Assessing the Organ Dose in Diagnostic Imaging with Digital Tomosynthesis System Using TLD100H Dosimeters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dosimeters
2.2. Energy and Angular Dependence Studies
2.3. Organ Dose Calculation
3. Results and Discussion
3.1. Deconvolution Procedures
3.2. Energy and Angular Dependence Studies
3.3. Organ Dose Calculation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zachrisson, S.; Vikgren, J.; Svalkvist, A.; Johnsson, A.Å.; Boijsen, M.; Flinck, A.; Månsson, L.G.; Kheddache, S.; Båth, M. Effect of clinical experience of chest tomosynthesis on detection of pulmonary nodules. Acta Radiol. 2009, 50, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Blum, A.; Noël, A.; Regent, D.; Villani, N.; Gillet, R. Tomosynthesis in musculoskeletal pathology. Diagn. Interv. Imaging 2018, 99, 423–441. [Google Scholar] [CrossRef]
- Quaia, E.; Baratella, E.; Cioffi, V.; Bregant, P.; Cernic, S.; Cuttin, R.; Cova, M.A. The value of digital tomosynthesis in the diagnosis of suspected pulmonary lesions on chest radiography: Analysis of diagnostic accuracy and confidence. Acad. Radiol. 2010, 17, 1267–1274. [Google Scholar] [CrossRef]
- Asplund, S.; Johnsson, A.A.; Vikgren, J.; Svalkvist, A.; Boijsen, M.; Fisichella, V.; Flinck, A.; Wiksell, A.; Ivarsson, J.; Rystedt, H.; et al. Learning aspects and potential pitfalls regarding detection of pulmonary nodules in chest tomosynthesis and proposed related quality criteria. Acta Radiol. 2011, 52, 503–512. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, K.H.; Kim, K.T.; Kim, H.J.; Ahn, H.S.; Kim, Y.J.; Lee, H.Y.; Jeon, Y.S. Comparison of digital tomosynthesis and chest radiography for the detection of pulmonary nodules: Systematic review and meta-analysis. Br. J. Radiol. 2016, 89, 20160421. [Google Scholar] [CrossRef]
- Gomi, T.; Nakajima, M.; Fujiwara, H.; Takeda, T.; Saito, K.; Umeda, T.; Sakaguchi, K. Comparison between chest digital tomosynthesis and CT as a screening method to detect artificial pulmonary nodules: A phantom study. Br. J. Radiol. 2012, 85, e622–e629. [Google Scholar] [CrossRef]
- Bahl, M.; Mercaldo, S.; Vijapura, C.A.; McCarthy, A.M.; Lehman, C.D. Comparison of performance metrics with digital 2D versus tomosynthesis mammography in the diagnostic setting. Eur. Radiol. 2019, 29, 477–484. [Google Scholar] [CrossRef]
- Vikgren, J.; Zachrisson, S.; Svalkvist, A.; Johnsson, A.A.; Boijsen, M.; Flinck, A.; Kheddache, S.; Båth, M. Comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: Human observer study of clinical cases. Radiology 2008, 249, 1034–1041. [Google Scholar] [CrossRef]
- Mohd Norsuddin, N.; Segar, S.; Ravintaran, R.; Mohd Zain, N.; Abdul Karim, M.K. Local Diagnostic Reference Levels for Full-Field Digital Mammography and Digital Breast Tomosynthesis in a Tertiary Hospital in Malaysia. Healthcare 2022, 10, 1917. [Google Scholar] [CrossRef]
- Miao, H.; Wu, X.; Zhao, H.; Liu, H. A phantom-based calibration method for digital x-ray tomosynthesis. J. Xray Sci. Technol. 2012, 20, 17–29. [Google Scholar] [CrossRef]
- Miksys, N.; Gordon, C.L.; Thomas, K.; Connolly, B.L. Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters. AJR Am. J. Roentgenol. 2010, 194, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kapadia, A.; Ria, F.; Segars, W.P.; Samei, E. Dose coefficients for organ dosimetry in tomosynthesis imaging of adults and pediatrics across diverse protocols. Med. Phys. 2022, 49, 5439–5450. [Google Scholar] [CrossRef] [PubMed]
- Stella, G.; Sallah, A.; Galvagno, R.; D’Anna, A.; Gueli, A.M. Simultaneous Double Dose Measurements Using TLD-100H. Crystals 2024, 14, 603. [Google Scholar] [CrossRef]
- Stella, G.; Cavalli, N.; Marino, C.; Mazzaglia, S.; Gueli, A.M. Dosimetry from OSL and Residual TL with TLD 400. J. Instrum. 2019, 14, P12014. [Google Scholar] [CrossRef]
- Stella, G.; Mazzaglia, S.; Pace, M.; Tonghi, L.B.; Tuvè, C.; Gueli, A.M. QA for calibration procedures of TLDs 100H in low doses range. J. Instrum. 2019, 14, P06023. [Google Scholar] [CrossRef]
- Kry, S.F.; Alvarez, P.; Cygler, J.E.; DeWerd, L.A.; Howell, R.M.; Meeks, S.; O’Daniel, J.; Reft, C.; Sawakuchi, G.; Yukihara, E.G.; et al. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med. Phys. 2020, 47, e19–e51. [Google Scholar] [CrossRef] [PubMed]
- High Sensitivity LIF: Mg, Cu, P Thermoluminescent Dosimetry Materials, Disks. Available online: https://www.thermofisher.com/order/catalog/product/SCP13615 (accessed on 25 October 2024).
- Kitis, G.; Gomez-Ros, J.M.; Tuyn, J.W. Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J. Phys. D Appl. Phys. 1998, 31, 2636. [Google Scholar] [CrossRef]
- Balian, H.G.; Eddy, N.W. Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nucl. Instrum. Meth. 1987, 145, 389–395. [Google Scholar] [CrossRef]
- Reshes, G.; