Human Hepatocellular Carcinoma Classification from H&E Stained Histopathology Images with 3D Convolutional Neural Networks and Focal Loss Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Classification
3. Results
3.1. Dataset
3.2. Hardware and Software Configuration
3.3. Evaluation Metrics
3.4. Experimental Results and Discussion
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, A.; Minguez, B.; Forner, A.; Reig, M.; Llovet, J.M. Hepatocellular Carcinoma: Novel Molecular Approaches for Diagnosis, Prognosis, and Therapy. Annu. Rev. Med. 2010, 61, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vij, M.; Calderaro, J. Pathologic and Molecular Features of Hepatocellular Carcinoma: An Update. World J. Hepatol. 2021, 13, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H. AI-Based Computer-Aided Diagnosis (AI-CAD): The Latest Review to Read First. Radiol. Phys. Technol. 2020, 13, 6–19. [Google Scholar] [CrossRef]
- Aatresh, A.A.; Alabhya, K.; Lal, S.; Kini, J.; Saxena, P.P. LiverNet: Efficient and Robust Deep Learning Model for Automatic Diagnosis of Sub-Types of Liver Hepatocellular Carcinoma Cancer from H&E Stained Liver Histopathology Images. Int. J. CARS 2021, 16, 1549–1563. [Google Scholar] [CrossRef]
- Lin, H.; Wei, C.; Wang, G.; Chen, H.; Lin, L.; Ni, M.; Chen, J.; Zhuo, S. Automated Classification of Hepatocellular Carcinoma Differentiation Using Multiphoton Microscopy and Deep Learning. J. Biophotonics 2019, 12, e201800435. [Google Scholar] [CrossRef]
- Goetz, A.F.H. Three Decades of Hyperspectral Remote Sensing of the Earth: A Personal View. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Park, B.; Lu, R. (Eds.) . Hyperspectral Imaging Technology in Food and Agriculture; Food Engineering Series; Springer: New York, NY, USA, 2015; ISBN 978-1-4939-2835-4. [Google Scholar]
- Huang, H.; Liu, L.; Ngadi, M. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety. Sensors 2014, 14, 7248–7276. [Google Scholar] [CrossRef] [Green Version]
- Stuffler, T.; Förster, K.; Hofer, S.; Leipold, M.; Sang, B.; Kaufmann, H.; Penné, B.; Mueller, A.; Chlebek, C. Hyperspectral Imaging—An Advanced Instrument Concept for the EnMAP Mission (Environmental Mapping and Analysis Programme). Acta Astronaut. 2009, 65, 1107–1112. [Google Scholar] [CrossRef]
- Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern Trends in Hyperspectral Image Analysis: A Review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- ul Rehman, A.; Qureshi, S.A. A Review of the Medical Hyperspectral Imaging Systems and Unmixing Algorithms’ in Biological Tissues. Photodiagn. Photodyn. Ther. 2021, 33, 102165. [Google Scholar] [CrossRef] [PubMed]
