Finite Element Modeling for Stability Assessment of Sedimentary Rock Slopes
Abstract
:1. Introduction
2. Geographical and Geological Setting
2.1. Geographical Setting
2.2. Geology Setting
3. Method
3.1. Point Load Index Test
3.2. Shear Strength Test
3.3. Finite Element Method
- τ = the shear stress of the material (kPa);
- τf = the shear stress of the sliding surface (kPa);
- C = the cohesion of the material (kPa);
- Cf = the cohesion of the sliding surface (kPa);
- σn = the normal stress (kPa);
- φ = the internal friction angle of the material (degrees);
- φf = the internal friction angle of the sliding surface (degrees).
4. Results and Discussion
4.1. Point Load Index Testing
4.2. Rock Shear Strength Testing
4.3. Physical Properties
4.4. Critical SRF and Maximum Displacement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseini, S.; Astaraki, F.; Imam, S.M.R.; Chalabii, J.; Movahedi Rad, M. Investigation of Shear Strength Reduction Method in Slope Stability of Reinforced Slopes by Anchor and Nail. Buildings 2024, 14, 432. [Google Scholar] [CrossRef]
- Rotaru, A.; Bejan, F.; Almohamad, D. Sustainable Slope Stability Analysis: A Critical Study on Methods. Sustainability 2022, 14, 8847. [Google Scholar] [CrossRef]
- Jia, X.; Jiang, X.; Huang, J.; Yu, S.; Liu, B. Slope Stability Analysis Based on the Explicit Smoothed Particle Finite Element Method. Sustainability 2024, 16, 702. [Google Scholar] [CrossRef]
- Chmielewski, R.; Bąk, A.; Muzolf, P.; Sobczyk, K. Influence of Calculation Parameters on the Slope Stability of the Historical Rasos Cemetery in Vilnius (Lithuania). Sustainability 2024, 16, 2891. [Google Scholar] [CrossRef]
- Hu, C.; Zeng, Y.; Yao, H. Stability analysis of slopes with cracks using the finite element limit analysis method. Front. Earth Sci. 2024, 12, 1364347. [Google Scholar] [CrossRef]
- Fawaz, A. Slope Stability Analysis Using Numerical Modelling. AJCE 2014, 2, 60. [Google Scholar] [CrossRef]
- Haundi, T.; Okonta, F. A Systematic Review of Physical Modelling Techniques, Developments and Applications in Slope Stability Analyses. Indian Geotech. J. 2024. Online First. [Google Scholar] [CrossRef]
- Yang, X.; Yang, G.; Yu, T. Comparison of Strength Reduction Method for Slope Stability Analysis Based on ABAQUS FEM and FLAC3D FDM. AMM 2012, 170–173, 918–922. [Google Scholar] [CrossRef]
- Salunkhe, D.P.; Chvan, G.; Bartakke, R.N.; Kothavale, P.R. An Overview on Methods for Slope Stability Analysis. Int. J. Eng. Res. Technol. 2017, V6, IJERTV6IS030496. [Google Scholar] [CrossRef]
- Wu, P.; Wu, H.; Chen, Y. Simulation Accuracy Analysis of Slope Stability Based on Finite Element Shear Strength Reduction (SSR) Method. Int. J. Min. Sci. 2017, 3, 52–59. [Google Scholar] [CrossRef]
- Deliveris, A.V.; Benardos, A. Evaluating performance of lignite pillars with 2D approximation techniques and 3D numerical analyses. Int. J. Min. Sci. Technol. 2017, 27, 929–936. [Google Scholar] [CrossRef]
- Acharya, M.; Timalsina, A.; Paudel, U. Shear Strength Reduction Analysis of Slope by Numerical Modelling Based on Finite Element Method. Am. J. Sci. Eng. Technol. 2023, 8, 125–132. [Google Scholar] [CrossRef]
- Vázquez-Silva, D.; Prendes-Gero, M.-B.; Álvarez-Fernández, M.-I.; González-Nicieza, C.; Laín-Huerta, C.; López-Gayarre, F. Optimal Support Design for Galleries Located in Poor Quality Rock Mass and under the Influence of Mining Works. Arch. Min. Sci. 2023. [CrossRef]
- Vlachopoulos, N.; Diederichs, M.S. Appropriate Uses and Practical Limitations of 2D Numerical Analysis of Tunnels and Tunnel Support Response. Geotech. Geol. Eng. 2014, 32, 469–488. [Google Scholar] [CrossRef]
- ASTM D5731-16; Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications. ASTM International: West Conshohocken, PA, USA, 2016. Available online: https://www.astm.org/d5731-16.html (accessed on 1 April 2023).
