Prognostic Metamodel Development for Waste-Derived Biogas-Powered Dual-Fuel Engines Using Modern Machine Learning with K-Cross Fold Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fuel
2.2. Test Set-Up
2.3. XGBoost
2.4. Experimental Procedure
2.5. Model Evaluation
3. Results and Discussions
3.1. Data Analysis for Correlation Values
3.2. BTE Model
3.3. Pmax Model
3.4. Unburnt Hydrocarbon Model
3.5. NOx Model
3.6. CO Model
4. Conclusions
- The results show the models’ durability and correctness, with R2 values that range from 0.9628 to 0.9892 and Pearson’s coefficients ranging from 0.9812 to 0.9945.
- The models also had low mean absolute error values that ranged from 0.4412 to 5.89, as well as mean squared error values ranging from 0.2845 to 101.7.
- The comparison of measured and predicted values reveals a good prognostic model as most of the data points are on the best fit line.
- The higher compression ratio (18.5) helped in improving the problem of low brake thermal efficiency.
- The lower combustion temperature owing to low energy density helped in the reduction of NOx emission.
- These results demonstrate the accuracy with which test prognostic models capture the intricate links between control settings and engine performance metrics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thirunavukkarasu, M.; Sawle, Y.; Lala, H. A Comprehensive Review on Optimization of Hybrid Renewable Energy Systems Using Various Optimization Techniques. Renew. Sustain. Energy Rev. 2023, 176, 113192. [Google Scholar] [CrossRef]
- Thanigaivel, S.; Vickram, S.; Dey, N.; Gulothungan, G.; Subbaiya, R.; Govarthanan, M.; Karmegam, N.; Kim, W. The Urge of Algal Biomass-Based Fuels for Environmental Sustainability against a Steady Tide of Biofuel Conflict Analysis: Is Third-Generation Algal Biorefinery a Boon? Fuel 2022, 317, 123494. [Google Scholar] [CrossRef]
- Woertz, I.C.; Benemann, J.R.; Du, N.; Unnasch, S.; Mendola, D.; Mitchell, B.G.; Lundquist, T.J. Life Cycle GHG Emissions from Microalgal Biodiesel—A CA-GREET Model. Environ. Sci. Technol. 2014, 48, 6060–6068. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, C.; Lu, Y. The Impact of Urbanization on GHG Emissions in China: The Role of Population Density. J. Clean. Prod. 2017, 157, 299–309. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Hou, X.; Lv, J.; Lan, G.; Yang, G.; Hu, J. The Environmental Potential of Hydrogen Addition as Complementation for Diesel and Biodiesel: A Comprehensive Review and Perspectives. Fuel 2023, 342, 127794. [Google Scholar] [CrossRef]
- Das, S.; Kashyap, D.; Kalita, P.; Kulkarni, V.; Itaya, Y. Clean Gaseous Fuel Application in Diesel Engine: A Sustainable Option for Rural Electrification in India. Renew. Sustain. Energy Rev. 2020, 117, 109485. [Google Scholar] [CrossRef]
- Kim, M.K.; Park, D.; Kim, M.; Heo, J.; Park, S.; Chong, H. Article the Characteristics and Distribution of Chemical Components in Particulate Matter Emissions from Diesel Locomotives. Atmosphere 2021, 12, 70. [Google Scholar] [CrossRef]