- Schultz, R.A.; Nielsen, T.; Zavaleta, J.R.; Ruch, R.; Wyatt, R.; Garner, H.R. Hyperspectral Imaging: A Novel Approach for Microscopic Analysis. Cytometry 2001, 43, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Hu, M.; Wang, J.; Zhou, M.; Sun, L.; Qiu, S.; Li, Q.; Sun, Z.; Wang, Y. ALK Positive Lung Cancer Identification and Targeted Drugs Evaluation Using Microscopic Hyperspectral Imaging Technique. Infrared Phys. Technol. 2019, 96, 267–275. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, M.; Li, Q.; Hu, M.; Wen, Y.; Zhang, J.; Lu, Y.; Chu, J. Diagnosis of Cholangiocarcinoma from Microscopic Hyperspectral Pathological Dataset by Deep Convolution Neural Networks. Methods 2022, 202, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vila-Francés, J. Analysis of Acousto-Optic Tunable Filter Performance for Imaging Applications. Opt. Eng. 2010, 49, 113203. [Google Scholar] [CrossRef]
- Calpe-Maravilla, J. 400– to 1000–Nm Imaging Spectrometer Based on Acousto-Optic Tunable Filters. J. Electron. Imaging 2006, 15, 023001. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, H.; Jia, G.; Sun, S.; Wang, X. Optical Schemes of Super-Angular AOTF-Based Imagers and System Response Analysis. Opt. Commun. 2021, 498, 127204. [Google Scholar] [CrossRef]
- Budinger, T.F. Absorbed Radiation Dose Assessment from Radionuclides. In Comprehensive Biomedical Physics; Elsevie: Amsterdam, The Netherlands, 2014; pp. 253–269. ISBN 978-0-444-53633-4. [Google Scholar]
- Abe, T.; Murakami, Y.; Yamaguchi, M.; Ohyama, N.; Yagi, Y. Color Correction of Pathological Images Based on Dye Amount Quantification. OPT REV 2005, 12, 293–300. [Google Scholar] [CrossRef]
- Tuer, A.E.; Tokarz, D.; Prent, N.; Cisek, R.; Alami, J.; Dumont, D.J.; Bakueva, L.; Rowlands, J.A.; Barzda, V. Nonlinear Multicontrast Microscopy of Hematoxylin-and-Eosin-Stained Histological Sections. J. Biomed. Opt. 2010, 15, 026018. [Google Scholar] [CrossRef]
- Wang, R.; He, Y.; Yao, C.; Wang, S.; Xue, Y.; Zhang, Z.; Wang, J.; Liu, X. Classification and Segmentation of Hyperspectral Data of Hepatocellular Carcinoma Samples Using 1-D Convolutional Neural Network. Cytometry 2020, 97, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Aref, M.H.; Aboughaleb, I.H.; El-Sharkawy, Y.H. Tissue Characterization Utilizing Hyperspectral Imaging for Liver Thermal Ablation. Photodiagnosis Photodyn. Ther. 2020, 31, 101899. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.D.; Groen, T.A.; Skidmore, A.K.; Darvishzadeh, R.; Willemen, L. The Naïve Overfitting Index Selection (NOIS): A New Method to Optimize Model Complexity for Hyperspectral Data. ISPRS J. Photogramm. Remote Sens. 2017, 133, 61–74. [Google Scholar] [CrossRef]
- Xiang, Y.; Kim, W.; Chen, W.; Ji, J.; Choy, C.; Su, H.; Mottaghi, R.; Guibas, L.; Savarese, S. ObjectNet3D: A Large Scale Database for 3D Object Recognition. In Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 9912, pp. 160–176. ISBN 978-3-319-46483-1. [Google Scholar]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleesiek, J.; Urban, G.; Hubert, A.; Schwarz, D.; Maier-Hein, K.; Bendszus, M.; Biller, A. Deep MRI Brain Extraction: A 3D Convolutional Neural Network for Skull Stripping. NeuroImage 2016, 129, 460–469. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013. [Google Scholar] [CrossRef]
