 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR), Kolkata, India, 4–7 January 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Tan, T.; He, Z.; Sun, Z. Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition. Image Vis. Comput. 2010, 28, 223–230. [Google Scholar] [CrossRef]
- Roy, D.A.; Soni, U.S. IRIS segmentation using Daughman’s method. In Proceedings of the International Conference on Electrical, Chennai, India, 3–5 March 2016; pp. 2668–2676. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017. [Google Scholar] [CrossRef]
- Jalilian, E.; Uhl, A. Iris Segmentation Using Fully Convolutional Encoder—Decoder Networks. In Advances in Computer Vision and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2017; pp. 133–155. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Zeng, Z.; Wang, Y. An Adaptive CNNs Technology for Robust Iris Segmentation. IEEE Access 2019, 7, 64517–64532. [Google Scholar] [CrossRef]
- Sardar, M.; Banerjee, S.; Mitra, S. Iris Segmentation Using Interactive Deep Learning. IEEE Access 2020, 8, 219322–219330. [Google Scholar] [CrossRef]
- Huijuan, T.; Jiahao, Z.; Jianxin, L.; Jiawei, L.; Linlin, D. A Low-quality Iris Image Segmentation Algorithm Based on SRN-UNet. Acta Photonica Sin. 2022, 51, 0210006. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Houlsby, N. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arxiv 2021, arXiv:2010.11929. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. Available online: https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.pdf (accessed on 1 September 2022). [CrossRef]
- Chen, Y.; Gan, H.; Zeng, Z.; Chen, H. DADCNet: Dual attention densely connected network for more accurate real iris region segmentation. Int. J. Intell. Syst. 2022, 37, 829–858. [Google Scholar] [CrossRef]
- Putri, W.R.; Liu, S.-H.; Aslam, M.S.; Li, Y.-H.; Chang, C.-C.; Wang, J.-C. Self-Supervised Learning Framework toward State-of-the-Art Iris Image Segmentation. Sensors 2022, 22, 2133. [Google Scholar] [CrossRef]
- Miron, C.; Pasarica, A.; Manta, V.; Timofte, R. Efficient and robust eye images iris segmentation using a lightweight U-net convolutional network. Multimed. Tools Appl. 2022, 81, 14961–14977. [Google Scholar] [CrossRef]
- Huo, G.; Lin, D.; Yuan, M. Iris segmentation method based on improved UNet++. Multimed. Tools Appl. 2022, 1–22. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. arxiv 2018, arXiv:1802.02611. [Google Scholar]
- Kumar, A.; Passi, A. Comparison and combination of iris matchers for reliable personal authentication. Pattern Recognit. 2010, 43, 1016–1026. [Google Scholar] [CrossRef]
- Proena, H.; Filipe, S.; Santos, R.; Oliveira, J.; Alexandre, L.A. The UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured On-the-Move and At-a-Distance. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1529–1535. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X.; Gu, Y.; Liu, Y.; Li, J. A Robust Iris Segmentation Scheme Based on Improved U-Net. IEEE Access 2019, 7, 85082–85089. [Google Scholar] [CrossRef]
- You, X.; Zhao, P.; Mu, X.; Bai, K.; Lian, S. Heterogeneous Noise Iris Segmentation Based on Attention Mechanism and Dense Multiscale Features. Laser Optoelectron. Prog. 2022, 59, 0410006. [Google Scholar] [CrossRef]
- CASIA Iris Image Database. Available online: http://www.cbsr.ia.ac.cn/china/Iris%20Databases%20CH.asp (accessed on 7 September 2020).
- JLU Iris Image Database. Available online: http://www.jlucomputer.com/index/irislibrary/irislibrary.html (accessed on 7 September 2020).
- Proenca, H.; Alexandre, L.A. The NICE.I: Noisy Iris Challenge Evaluation—Part I. In Proceedings of the 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems, Crystal City, VA, USA, 27–29 September 2007; pp. 1–1535. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016. [Google Scholar] [CrossRef]
- Ahmad, S.; Fuller, B. Unconstrained Iris Segmentation Using Convolutional Neural Networks. arxiv 2019, arXiv:1812.08245. [Google Scholar]
- Alonsofern, J.O. Iris boundaries segmentation using the generalized structure tensor. A study on the effects of image degradation. In Proceedings of the 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 23–27 September 2012; pp. 426–431. [Google Scholar] [CrossRef]
- Rathgeb, C. Iris Biometrics From Segmentation to Template Security. Comput. Rev. 2013, 54, 672–673. [Google Scholar] [CrossRef]
- Wild, P.; Hofbauer, H.; Ferryman, J.; Uhl, A. Segmentation-Level Fusion for Iris Recognition. In Proceedings of the 2015 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 9–11 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Uhl, A.; Wild, P. Weighted adaptive Hough and ellipsopolar transforms for real-time iris segmentation. In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi, India, 29 March–1 April 2012; pp. 283–290. [Google Scholar] [CrossRef]
- GSutra, B.D.; SGarcia-Salicetti, N.O.t.h.m.a.n. A Biometric Reference System for Iris, Osiris Version 4.1. Available online: http://svnext.it-sudparis.eu/svnview2-eph/ref_syst/Iris_Osiris_v4.1/ (accessed on 1 September 2022).
- Uhl, A.; Wild, P. Multi-stage Visible Wavelength and Near Infrared Iris Segmentation Framework. In Proceedings of the 9th International Conference, ICIAR 2012: Image Analysis and Recognition, Aveiro, Portugal, 25–27 June 2012. [Google Scholar] [CrossRef]
- Lozej, J.; Meden, B.; Struc, V.; Peer, P. End-to-End Iris Segmentation Using U-Net. In Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), San Carlos, Costa Rica, 18–20 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
Structure | Input Size (H × W × C) | Operation | Stride | Output Size (H × W × C) |
---|---|---|---|---|
Semantic branch | 224 × 224 × 3 | Patch Partition | 4 | 56 × 56 × 48 |
56 × 56 × 48 | Linear Embedding | 1 | 56 × 56 × 96 | |
56 × 56 × 96 | Swin T Block1 | 1 | 56 × 56 × 96 | |
56 × 56 × 96 | Patch Merging | 2 | 28 × 28 × 192 | |
28 × 28 × 192 | Swin T Block2 | 1 | 28 × 28 × 192 | |
28 × 28 × 192 | Patch Merging | 2 | 14 × 14 × 384 | |
14 × 14 × 384 | Swin T Block3 | 1 | 14 × 14 × 384 | |
14 × 14 × 384 | Patch Merging | 2 | 7 × 7 × 768 | |
Detailed branch | 224 × 224 × 3 | 3 × 3 Convolution | 2 | 112 × 112 × 16 |
112 × 112 × 16 | 3 × 3 Convolution | 2 | 56 × 56 × 96 | |
56 × 56 × 96 | Feature extraction module | 2 | 28 × 28 × 192 | |
28 × 28 × 192 | Feature extraction module | 1 | 28 × 28 × 192 | |
28 × 28 × 192 | Feature extraction module | 2 | 14 × 14 × 384 | |
14 × 14 × 384 | Feature extraction module | 1 | 14 × 14 × 384 | |
14 × 14 × 384 | MFIEM | 1 | 14 × 14 × 384 | |
14 × 14 × 384 | CAMM | 1 | 14 × 14 × 384 | |
Decoder | 7 × 7 × 768 | Decode Block1 | 2 | 14 × 14 × 384 |
14 × 14 × 384 | Decode Block2 | 2 | 28 × 28 × 192 | |
28 × 28 × 192 | Decode Block3 | 2 | 56 × 56 × 96 | |
56 × 56 × 96 | Decode Block4 | 2 | 112 × 112 × 48 | |