- Hatheway, A.W. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring; 1974–2006. Environ. Eng. Geosci. 2009, 15, 47–48. [Google Scholar] [CrossRef]
- Khajevand, R. Determining Dry and Saturated Strength of Rocks by Using the Schmidt Hammer. Iran. J. Sci. 2023, 47, 779–790. [Google Scholar] [CrossRef]
- D5607–08; Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force. ASTM International: West Conshohocken, PA, USA, 2008. Available online: https://www.astm.org/d5607-08.html (accessed on 1 April 2023).
- Muralha, J.; Grasselli, G.; Tatone, B.; Blümel, M.; Chryssanthakis, P.; Yujing, J. ISRM Suggested Method for Laboratory Determination of the Shear Strength of Rock Joints: Revised Version. Rock Mech. Rock Eng. 2014, 47, 291–302. [Google Scholar] [CrossRef]
- Bista, D.; Sas, G.; Johansson, F.; Lia, L. Influence of location of large-scale asperity on shear strength of concrete-rock interface under eccentric load. J. Rock Mech. Geotech. Eng. 2020, 12, 449–460. [Google Scholar] [CrossRef]
- Nugroho, W.K.; Indrawan, I.G.B. Numerical Analysis of Slope Stability Due to Excavation of Diversion Tunnel at Pamukkulu Dam Site, Indonesia. J. Appl. Geol. 2021, 6, 102. [Google Scholar] [CrossRef]
Code | D (mm) | W (mm) | De2 (mm) | log De2 | Is (MPa) |
---|---|---|---|---|---|
S-1 | 38.16 | 41.80 | 2031.96 | 3.31 | 2.84 |
S-2 | 25.27 | 29.81 | 959.62 | 2.98 | 2.60 |
S-3 | 44.36 | 49.29 | 2785.36 | 3.44 | 2.93 |
S-4 | 34.10 | 38.14 | 1656.78 | 3.22 | 2.78 |
S-5 | 42.24 | 46.74 | 2515.03 | 3.40 | 2.95 |
S-6 | 45.37 | 50.30 | 2907.15 | 3.46 | 3.02 |
SD | 7.61 | 7.81 | 746.20 | 0.18 | 0.15 |
Average | 38.25 | 42.68 | 2142.65 | 3.30 | 2.85 |
Min | 25.27 | 29.81 | 959.62 | 2.98 | 2.60 |
Max | 45.37 | 50.30 | 2907.15 | 3.46 | 3.02 |
Code | D (mm) | W (mm) | De2 (mm) | log De2 | Is (MPa) |
---|---|---|---|---|---|
Sil-1 | 32.23 | 36.11 | 1482.58 | 3.17 | 4.61 |
Sil-2 | 36.18 | 39.57 | 1823.75 | 3.26 | 7.73 |
Sil-3 | 33.04 | 36.36 | 1530.36 | 3.18 | 4.60 |
Sil-4 | 35.17 | 38.31 | 1716.39 | 3.23 | 6.52 |
Sil-5 | 34.53 | 38.05 | 1673.72 | 3.22 | 5.57 |
Sil-6 | 37.19 | 40.58 | 1922.51 | 3.28 | 8.83 |
SD | 1.87 | 1.75 | 168.17 | 0.04 | 1.72 |
Average | 34.72 | 38.16 | 1691.55 | 3.23 | 6.31 |
Min | 32.23 | 36.11 | 1482.58 | 3.17 | 4.60 |
Max | 37.19 | 40.58 | 1922.51 | 3.28 | 8.83 |
Code | D (mm) | W (mm) | De2 (mm) | log De2 | Is (MPa) |
---|---|---|---|---|---|
San-1 | 35.14 | 42.40 | 1898.01 | 3.28 | 3.51 |
San-2 | 36.28 | 43.52 | 2011.34 | 3.30 | 3.63 |
San-3 | 38.33 | 47.28 | 2308.59 | 3.36 | 3.82 |
San-4 | 34.41 | 39.37 | 1725.76 | 3.24 | 3.32 |
San-5 | 37.53 | 46.04 | 2201.12 | 3.34 | 3.77 |
San-6 | 39.34 | 48.29 | 2420.04 | 3.38 | 3.92 |
SD | 1.90 | 3.35 | 262.55 | 0.06 | 0.22 |
Average | 36.84 | 44.48 | 2094.14 | 3.32 | 3.66 |
Min | 34.41 | 39.37 | 1725.76 | 3.24 | 3.32 |
Max | 39.34 | 48.29 | 2420.04 | 3.38 | 3.92 |