- Zunair, H.; Rahman, A.; Mohammed, N.; Cohen, J.P. Uniformizing Techniques to Process CT Scans with 3D CNNs for Tuberculosis Prediction. arXiv. [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimizatio. arXiv. [CrossRef]
- Li, D.-C.; Liu, C.-W.; Hu, S.C. A Learning Method for the Class Imbalance Problem with Medical Data Sets. Comput. Biol. Med. 2010, 40, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal Classifier for Imbalanced Data Using Matthews Correlation Coefficient Metric. PLoS ONE 2017, 12, e0177678. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.A.; Lim, J.; Lin, R.-S.; Yang, M.-H. Incremental Learning for Robust Visual Tracking. Int. J. Comput. Vis. 2008, 77, 125–141. [Google Scholar] [CrossRef]
- Mosquera-Lopez, C.; Agaian, S.; Velez-Hoyos, A.; Thompson, I. Computer-Aided Prostate Cancer Diagnosis From Digitized Histopathology: A Review on Texture-Based Systems. IEEE Rev. Biomed. Eng. 2015, 8, 98–113. [Google Scholar] [CrossRef]
- Chen, J.-M.; Li, Y.; Xu, J.; Gong, L.; Wang, L.-W.; Liu, W.-L.; Liu, J. Computer-Aided Prognosis on Breast Cancer with Hematoxylin and Eosin Histopathology Images: A Review. Tumour. Biol. 2017, 39, 101042831769455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, S.; Gyanchandani, M. Machine Learning Methods for Computer-Aided Breast Cancer Diagnosis Using Histopathology: A Narrative Review. J. Med. Imaging Radiat. Sci. 2020, 51, 182–193. [Google Scholar] [CrossRef] [PubMed]
Layer | Parameters | Output Size |
---|---|---|
Input | 100 × 100 × 270 | |
Convolution3D | Kernel Size: 3 × 3 × 3 Number of filters: 4 Activation: ReLU Padding: same | 100 × 100 × 270 × 4 |
Max-pooling3D | Pool Size: 3 × 3 × 3 Strides: 2 × 2 × 2 Padding: same | 50 × 50 × 135 × 4 |
BatchNormalization | 50 × 50 × 135 × 4 | |
Convolution3D | Kernel Size: 3 × 3 × 3 Number of filters: 8 Activation: ReLU Padding: same | 50 × 50 × 135 × 8 |
Max-pooling3D | Pool Size: 3 × 3 × 3 Strides: 2 × 2 × 2 Padding: same | 25 × 25 × 68 × 8 |
BatchNormalization | 25 × 25 × 68 × 8 | |
Convolution3D | Kernel Size: 3 × 3 × 3 Number of filters: 16 Activation: ReLU Padding: same | 25 × 25 × 68 × 16 |
Max-pooling3D | Pool Size: 3 × 3 × 3 Strides: 2 × 2 × 2 Padding: same | 13 × 13 × 34 × 16 |
BatchNormalization | 13 × 13 × 34 × 16 | |
Convolution3D | Kernel Size: 3 × 3 × 3 Number of filters: 32 Activation: ReLU Padding: same | 13 × 13 × 34 × 32 |
Max-pooling3D | Pool Size: 3 × 3 × 3 Strides: 2 × 2 × 2 Padding: same | 7 × 7 × 17 × 32 |
BatchNormalization | 7 × 7 × 17 × 32 | |
GlobalAveragePooling3D | 32 | |
Dense | Units: 512 Activation: ReLU | 512 |
Dropout | Drop rate: 0.1 | 512 |
Dense (Classification) | Units: 1 | 1 |
Healthy | Unhealthy | Total | |
---|---|---|---|
Training Samples | 2 | 18 | 20 |
Training Cases | 1 | 9 | 10 |
Validation Samples | 2 | 18 | 20 |
Validation Cases | 1 | 9 | 10 |
Testing Samples | 2 | 18 | 20 |
Testing Cases | 1 | 9 | 10 |
Total Samples | 6 | 54 | 60 |
Total Cases | 3 | 27 | 30 |
Patch Size (S) | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