- Verma, P.; Stevanovic, S.; Zare, A.; Dwivedi, G.; Van, T.C.; Davidson, M.; Rainey, T.; Brown, R.J.; Ristovski, Z.D. An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines. Energies 2019, 12, 1987. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Kumar, R.; Sharma, S.; Kumar, S. Effect of Engine Parameters on the Performance of Dual-Fuel CI Engines with Producer Gas—A Review. Energy Fuels 2021, 35, 16377–16402. [Google Scholar] [CrossRef]
- Fiore, M.; Magi, V.; Viggiano, A. Internal Combustion Engines Powered by Syngas: A Review. Appl. Energy 2020, 276, 115415. [Google Scholar] [CrossRef]
- Said, Z.; Sharma, P.; Thi Bich Nhuong, Q.; Bora, B.J.; Lichtfouse, E.; Khalid, H.M.; Luque, R.; Nguyen, X.P.; Hoang, A.T. Intelligent Approaches for Sustainable Management and Valorisation of Food Waste. Bioresour. Technol. 2023, 377, 128952. [Google Scholar] [CrossRef]
- Patra, B.R.; Nanda, S.; Dalai, A.K.; Meda, V. Slow Pyrolysis of Agro-Food Wastes and Physicochemical Characterization of Biofuel Products. Chemosphere 2021, 285, 131431. [Google Scholar] [CrossRef]
- Kumar, S.; Dinesha, P. Optimization of Engine Parameters in a Bio Diesel Engine Run with Honge Methyl Ester Using Response Surface Methodology. Measurement 2018, 125, 224–231. [Google Scholar] [CrossRef]
- Toledo-Cervantes, A.; Serejo, M.L.; Blanco, S.; Pérez, R.; Lebrero, R.; Muñoz, R. Photosynthetic Biogas Upgrading to Bio-Methane: Boosting Nutrient Recovery via Biomass Productivity Control. Algal Res. 2016, 17, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Bose, A.; O’Shea, R.; Lin, R.; Long, A.; Rajendran, K.; Wall, D.; De, S.; Murphy, J.D. Evaluation of a Biomethane, Food and Biofertiliser Polygeneration System in a Circular Economy System. Renew. Sustain. Energy Rev. 2022, 170, 112960. [Google Scholar] [CrossRef]
- Khan, M.U.; Lee, J.T.E.; Bashir, M.A.; Dissanayake, P.D.; Ok, Y.S.; Tong, Y.W.; Shariati, M.A.; Wu, S.; Ahring, B.K. Current Status of Biogas Upgrading for Direct Biomethane Use: A Review. Renew. Sustain. Energy Rev. 2021, 149, 111343. [Google Scholar] [CrossRef]
- Ardolino, F.; Cardamone, G.F.; Parrillo, F.; Arena, U. Biogas-to-Biomethane Upgrading: A Comparative Review and Assessment in a Life Cycle Perspective. Renew. Sustain. Energy Rev. 2021, 139, 110588. [Google Scholar] [CrossRef]
- Prabhu, A.V.; Avinash, A.; Brindhadevi, K.; Pugazhendhi, A. Performance and Emission Evaluation of Dual Fuel CI Engine Using Preheated Biogas-Air Mixture. Sci. Total Environ. 2021, 754, 142389. [Google Scholar] [CrossRef]
- Khayum, N.; Anbarasu, S.; Murugan, S. Combined Effect of Fuel Injecting Timing and Nozzle Opening Pressure of a Biogas-Biodiesel Fuelled Diesel Engine. Fuel 2020, 262, 116505. [Google Scholar] [CrossRef]
- Verma, S.; Das, L.M.; Kaushik, S.C.; Tyagi, S.K. An Experimental Investigation of Exergetic Performance and Emission Characteristics of Hydrogen Supplemented Biogas-Diesel Dual Fuel Engine. Int. J. Hydrog. Energy 2018, 2018, 2452–2468. [Google Scholar] [CrossRef]
- Das, S.; Kashyap, D.; Bora, B.J.; Kalita, P.; Kulkarni, V. Thermo-Economic Optimization of a Biogas-Diesel Dual Fuel Engine as Remote Power Generating Unit Using Response Surface Methodology. Therm. Sci. Eng. Prog. 2021, 24, 100935. [Google Scholar] [CrossRef]
- Benaissa, S.; Adouane, B.; Ali, S.M.; Rashwan, S.S.; Aouachria, Z. Investigation on Combustion Characteristics and Emissions of Biogas/Hydrogen Blends in Gas Turbine Combustors. Therm. Sci. Eng. Prog. 2022, 27, 101178. [Google Scholar] [CrossRef]
- Salam, S.; Choudhary, T.; Pugazhendhi, A.; Verma, T.N.; Sharma, A. A Review on Recent Progress in Computational and Empirical Studies of Compression Ignition Internal Combustion Engine. Fuel 2020, 279, 118469. [Google Scholar] [CrossRef]
- Sharma, P.; Said, Z.; Kumar, A.; Nižetić, S.; Pandey, A.; Hoang, A.T.; Huang, Z.; Afzal, A.; Li, C.; Le, A.T.; et al. Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy Fuels 2022, 36, 6626–6658. [Google Scholar] [CrossRef]
- Karunamurthy, K.; Janvekar, A.A.; Palaniappan, P.L.; Adhitya, V.; Lokeswar, T.T.K.; Harish, J. Prediction of IC Engine Performance and Emission Parameters Using Machine Learning: A Review. J. Therm. Anal. Calorim. 2023, 148, 3155–3177. [Google Scholar] [CrossRef]
- Aliramezani, M.; Koch, C.R.; Shahbakhti, M. Modeling, Diagnostics, Optimization, and Control of Internal Combustion Engines via Modern Machine Learning Techniques: A Review and Future Directions. Prog. Energy Combust. Sci. 2022, 88, 100967. [Google Scholar] [CrossRef]
- Sahoo, S.; Kumar, V.N.S.P.; Srivastava, D.K. Quantitative Analysis of Engine Parameters of a Variable Compression Ratio CNG Engine Using Machine Learning. Fuel 2022, 311, 122587. [Google Scholar] [CrossRef]
- Wang, H.; Ji, C.; Su, T.; Shi, C.; Ge, Y.; Yang, J.; Wang, S. Comparison and Implementation of Machine Learning Models for Predicting the Combustion Phases of Hydrogen-Enriched Wankel Rotary Engines. Fuel 2022, 310, 122371. [Google Scholar] [CrossRef]
- Bora, B.J.; Dai Tran, T.; Prasad Shadangi, K.; Sharma, P.; Said, Z.; Kalita, P.; Buradi, A.; Nhanh Nguyen, V.; Niyas, H.; Tuan Pham, M.; et al. Improving Combustion and Emission Characteristics of a Biogas/Biodiesel-Powered Dual-Fuel Diesel Engine through Trade-off Analysis of Operation Parameters Using Response Surface Methodology. Sustain. Energy Technol. Assess. 2022, 53, 102455. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Approximating XGBoost with an Interpretable Decision Tree. Inf. Sci. 2021, 572, 522–542. [Google Scholar] [CrossRef]
- Zhu, X.; Chu, J.; Wang, K.; Wu, S.; Yan, W.; Chiam, K. Prediction of Rockhead Using a Hybrid N-XGBoost Machine Learning Framework. J. Rock Mech. Geotech. Eng. 2021, 13, 1231–1245. [Google Scholar] [CrossRef]
- Said, Z.; Sharma, P.; Bora, B.J.; Pandey, A.K. Sonication Impact on Thermal Conductivity of F-MWCNT Nanofluids Using XGBoost and Gaussian Process Regression. J. Taiwan Inst. Chem. Eng. 2023, 145, 104818. [Google Scholar] [CrossRef]
- Yun, K.K.; Yoon, S.W.; Won, D. Prediction of Stock Price Direction Using a Hybrid GA-XGBoost Algorithm with a Three-Stage Feature Engineering Process. Expert Syst. Appl. 2021, 186, 115716. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, W.; Yin, J.; Feng, T. Lithium Battery Health Factor Extraction Based on Improved Douglas–Peucker Algorithm and SOH Prediction Based on XGboost. Energies 2022, 15, 5981. [Google Scholar] [CrossRef]