Code | σn (kPa) | τ (kPa) | φ (Degree) | c (kPa) |
---|---|---|---|---|
Co-1 | 0.20 | 10.92 | 53.84 | 8.92 |
Co-2 | 0.40 | 14.84 | ||
Co-3 | 0.61 | 12.88 | ||
Sil-1 | 0.20 | 12.88 | 48.52 | 8.04 |
Sil-2 | 0.40 | 18.76 | ||
Sil-3 | 0.60 | 24.64 | ||
San-1 | 0.20 | 14.84 | 49.25 | 8.59 |
San-2 | 0.40 | 22.68 | ||
San-3 | 0.60 | 24.65 |
Rock Type/# | Coal | Siltstone | Sandstone |
---|---|---|---|
ρ (kg/m3) | ρ (kg/m3) | ρ (kg/m3) | |
1 | 1134 | 2207 | 2388 |
2 | 1135 | 2208 | 2389 |
3 | 1134 | 2207 | 2387 |
4 | 1133 | 2209 | 2388 |
5 | 1134 | 2208 | 2386 |
6 | 1133 | 2207 | 2389 |
SD | 0.75 | 0.82 | 1.17 |
Average | 1133.83 | 2207.67 | 2387.83 |
Min | 1133 | 2207 | 2386 |
Max | 1135 | 2209 | 2389 |
Point | Sandstone | Coal | Siltstone | ||||||
---|---|---|---|---|---|---|---|---|---|
σ1 (kPa) | σ3 (kPa) | FoS | σ1 (kPa) | σ3 (kPa) | FoS | σ1 (kPa) | σ3 (kPa) | FoS | |
A | 112.50 | 20.00 | 1.53 | 487.50 | 280.00 | 3.74 | 712.50 | 420.00 | 3.90 |
B | 112.50 | 40.00 | 2.23 | 450.00 | 240.00 | 3.33 | 675.00 | 400.00 | 3.94 |
C | 150.00 | 40.00 | 1.81 | 450.00 | 200.00 | 2.64 | 675.00 | 380.00 | 3.61 |
D | 112.50 | 40.00 | 2.23 | 450.00 | 180.00 | 2.37 | 675.00 | 360.00 | 3.31 |
E | 112.50 | 20.00 | 1.53 | 450.00 | 180.00 | 2.37 | 637.50 | 360.00 | 3.63 |
F | 75.00 | 20.00 | 1.89 | 412.50 | 160.00 | 2.30 | 600.00 | 320.00 | 3.32 |
G | 37.50 | 0.00 | 1.24 | 375.00 | 120.00 | 1.98 | 562.50 | 300.00 | 3.32 |
H | 75.00 | 20.00 | 1.89 | 300.00 | 100.00 | 2.05 | 487.50 | 240.00 | 2.98 |
I | 75.00 | 20.00 | 1.89 | 262.50 | 80.00 | 1.93 | 375.00 | 200.00 | 3.34 |
J | 37.50 | 0.00 | 1.24 | 112.50 | 40.00 | 2.23 | 262.50 | 140.00 | 3.36 |
SD | 36.23 | 14.76 | 0.36 | 117.26 | 73.91 | 0.60 | 148.38 | 91.99 | 0.30 |
Average | 90.00 | 22.00 | 1.75 | 375.00 | 158.00 | 2.49 | 566.25 | 312.00 | 3.47 |
Min | 37.50 | 0.00 | 1.24 | 112.50 | 40.00 | 1.93 | 262.50 | 140.00 | 2.98 |
Max | 150.00 | 40.00 | 2.23 | 487.50 | 280.00 | 3.74 | 712.50 | 420.00 | 3.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nata, R.A.; Ren, G.; Ge, Y.; Tanjung, A.A.; Muzer, F.; Syahmer, V. Finite Element Modeling for Stability Assessment of Sedimentary Rock Slopes. Safety 2024, 10, 70. https://doi.org/10.3390/safety10030070
Nata RA, Ren G, Ge Y, Tanjung AA, Muzer F, Syahmer V. Finite Element Modeling for Stability Assessment of Sedimentary Rock Slopes. Safety. 2024; 10(3):70. https://doi.org/10.3390/safety10030070
Chicago/Turabian StyleNata, Refky Adi, Gaofeng Ren, Yongxiang Ge, Ardhymanto Am Tanjung, Fadhilah Muzer, and Verra Syahmer. 2024. "Finite Element Modeling for Stability Assessment of Sedimentary Rock Slopes" Safety 10, no. 3: 70. https://doi.org/10.3390/safety10030070
APA StyleNata, R. A., Ren, G., Ge, Y., Tanjung, A. A., Muzer, F., & Syahmer, V. (2024). Finite Element Modeling for Stability Assessment of Sedimentary Rock Slopes. Safety, 10(3), 70. https://doi.org/10.3390/safety10030070