50 × 50 | 0.929 | 0.996 | 0.924 | 0.961 | 0.722 |
100 × 100 | 0.970 | 0.999 | 0.968 | 0.984 | 0.860 |
150 × 150 | 0.961 | 0.973 | 0.983 | 0.967 | 0.774 |
200 × 200 | 0.924 | 0.968 | 0.947 | 0.945 | 0.615 |
Loss Function | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
CE | 0.891 | 0.921 | 0.961 | 0.906 | 0.277 |
BCE () | 0.901 | 0.938 | 0.953 | 0.919 | 0.412 |
BCE () | 0.902 | 0.916 | 0.981 | 0.909 | 0.278 |
FL () | 0.918 | 0.982 | 0.926 | 0.949 | 0.646 |
FL () | 0.922 | 0.978 | 0.935 | 0.949 | 0.643 |
FL () | 0.930 | 0.969 | 0.952 | 0.949 | 0.638 |
FL () | 0.960 | 0.993 | 0.962 | 0.976 | 0.811 |
FL () | 0.970 | 0.999 | 0.968 | 0.984 | 0.860 |
FL () | 0.955 | 0.983 | 0.966 | 0.969 | 0.766 |
FL () | 0.948 | 0.998 | 0.943 | 0.972 | 0.782 |
FL () | 0.958 | 0.999 | 0.955 | 0.978 | 0.818 |
FL () | 0.953 | 0.986 | 0.962 | 0.969 | 0.768 |
Loss Function | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
FL () | 0.885 | 0.973 | 0.897 | 0.927 | 0.539 |
FL () | 0.892 | 0.975 | 0.903 | 0.932 | 0.559 |
FL () | 0.897 | 0.971 | 0.913 | 0.933 | 0.554 |
FL () | 0.919 | 0.980 | 0.929 | 0.949 | 0.645 |
FL () | 0.950 | 0.990 | 0.955 | 0.970 | 0.767 |
FL () | 0.924 | 0.986 | 0.929 | 0.954 | 0.679 |
FL () | 0.914 | 0.977 | 0.926 | 0.944 | 0.619 |
FL () | 0.885 | 0.977 | 0.894 | 0.929 | 0.552 |
FL () | 0.857 | 0.970 | 0.868 | 0.91 | 0.473 |
Loss Function | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
FL () | 0.877 | 0.970 | 0.890 | 0.921 | 0.510 |
FL () | 0.885 | 0.973 | 0.897 | 0.927 | 0.537 |
FL () | 0.885 | 0.971 | 0.90 | 0.926 | 0.53 |
FL () | 0.889 | 0.974 | 0.900 | 0.930 | 0.55 |
FL () | 0.931 | 0.985 | 0.937 | 0.957 | 0.692 |
FL () | 0.909 | 0.975 | 0.923 | 0.941 | 0.598 |
FL () | 0.883 | 0.971 | 0.897 | 0.925 | 0.524 |
FL () | 0.861 | 0.973 | 0.870 | 0.914 | 0.495 |
FL () | 0.857 | 0.97 | 0.868 | 0.91 | 0.473 |
Loss Function | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
FL () | 0.857 | 0.967 | 0.871 | 0.909 | 0.46 |
FL () | 0.857 | 0.970 | 0.868 | 0.910 | 0.472 |
FL () | 0.859 | 0.966 | 0.874 | 0.909 | 0.46 |
FL () | 0.914 | 0.978 | 0.926 | 0.945 | 0.622 |
FL () | 0.910 | 0.977 | 0.922 | 0.942 | 0.61 |
FL () | 0.898 | 0.973 | 0.911 | 0.934 | 0.565 |
FL () | 0.867 | 0.973 | 0.876 | 0.917 | 0.505 |
FL () | 0.862 | 0.973 | 0.871 | 0.914 | 0.498 |
FL () | 0.890 | 0.970 | 0.905 | 0.928 | 0.534 |
Loss Function | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
FL () | 0.897 | 0.975 | 0.909 | 0.934 | 0.571 |
FL () | 0.911 | 0.977 | 0.923 | 0.943 | 0.614 |
FL () | 0.911 | 0.974 | 0.926 | 0.941 | 0.602 |
FL () | 0.945 | 0.987 | 0.952 | 0.966 | 0.743 |
FL () | 0.957 | 0.988 | 0.964 | 0.972 | 0.788 |
FL () | 0.927 | 0.987 | 0.932 | 0.956 | 0.687 |
FL () | 0.930 | 0.980 | 0.941 | 0.954 | 0.674 |
FL () | 0.892 | 0.981 | 0.897 | 0.934 | 0.583 |
FL () | 0.882 | 0.976 | 0.891 | 0.927 | 0.544 |
Loss Function | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
FL () | 0.873 | 0.971 | 0.885 | 0.919 | 0.503 |
