Accuracy of Intra-Oral Radiography and Cone Beam Computed Tomography in the Diagnosis of Buccal Bone Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radiographs
2.2. Observers
2.3. Assessment of Bone Level on the Basis of Radiographs
2.3.1. Buccal Defect Progression
2.3.2. Presence or Absence of a Buccal Defect Based on CBCT
2.4. Statistical Analysis
2.5. Case Report: Clinical Analysis
3. Results
3.1. Buccal Defect Progression
3.2. Presence or Absence of a Buccal Bone Defect Based on CBCT
3.3. Case Report: Clinical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rushton, V.E.; Horner, K. The use of panoramic radiology in dental practice. J. Dent. 1996, 24, 185–201. [Google Scholar] [CrossRef]
- Listgarten, M.A. A perspective on periodontal diagnosis. J. Clin. Periodontol. 1986, 13, 175–181. [Google Scholar] [CrossRef]
- Mol, A. Imaging methods in periodontology. Periodontology 2004, 34, 34–38. [Google Scholar] [CrossRef]
- Christiaens, V.; De Bruyn, H.; Thevissen, E.; Koole, S.; Dierens, M.; Cosyn, J. Assessment of periodontal bone level revistied: A controlled study on the diagnostic accuracy of clinical evaluation methods and peri-apical radiography. Clin. Oral. Investig. 2018, 22, 425–431. [Google Scholar] [CrossRef]
- Åkesson, L.; Hakansson, J.; Rohlin, M. Comparison of panoramic and intraoral radiography and pocket probing for the measurement of the marginal bone level. J. Clin. Peridontol. 1992, 19, 326–332. [Google Scholar] [CrossRef]
- Molander, B. Panoramic radiography in dental diagnosis. Swed. Dent. J. 1996, 119, 1–26. [Google Scholar]
- de Faria Vasconcelos, K.; Evangelista, K.M.; Rodrigues, C.D.; Estrela, C.; de Sousa, T.O.; Silva, M.A. Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac. Radiol. 2012, 41, 64–69. [Google Scholar] [CrossRef]
- Lang, N.P.; Hill, R.W. Radiographs in periodontics. J. Clin. Periodontol. 1977, 4, 16–28. [Google Scholar] [CrossRef]
- Åkesson, L.; Rohlin, M.; Hakansson, J. Marginal bone in periodontal disease: An evaluation of image quality in panoramic and intraoral radiography. Dentomaxillofac. Radio 1989, 18, 105–112. [Google Scholar] [CrossRef]
- Molander, B.; Ahlqwist, M.; Grondahl, H.; Hollen-der, L. Agreement between panoramic and intraoral radiography in the assessment of marginal bone height. Dentomaxillofac. Radiol. 1991, 20, 155–160. [Google Scholar] [CrossRef]
- Hirschmann, P.N.; Horner, K.; Rushton, V.E. Selection criteria for periodontal radiography. Br. Dent. J. 1994, 176, 324–325. [Google Scholar] [CrossRef]
- Christiaens, V.; Jacobs, R.; Dierens, M.; Vervaeke, S.; De Bruyn, H.; Cosyn, J. Intra-oral radiography lacks accuracy for the assessment of peri-implant bone level affected by advanced peri-implantitis a controlled study. Eur. J. Oral. Implantol. 2017, 10, 435–441. [Google Scholar]
- Vandenberghe, B.; Jacobs, R.; Yang, J. Detection of periodontol bone loss using digital intraoral and cone beam computed tomography images: An in vitro assessment of bony and/or infrabony defects. Dentomaxillofac. Radiol. 2008, 37, 252–260. [Google Scholar] [CrossRef]
- Cetmili, H.; Tassoker, M.; Sener, S. Comparison of cone-beam computed tomography with bitewing radiography for detection of periodontal bone loss and assessment of effects of different voxel resolutions: An in vitro study. Oral Radiol. 2019, 35, 177–183. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Energy and Transport, European Guidelines on Radiation Protection in Dental Radiology: The Safe Use of Radiographs in Dental Practice; Publications Office Luxembourg: Luxembourg, 2015. [Google Scholar]
- Nascimento, M.D.C.C.; Boscolo, S.M.A.; Haiter-Neto, F.; Santos, E.C.D.; Lambrichts, I.; Pauwels, R.; Jacobs, R. Influence of basis images and skull position on evaluation of cortical bone thickness in cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 123, 707–713. [Google Scholar] [CrossRef]
- Misch, K.A.; Yi, E.S.; Sarment, D.P. Accuracy of cone beam computed tomography for periodontal defect measurements. J. Periodontol. 2006, 77, 1261–1266. [Google Scholar] [CrossRef]
- Ozdemir, F.; Tozlu, M.; Germec-Cakan, D. Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 190–196. [Google Scholar] [CrossRef]
- de Molon, R.S.; de Avila, E.D.; de Barros-Filho, L.A.; Ricci, W.A.; Tetradis, S.; Cirelli, J.A.; Borelli de Barros, L.A. Reconstruction of the alveolar buccal bone plate in compromised fresh socket after immediate implant placement followed by immediate provisionalization. J. Esthet. Restor. Dent. 2015, 27, 122–135. [Google Scholar] [CrossRef]
- Oenning, A.C.; Salmon, B.; Vasconcelos, K.F.; Pinheiro Nicolielo, L.F.; Lambrichts, I.; Sanderink, G.; Pauwels, R.; DIMITRA Group; Jacobs, R. DIMITRA paediatric skull phantoms: Development of age-specific paediatric models for dentomaxillofacial radiology research. Dentomaxillofac. Radiol. 2018, 47, 20170285. [Google Scholar] [CrossRef]
- Al Ohski, A.; Paulsson, L.; Rohlin, M.; Ebrahim, E.; Lindh, C. Measurability and reliability of assessments of root length and marginal bone level in cone beam CT and intraoral radiography: A study of adolescents. Dentomaxillofac. Radiol. 2019, 48, 20180368. [Google Scholar]
- Hans, M.G.; Palomo, J.M.; Valiathan, M. History of imaging in orthodontics from Broadbent to cone-beam computed tomography. Am. J. Orthod. Dentofacial. Orthop. 2015, 148, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Dief, S.; Veitz-Keenan, A.; Amintavakoli, N.; McGowan, R. A systematic review on incidental findings in cone beam computed tomography (CBCT) scans. Dentomaxillofac. Radiol. 2019 48, 20180396. [CrossRef]
- Angelopoulos, C.; Aghaloo, T. Imaging technology in implant diagnosis. Dent. Clin. N. Am. 2001, 55, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Kamburoglu, K.; Kilic, C.; Ozen, T.; Yuksel, S.P. Measurements of mandibular canal region abotained by cone beam computed tomography: A cadaveric study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 34–42. [Google Scholar] [CrossRef]
- Hassan, B.; van der Stelt, P.; Sanderink, G. Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: Influence of patient scanning position. Eur. J. Orthod. 2009, 31, 129–134. [Google Scholar] [CrossRef]
- Guerrero, M.E.; Jacobs, R.; Loubele, M.; Schutyer, F.; Suetens, P.; van Steenberghe, D. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin. Oral Investig. 2006, 10, 1–7. [Google Scholar] [CrossRef]
- Maki, K.; Inou, N.; Takanishi, A.; Miller, A.J. Computer-assisted simulations in orthodontic diagnosis and the application of a new cone beam X-ray computed tomography. Orthod. Craniofac. Res. 2003, 6, 95–101. [Google Scholar] [CrossRef]
- Christiaens, V.; De Bruyn, H.; De Vree, H.; Lamoral, S.; Jacobs, R.; Cosyn, J. A controlled study on the accuracy and precision of intraoral radiography in assessing interproximal bone defect morphology around teeth and implants. Eur. J. Oral Implantol. 2018, 11, 361–367. [Google Scholar]
- Tugnait, A.; Clerehugh, V.; Hirschmann, P.N. The usefulness of radiographs in diagnosis and management of periodontal diseases: A review. J. Dent. 2000, 28, 219–226. [Google Scholar] [CrossRef]
- Deas, D.E.; Moritz, A.J.; Mealey, B.L.; McDonnell, H.T.; Powell, C.A. Clinical reliability of the “furcation arrow” as a diagnostic marker. J. Periodontol. 2006, 77, 1436–1441. [Google Scholar] [CrossRef]