112 × 112 × 48 | 3 × 3 Convolution | 1 | 112 × 112 × 16 | |
112 × 112 × 16 | Transposed convolution | 2 | 224 × 224 × 1 |
Property | IITD | UBIRIS.v2 |
---|---|---|
Image Size | 320 × 240 | 400 × 300 |
Input Size | 224 × 224 | 224 × 224 |
The number of training sets | 1580 | 1575 |
The number of validating sets | 220 | 225 |
The number of testing sets | 440 | 450 |
Modality | near-infrared | visible light |
Color | gray-level | RGB |
Database | Network | MIOU | F1 | NICE2 |
---|---|---|---|---|
IITD | Swin T | 0.9530 | 0.9758 | 0.0274 |
CNNs | 0.9568 | 0.9779 | 0.0214 | |
Swin T + CNNs (Ours) | 0.9609 | 0.9800 | 0.0212 | |
UBIRIS.v2 | Swin T | 0.9376 | 0.9670 | 0.0316 |
CNNs | 0.9417 | 0.9693 | 0.0303 | |
Swin T + CNNs (Ours) | 0.9489 | 0.9738 | 0.0226 |
Database | Network | MIOU | F1 | NICE2 |
---|---|---|---|---|
IITD | Baseline | 0.9609 | 0.9800 | 0.0212 |
Baseline + MFIEM | 0.9665 | 0.9829 | 0.0180 | |
Baseline + CAMM | 0.9650 | 0.9822 | 0.0182 | |
Ours | 0.9694 | 0.9844 | 0.0160 | |
UBIRIS.v2 | Baseline | 0.9489 | 0.9738 | 0.0226 |
Baseline + MFIEM | 0.9544 | 0.9763 | 0.0202 | |
Baseline + CAMM | 0.9528 | 0.9754 | 0.0216 | |
Ours | 0.9566 | 0.9774 | 0.0196 |
Database | Approach | MIOU | F1 | NICE2 |
---|---|---|---|---|
IITD | Ahmad [33] | - | 0.9520 | - |
GST [34] | - | 0.3393 | - | |
Ours | 0.9694 | 0.9844 | 0.0160 | |
UBIRIS.v2 | Chat [35] | - | 0.1048 | 0.4809 |
Ifpp [36] | - | 0.2899 | 0.3970 | |
Wahet [37] | - | 0.1977 | 0.4498 | |
Osiris [38] | - | 0.1865 | - | |
IFPP [39] | - | 0.2852 | - | |
Ours | 0.9566 | 0.9774 | 0.0196 |
Database | Approach | MIOU | F1 | NICE2 |
---|---|---|---|---|
IITD | FCEDNs-original [14] | - | 0.8661 | 0.0588 |
FCEDNs-basic [14] | - | 0.9072 | 0.0438 | |
FCEDNs-Bayesian-basic [14] | - | 0.8489 | 0.0701 | |
FD-UNet [27] | - | 0.9481 | 0.0258 | |
Linknet [13] * | 0.9595 | 0.9793 | 0.0188 | |
DMS-UNet [1] * | 0.9603 | 0.9797 | 0.0176 | |
Ours | 0.9694 | 0.9844 | 0.0160 | |
UBIRIS.v2 | FCEDNs-original [14] | - | 0.7691 | 0.1249 |
FCEDNs-basic [14] | - | 0.7700 | 0.1517 | |
FCEDNs-Bayesian-basic [14] | - | 0.8407 | 0.1116 | |
RTV-L [28] | 0.7401 | 0.8597 | - | |
DeepLabV3 [28] | 0.7024 | 0.8755 | - | |
UNet [40] | 0.9362 | 0.9553 | - | |
DFCN [15] | - | 0.9606 | 0.0204 | |
Linknet [13] * | 0.9195 | 0.9567 | 0.0316 | |
MFFIris-UNet [28] | 0.9428 | 0.9659 | - | |
DMS-UNet [1] * | 0.9474 | 0.9725 | 0.0248 | |
Ours | 0.9566 | 0.9774 | 0.0196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Bao, T. Towards More Accurate and Complete Heterogeneous Iris Segmentation Using a Hybrid Deep Learning Approach. J. Imaging 2022, 8, 246. https://doi.org/10.3390/jimaging8090246
Meng Y, Bao T. Towards More Accurate and Complete Heterogeneous Iris Segmentation Using a Hybrid Deep Learning Approach. Journal of Imaging. 2022; 8(9):246. https://doi.org/10.3390/jimaging8090246
Chicago/Turabian StyleMeng, Yuan, and Tie Bao. 2022. "Towards More Accurate and Complete Heterogeneous Iris Segmentation Using a Hybrid Deep Learning Approach" Journal of Imaging 8, no. 9: 246. https://doi.org/10.3390/jimaging8090246
APA StyleMeng, Y., & Bao, T. (2022). Towards More Accurate and Complete Heterogeneous Iris Segmentation Using a Hybrid Deep Learning Approach. Journal of Imaging, 8(9), 246. https://doi.org/10.3390/jimaging8090246