- Ibrahem Ahmed Osman, A.; Najah Ahmed, A.; Chow, M.F.; Feng Huang, Y.; El-Shafie, A. Extreme Gradient Boosting (Xgboost) Model to Predict the Groundwater Levels in Selangor Malaysia. Ain Shams Eng. J. 2021, 12, 1545–1556. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, J.; Khandelwal, M.; Yang, H.; Yang, P.; Li, C. Performance Evaluation of Hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost Models to Predict Blast-Induced Ground Vibration. Eng. Comput. 2022, 38, 4145–4162. [Google Scholar] [CrossRef]
- Ben Jabeur, S.; Mefteh-Wali, S.; Viviani, J.L. Forecasting Gold Price with the XGBoost Algorithm and SHAP Interaction Values. Ann. Oper. Res. 2021, 1–21. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Zhang, J.; Che, X.; Yuan, Y.; Wang, Z.; Kong, D. A New Method of Diesel Fuel Brands Identification: SMOTE Oversampling Combined with XGBoost Ensemble Learning. Fuel 2020, 282, 118848. [Google Scholar] [CrossRef]
- Pan, S.; Zheng, Z.; Guo, Z.; Luo, H. An Optimized XGBoost Method for Predicting Reservoir Porosity Using Petrophysical Logs. J. Pet. Sci. Eng. 2022, 208, 109520. [Google Scholar] [CrossRef]
- Thongsuwan, S.; Jaiyen, S.; Padcharoen, A.; Agarwal, P. ConvXGB: A New Deep Learning Model for Classification Problems Based on CNN and XGBoost. Nucl. Eng. Technol. 2021, 53, 522–531. [Google Scholar] [CrossRef]
- Li, X.; Ma, L.; Chen, P.; Xu, H.; Xing, Q.; Yan, J.; Lu, S.; Fan, H.; Yang, L.; Cheng, Y. Probabilistic Solar Irradiance Forecasting Based on XGBoost. Energy Rep. 2022, 8, 1087–1095. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, Y.; Shang, Y. Research and Application of XGBoost in Imbalanced Data. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221106935. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, A.; Das, A.K.; Banerjee, R. Development and Validation of a GEP Model to Predict the Performance and Exhaust Emission Parameters of a CRDI Assisted Single Cylinder Diesel Engine Coupled with EGR. Appl. Energy 2015, 140, 52–64. [Google Scholar] [CrossRef]
- Sharma, P.; Said, Z.; Memon, S.; Elavarasan, R.M.; Khalid, M.; Nguyen, X.P.; Arıcı, M.; Hoang, A.T.; Nguyen, L.H. Comparative Evaluation of AI-Based Intelligent GEP and ANFIS Models in Prediction of Thermophysical Properties of Fe3O4-Coated MWCNT Hybrid Nanofluids for Potential Application in Energy Systems. Int. J. Energy Res. 2022, 46, 19242–19257. [Google Scholar] [CrossRef]
- Dodo, U.A.; Ashigwuike, E.C.; Abba, S.I. Machine Learning Models for Biomass Energy Content Prediction: A Correlation-Based Optimal Feature Selection Approach. Bioresour. Technol. Rep. 2022, 19, 101167. [Google Scholar] [CrossRef]
- Kwon, B.; Ejaz, F.; Hwang, L.K. Machine Learning for Heat Transfer Correlations. Int. Commun. Heat Mass Transf. 2020, 116, 104694. [Google Scholar] [CrossRef]
- Prasad, T.R.; Krishna, K.R.; Sharma, K.V.; Bhaskar, C.N. Correlations to Estimate Electrical Conductivity, Thermal Conductivity and Viscosity of Cobalt Nanofluid. Heat Mass Transf. 2023, 59, 95–112. [Google Scholar] [CrossRef]