FL () | 0.879 | 0.970 | 0.894 | 0.922 | 0.511 |
FL () | 0.857 | 0.941 | 0.897 | 0.897 | 0.336 |
FL () | 0.899 | 0.977 | 0.910 | 0.936 | 0.584 |
FL () | 0.913 | 0.983 | 0.919 | 0.947 | 0.638 |
FL () | 0.906 | 0.975 | 0.920 | 0.939 | 0.590 |
FL () | 0.888 | 0.976 | 0.897 | 0.930 | 0.556 |
FL () | 0.889 | 0.974 | 0.900 | 0.930 | 0.550 |
FL () | 0.923 | 0.972 | 0.942 | 0.947 | 0.626 |
Loss Function | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
FL () | 0.852 | 0.964 | 0.868 | 0.905 | 0.440 |
FL () | 0.851 | 0.966 | 0.865 | 0.905 | 0.449 |
FL () | 0.828 | 0.936 | 0.869 | 0.879 | 0.269 |
FL () | 0.900 | 0.974 | 0.914 | 0.936 | 0.573 |
FL () | 0.891 | 0.972 | 0.905 | 0.930 | 0.544 |
FL () | 0.882 | 0.970 | 0.897 | 0.924 | 0.520 |
FL () | 0.859 | 0.970 | 0.871 | 0.911 | 0.479 |
FL () | 0.853 | 0.968 | 0.865 | 0.907 | 0.458 |
FL () | 0.878 | 0.964 | 0.897 | 0.919 | 0.486 |
Loss Function | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
FL () | 0.891 | 0.974 | 0.903 | 0.931 | 0.554 |
FL () | 0.885 | 0.972 | 0.897 | 0.926 | 0.534 |
FL () | 0.885 | 0.970 | 0.900 | 0.926 | 0.527 |
FL () | 0.922 | 0.983 | 0.929 | 0.952 | 0.663 |
FL () | 0.934 | 0.986 | 0.940 | 0.959 | 0.706 |
FL () | 0.920 | 0.980 | 0.930 | 0.949 | 0.646 |
FL () | 0.932 | 0.983 | 0.94 | 0.957 | 0.689 |
FL () | 0.923 | 0.982 | 0.931 | 0.952 | 0.658 |
FL () | 0.915 | 0.975 | 0.929 | 0.944 | 0.615 |
Model | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
HSI-3D-CNN | 0.970 | 0.999 | 0.968 | 0.984 | 0.860 |
HSI-2D-CNN | 0.934 | 0.986 | 0.940 | 0.959 | 0.706 |
Model | Accuracy | Precision | Recall | F1-Score | MCC |
---|---|---|---|---|---|
HSI-3D-CNN (configuration-1) | 0.970 | 0.999 | 0.968 | 0.984 | 0.860 |
HSI-3D-CNN (configuration-2) | 0.965 | 0.997 | 0.963 | 0.981 | 0.836 |
HSI-3D-CNN (configuration-3) | 0.968 | 0.996 | 0.968 | 0.982 | 0.846 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinar, U.; Cetin Atalay, R.; Cetin, Y.Y. Human Hepatocellular Carcinoma Classification from H&E Stained Histopathology Images with 3D Convolutional Neural Networks and Focal Loss Function. J. Imaging 2023, 9, 25. https://doi.org/10.3390/jimaging9020025
Cinar U, Cetin Atalay R, Cetin YY. Human Hepatocellular Carcinoma Classification from H&E Stained Histopathology Images with 3D Convolutional Neural Networks and Focal Loss Function. Journal of Imaging. 2023; 9(2):25. https://doi.org/10.3390/jimaging9020025
Chicago/Turabian StyleCinar, Umut, Rengul Cetin Atalay, and Yasemin Yardimci Cetin. 2023. "Human Hepatocellular Carcinoma Classification from H&E Stained Histopathology Images with 3D Convolutional Neural Networks and Focal Loss Function" Journal of Imaging 9, no. 2: 25. https://doi.org/10.3390/jimaging9020025
APA StyleCinar, U., Cetin Atalay, R., & Cetin, Y. Y. (2023). Human Hepatocellular Carcinoma Classification from H&E Stained Histopathology Images with 3D Convolutional Neural Networks and Focal Loss Function. Journal of Imaging, 9(2), 25. https://doi.org/10.3390/jimaging9020025