- Scarfe, W.E.; Farman, A.G.; Sukovic, P. Clinical application of cone beam computed tomography in dental practice. J. Can. Dent. Associ. 2006, 72, 75–80. [Google Scholar]
- Ruetters, M.; Gehrig, H.; Kronsteiner, D.; Doll, S.; Kim, T.S.; Lux, C.J.; Sen, S. Low-dose CBCT imaging of alveolar buccal bone adjacent to mandibular anterior teeth—A pilot study. Clin. Oral Investig. 2022, 26, 4173–4182. [Google Scholar] [CrossRef]
- Beganovic, A.; Ciraj-Bjelac, O.; Dyakov, I.; Gershan, V.; Kralik, I.; Milatovic, A.; Salat, D.; Stepanyan, K.; Vladimirov, A.; Vassileva, J. IAEA survey of dental cone beam computed tomography practice and related patient exposure in nine Central and Eastern European countries. Dentomaxillofac. Radiol. 2020, 49, 20190157. [Google Scholar] [CrossRef]
- Pauwels, R.; Beinsberger, J.; Stamatakis, H.; Tsiklakis, K.; Walker, A.; Bosmans, H.; Bogaerts, R.; Jacobs, R.; Horner, K.; SEDENTEXCT Project Consortium. Comparison of spatial and contrast resolution for cone-beam computed tomography scanners. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 127–135. [Google Scholar] [CrossRef]
- Pauwels, R.; Araki, K.; Siewerdsen, J.H.; Thongvigitmanee, S.S. Technical aspects of dental CBCT: State of the art. Dentomaxillofac. Radio 2015, 44, 20140224. [Google Scholar] [CrossRef]
- Pauwels, R. Cone-beam CT for dental and maxillofacial imaging: Dose matters. Radiat. Prot. Dosim. 2015, 165, 156–161. [Google Scholar] [CrossRef]
- Oenning, A.C.; Jacobs, R.; Pauwels, R.; Stratis, A.; Hedesiu, M.; Salmon, B.; DIMITRA Research Group. Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr. Radiol. 2018, 48, 308–316. [Google Scholar] [CrossRef]
Observer | IOR vs. Ground Truth | CBCT vs. Ground Truth |
---|---|---|
General dentist | −0.273 | 0.212 |
Oral surgeon | −0.152 | 0.818 |
Periodontist | 0.394 | 0.394 |
Endodontist | 0.515 | 0.515 |
Implant surgeon | −0.333 | 0.333 |
Radiologist | 0.212 | 0.394 |
Average | 0.061 | 0.444 |
Observer | IOR | CBCT | ||
---|---|---|---|---|
Avg. Error | % with Error ≤ 1 | Avg. Error | % with Error ≤ 1 | |
General dentist | 4.2 | 10% | 2.6 | 30% |
Oral surgeon | 3.8 * | 30% | 0.6 | 80% |
Periodontist | 2.0 * | 60% | 2.0 | 30% |
Endodontist | 1.6 | 60% | 1.6 | 40% |
Implant surgeon | 4.4 * | 0% | 2.2 | 30% |
Radiologist | 2.6 * | 30% | 2.0 | 40% |
Average | 3.1 | 32% | 1.8 | 42% |
Observer | AUC | Sensitivity | Specificity | Average Confidence (%) |
---|---|---|---|---|
General dentist | 0.848 | 0.82 | 0.77 | 68 |
Oral surgeon | 0.665 | 0.82 | 0.62 | 95 |
Periodontist | 0.966 | 0.94 | 0.92 | 73 |
Endodontist | 0.959 | 0.88 | 0.92 | 53 |
Implant surgeon | 0.986 | 0.94 | 0.85 | 85 |
Radiologist | 0.892 | 0.94 | 1.00 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christiaens, V.; Pauwels, R.; Mowafey, B.; Jacobs, R. Accuracy of Intra-Oral Radiography and Cone Beam Computed Tomography in the Diagnosis of Buccal Bone Loss. J. Imaging 2023, 9, 164. https://doi.org/10.3390/jimaging9080164
Christiaens V, Pauwels R, Mowafey B, Jacobs R. Accuracy of Intra-Oral Radiography and Cone Beam Computed Tomography in the Diagnosis of Buccal Bone Loss. Journal of Imaging. 2023; 9(8):164. https://doi.org/10.3390/jimaging9080164
Chicago/Turabian StyleChristiaens, Véronique, Ruben Pauwels, Bassant Mowafey, and Reinhilde Jacobs. 2023. "Accuracy of Intra-Oral Radiography and Cone Beam Computed Tomography in the Diagnosis of Buccal Bone Loss" Journal of Imaging 9, no. 8: 164. https://doi.org/10.3390/jimaging9080164
APA StyleChristiaens, V., Pauwels, R., Mowafey, B., & Jacobs, R. (2023). Accuracy of Intra-Oral Radiography and Cone Beam Computed Tomography in the Diagnosis of Buccal Bone Loss. Journal of Imaging, 9(8), 164. https://doi.org/10.3390/jimaging9080164