Data-Weighted Multivariate Generalized Gaussian Mixture Model: Application to Point Cloud Robust Registration
Abstract
:1. Introduction
2. Weighted Multivariate Generalized Gaussian Mixture Model
2.1. Data Weighting
2.2. MGGD with Fixed Weights
2.3. Weights Considered as Random Variables
2.4. Automatic Determination of the Number of Components
2.5. Complete Algorithm
Algorithm 1 Proposed WMGGMM algorithm with component-wise EM procedure. |
Input: ; ; |
; |
Output: Optimal mixture model parameters: |
Set: , |
repeat |
for To do |
E-Z step using (22): |
Compute the # of non-empty components: |
E-W step using (25)–(27): |
M step: |
if then |
Update using (9): |
repeat |
until |
Update using (11): |
repeat |
until |
Update using (13)–(15): |
repeat |
until |
Update using (8) |
end if |
end for |
Compute using (30) |
until |
Return the parameters of non-empty components as optimal mixture model parameters |
3. Experimental Results
3.1. Synthetic Data
3.2. Point Cloud Registration Using WMGGMM
Algorithm 2 Point cloud registration algorithm based on WMGGMM and stochastic optimization. |
|
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, H.; Guo, B.; Zou, K.; Li, Y.; Yuen, K.V.; Mihaylova, L.; Leung, H. A review of point set registration: From pairwise registration to groupwise registration. Sensors 2019, 19, 1191. [Google Scholar] [CrossRef] [PubMed]
- Hirose, O. A Bayesian Formulation of Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2269–2286. [Google Scholar] [CrossRef] [PubMed]
- Hirose, O. Geodesic-Based Bayesian Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 5816–5832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dai, Y.; Sun, J. Deep learning based point cloud registration: An overview. Virtual Real. Intell. Hardw. 2020, 2, 222–246. [Google Scholar] [CrossRef]
- Min, Z.; Wang, J.; Pan, J.; Meng, M.Q.H. Generalized 3-D Point Set Registration With Hybrid Mixture Models for Computer-Assisted Orthopedic Surgery: From Isotropic to Anisotropic Positional Error. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1679–1691. [Google Scholar] [CrossRef]
- De Silva, V.; Roche, J.; Kondoz, A. Fusion of LiDAR and camera sensor data for environment sensing in driverless vehicles. arXiv 2018, arXiv:1710.06230. [Google Scholar]
- Giering, M.; Venugopalan, V.; Reddy, K. Multi-modal sensor registration for vehicle perception via deep neural networks. In Proceedings of the 2015 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 15–17 September 2015; pp. 1–6. [Google Scholar]
- Mastin, A.; Kepner, J.; Fisher, J. Automatic registration of LIDAR and optical images of urban scenes. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 2639–2646. [Google Scholar]
- Rosas-Cervantes, V.; Lee, S.G. 3D Localization of a Mobile Robot by Using Monte Carlo Algorithm and 2D Features of 3D Point Cloud. Int. J. Control. Autom. Syst. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Lu, W.; Wan, G.; Zhou, Y.; Fu, X.; Yuan, P.; Song, S. Deepvcp: An end-to-end deep neural network for point cloud registration. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 12–21. [Google Scholar]
- Rundo, L.; Tangherloni, A.; Militello, C.; Gilardi, M.C.; Mauri, G. Multimodal medical image registration using particle swarm optimization: A review. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar]
- Chen, Y.; He, F.; Li, H.; Zhang, D.; Wu, Y. A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration. Appl. Soft Comput. 2020, 93, 106335. [Google Scholar] [CrossRef]
- Collignon, A.; Vandermeulen, D.; Suetens, P.; Marchal, G. 3D multi-modality medical image registration using feature space clustering. In Proceedings of the International Conference on Computer Vision, Virtual Reality, and Robotics in Medicine, Nice, France, 3–6 April 1995; Springer: Berlin/Heidelberg, Germany, 1995; pp. 195–204. [Google Scholar]
- Sinko, M.; Kamencay, P.; Hudec, R.; Benco, M. 3D registration of the point cloud data using ICP algorithm in medical image analysis. In Proceedings of the 2018 IEEE ELEKTRO, Mikulov, Czech Republic, 21–23 May 2018; pp. 1–6. [Google Scholar]
- El-Hakim, S.F.; Beraldin, J.A.; Picard, M.; Godin, G. Detailed 3D reconstruction of large-scale heritage sites with integrated techniques. IEEE Comput. Graph. Appl. 2004, 24, 21–29. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, C.; Wang, Y.; Yang, B. A hybrid approach based on MEP and CSP for contour registration. Appl. Soft Comput. 2011, 11, 5391–5399. [Google Scholar] [CrossRef]
- Bermejo, E.; Cordón, O.; Damas, S.; Santamaría, J. Quality time-of-flight range imaging for feature-based registration using bacterial foraging. Appl. Soft Comput. 2013, 13, 3178–3189. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, J.; Liu, C.; Li, Y. Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration. Inf. Sci. 2017, 417, 128–142. [Google Scholar] [CrossRef]
- Keller, M.; Lefloch, D.; Lambers, M.; Izadi, S.; Weyrich, T.; Kolb, A. Real-time 3D reconstruction in dynamic scenes using point-based fusion. In Proceedings of the 2013 IEEE International Conference on 3D Vision-3DV, Seattle, WA, USA, 29 June–1 July 2013; pp. 1–8. [Google Scholar]
- Zhang, Z. Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 1994, 13, 119–152. [Google Scholar] [CrossRef]
- Conte, D.; Foggia, P.; Sansone, C.; Vento, M. Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 2004, 18, 265–298. [Google Scholar] [CrossRef]
- Gao, W.; Tedrake, R. Filterreg: Robust and efficient probabilistic point-set registration using gaussian filter and twist parameterization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11095–11104. [Google Scholar]
- Jian, B.; Vemuri, B.C. Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Sun, K. Asymmetrical Gauss mixture models for point sets matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1598–1605. [Google Scholar]
- Ravikumar, N.; Gooya, A.; Çimen, S.; Frangi, A.F.; Taylor, Z.A. Group-wise similarity registration of point sets using Student’s t-mixture model for statistical shape models. Med Image Anal. 2018, 44, 156–176. [Google Scholar] [CrossRef] [PubMed]
- Bouguila, N.; Fan, W. Mixture Models and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Sefidpour, A.; Bouguila, N. Spatial color image segmentation based on finite non-Gaussian mixture models. Expert Syst. Appl. 2012, 39, 8993–9001. [Google Scholar] [CrossRef]
- Hu, C.; Fan, W.; Du, J.; Bouguila, N. A novel statistical approach for clustering positive data based on finite inverted Beta–Liouville mixture models. Neurocomputing 2019, 333, 110–123. [Google Scholar] [CrossRef]
- Bouguila, N.; Elguebaly, T. A fully Bayesian model based on reversible jump MCMC and finite Beta mixtures for clustering. Expert Syst. Appl. 2012, 39, 5946–5959. [Google Scholar] [CrossRef]
- Fan, J.; Yang, J.; Ai, D.; Xia, L.; Zhao, Y.; Gao, X.; Wang, Y. Convex hull indexed Gaussian mixture model (CH-GMM) for 3D point set registration. Pattern Recognit. 2016, 59, 126–141. [Google Scholar] [CrossRef]
- Pascal, F.; Bombrun, L.; Tourneret, J.Y.; Berthoumieu, Y. Parameter estimation for multivariate generalized Gaussian distributions. IEEE Trans. Signal Process. 2013, 61, 5960–5971. [Google Scholar] [CrossRef]
- Elguebaly, T.; Bouguila, N. Model-based approach for high-dimensional non-Gaussian visual data clustering and feature weighting. Digit. Signal Process. 2015, 40, 63–79. [Google Scholar] [CrossRef]
- Franchini, S.; Charogiannis, A.; Markides, C.N.; Blunt, M.J.; Krevor, S. Calibration of astigmatic particle tracking velocimetry based on generalized Gaussian feature extraction. Adv. Water Resour. 2019, 124, 1–8. [Google Scholar] [CrossRef]
- Kubo, Y.; Takamune, N.; Kitamura, D.; Saruwatari, H. Blind Speech Extraction Based on Rank-Constrained Spatial Covariance Matrix Estimation With Multivariate Generalized Gaussian Distribution. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1948–1963. [Google Scholar] [CrossRef]
- Hristova, H.; Le Meur, O.; Cozot, R.; Bouatouch, K. Transformation of the multivariate generalized Gaussian distribution for image editing. IEEE Trans. Vis. Comput. Graph. 2017, 24, 2813–2826. [Google Scholar] [CrossRef]
- Verdoolaege, G.; Scheunders, P. Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination. Int. J. Comput. Vis. 2011, 95, 265. [Google Scholar] [CrossRef]
- Rami, H.; Belmerhnia, L.; El Maliani, A.D.; El Hassouni, M. Texture retrieval using mixtures of generalized Gaussian distribution and Cauchy–Schwarz divergence in wavelet domain. Signal Process. Image Commun. 2016, 42, 45–58. [Google Scholar] [CrossRef]
- Verdoolaege, G.; Rosseel, Y.; Lambrechts, M.; Scheunders, P. Wavelet-based colour texture retrieval using the Kullback–Leibler divergence between bivariate generalized Gaussian models. In Proceedings of the 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 265–268. [Google Scholar]
- Channoufi, I.; Bourouis, S.; Bouguila, N.; Hamrouni, K. Image and video denoising by combining unsupervised bounded generalized gaussian mixture modeling and spatial information. Multimed. Tools Appl. 2018, 77, 25591–25606. [Google Scholar] [CrossRef]
- Channoufi, I.; Bourouis, S.; Bouguila, N.; Hamrouni, K. Color image segmentation with bounded generalized gaussian mixture model and feature selection. In Proceedings of the 4th IEEE International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 21–24 March 2018; pp. 1–6. [Google Scholar]
- Allili, M.S.; Bouguila, N.; Ziou, D. Finite generalized Gaussian mixture modeling and applications to image and video foreground segmentation. In Proceedings of the 4th IEEE Canadian Conference on Computer and Robot Vision (CRV’07), Montreal, QC, Canada, 28–30 May 2007; pp. 183–190. [Google Scholar]
- Najar, F.; Bourouis, S.; Bouguila, N.; Belghith, S. Unsupervised learning of finite full covariance multivariate generalized Gaussian mixture models for human activity recognition. Multimed. Tools Appl. 2019, 78, 18669–18691. [Google Scholar] [CrossRef]
- Najar, F.; Bourouis, S.; Bouguila, N.; Belghith, S. A fixed-point estimation algorithm for learning the multivariate GGMM: Application to human action recognition. In Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, QC, Canada, 13–16 May 2018; pp. 1–4. [Google Scholar]
- Gebru, I.D.; Alameda-Pineda, X.; Forbes, F.; Horaud, R. EM algorithms for weighted-data clustering with application to audio-visual scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2402–2415. [Google Scholar] [CrossRef]
- Agarwal, P.; Jleli, M.; Samet, B. Banach Contraction Principle and Applications. In Fixed Point Theory in Metric Spaces; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–23. [Google Scholar]
- Figueiredo, M.A.T.; Jain, A.K. Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 381–396. [Google Scholar] [CrossRef]
- Hershey, J.R.; Olsen, P.A. Approximating the Kullback Leibler divergence between Gaussian mixture models. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, Honolulu, HI, USA, 15–20 April 2007; Volume 4, pp. IV−317–IV−320. [Google Scholar]
- Durrieu, J.L.; Thiran, J.P.; Kelly, F. Lower and upper bounds for approximation of the Kullback–Leibler divergence between Gaussian mixture models. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 4833–4836. [Google Scholar]
- Cui, S.; Datcu, M. Comparison of Kullback–Leibler divergence approximation methods between Gaussian mixture models for satellite image retrieval. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3719–3722. [Google Scholar]
Default Mixture Model Parameters | ||||
---|---|---|---|---|
0.25 (N = 300) | 0.85 | 0.35 | ||
0.25 (N = 300) | 0.85 | 0.00 | ||
0.25 (N = 300) | 0.85 | −0.58 | ||
0.25 (N = 300) | 0.85 | −0.33 | ||
Estimated mixture model parameters | ||||
0.2444 | 0.72 | 0.28 | ||
0.2586 | 0.70 | −0.06 | ||
0.2482 | 0.75 | −0.58 | ||
0.2486 | 0.77 | −0.27 |
Default Mixture Model Parameters | ||||
---|---|---|---|---|
0.25 (N = 300) | 0.60 | −0.58 | ||
0.25 (N = 300) | 0.85 | 0.00 | ||
0.50 (N = 600) | 0.85 | 0.35 | ||
Estimated mixture model parameters | ||||
0.2596 | 0.76 | −0.48 | ||
0.2817 | 0.67 | −0.24 | ||
0.4587 | 0.70 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, B.; Najar, F.; Bouguila, N. Data-Weighted Multivariate Generalized Gaussian Mixture Model: Application to Point Cloud Robust Registration. J. Imaging 2023, 9, 179. https://doi.org/10.3390/jimaging9090179
Ge B, Najar F, Bouguila N. Data-Weighted Multivariate Generalized Gaussian Mixture Model: Application to Point Cloud Robust Registration. Journal of Imaging. 2023; 9(9):179. https://doi.org/10.3390/jimaging9090179
Chicago/Turabian StyleGe, Bingwei, Fatma Najar, and Nizar Bouguila. 2023. "Data-Weighted Multivariate Generalized Gaussian Mixture Model: Application to Point Cloud Robust Registration" Journal of Imaging 9, no. 9: 179. https://doi.org/10.3390/jimaging9090179
APA StyleGe, B., Najar, F., & Bouguila, N. (2023). Data-Weighted Multivariate Generalized Gaussian Mixture Model: Application to Point Cloud Robust Registration. Journal of Imaging, 9(9), 179. https://doi.org/10.3390/jimaging9090179