- Jebli, I.; Belouadha, F.-Z.; Kabbaj, M.I.; Tilioua, A. Prediction of Solar Energy Guided by Pearson Correlation Using Machine Learning. Energy 2021, 224, 120109. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Q.; Ulishney, C.; Dumitrescu, C.E. Machine Learning Assisted Prediction of Exhaust Gas Temperature of a Heavy-Duty Natural Gas Spark Ignition Engine. Appl. Energy 2021, 300, 117413. [Google Scholar] [CrossRef]
Characteristics | Biogas | Diesel |
---|---|---|
Density | 1.04 kg/m3 | 843 kg/m3 |
Cetane number | - | 52 |
Lower heating value | 20.25 MJ/kg | 41.8 MJ/kg |
Auto ignition temperature | 843 °C | 556 °C |
Fire point | - | 73 °C |
Flash point | - | 68 °C |
Research octane number | 130 | - |
Mode | Fuel Used | CR | IT | Loading Condition |
---|---|---|---|---|
Single | Diesel | 17.5 | 20°, 23°, 26°, 29° bTDC | 20% to 100% in a step of 20% |
Dual | Main fuel: Biogas Pilot injected fuel: Diesel | 17, 17.5, 18 |
FIT (bTDC) | FIP (bar) | CR | Load (%) | BTE (%) | Pmax (bar) | HC (ppm) | NOx (ppm) | CO (ppm) | |
---|---|---|---|---|---|---|---|---|---|
FIT (bTDC) | 1 | ||||||||
FIP (bar) | 0 | 1 | |||||||
CR | 0 | 0 | 1 | ||||||
Load (%) | 0 | 0 | 0 | 1 | |||||
BTE (%) | −0.0206 | −0.0258 | 0.2760 | 0.9328 | 1 | ||||
Pmax (bar) | −0.0637 | 0.0691 | 0.4257 | 0.7758 | 0.9204 | 1 | |||
HC (ppm) | −0.1328 | −0.0066 | −0.6458 | 0.2995 | 0.1001 | −0.0594 | 1 | ||
NOx (ppm) | −0.0131 | −0.0109 | 0.3921 | 0.8521 | 0.9456 | 0.9215 | 0.0298 | 1 | |
CO (ppm) | −0.1153 | −0.0287 | −0.8259 | −0.3192 | −0.5716 | −0.6756 | 0.5998 | −0.6270 | 1 |
Phase | Parameter | R2 | R | MSE | MAE |
---|---|---|---|---|---|
Training | BTE | 0.9865 | 0.9933 | 0.3711 | 0.4499 |
Pmax | 0.9626 | 0.9811 | 1.4236 | 0.9665 | |
HC | 0.9494 | 0.9744 | 125.8 | 8.4312 | |
NOx | 0.9722 | 0.986 | 12.8302 | 3.089 | |
CO | 0.9576 | 0.9786 | 24.72 | 4.23 | |
Test | BTE | 0.9890 | 0.9945 | 0.2845 | 0.4412 |
Pmax | 0.9777 | 0.9888 | 1.14 | 0.932 | |
HC | 0.9628 | 0.9812 | 101.7 | 5.89 | |
NOx | 0.9797 | 0.9898 | 8.45 | 2.014 | |
CO | 0.9645 | 0.9821 | 17.36 | 3.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alruqi, M.; Hanafi, H.A.; Sharma, P. Prognostic Metamodel Development for Waste-Derived Biogas-Powered Dual-Fuel Engines Using Modern Machine Learning with K-Cross Fold Validation. Fermentation 2023, 9, 598. https://doi.org/10.3390/fermentation9070598
Alruqi M, Hanafi HA, Sharma P. Prognostic Metamodel Development for Waste-Derived Biogas-Powered Dual-Fuel Engines Using Modern Machine Learning with K-Cross Fold Validation. Fermentation. 2023; 9(7):598. https://doi.org/10.3390/fermentation9070598
Chicago/Turabian StyleAlruqi, Mansoor, H. A. Hanafi, and Prabhakar Sharma. 2023. "Prognostic Metamodel Development for Waste-Derived Biogas-Powered Dual-Fuel Engines Using Modern Machine Learning with K-Cross Fold Validation" Fermentation 9, no. 7: 598. https://doi.org/10.3390/fermentation9070598
APA StyleAlruqi, M., Hanafi, H. A., & Sharma, P. (2023). Prognostic Metamodel Development for Waste-Derived Biogas-Powered Dual-Fuel Engines Using Modern Machine Learning with K-Cross Fold Validation. Fermentation, 9(7), 598. https://doi.org/10.3390/fermentation9070598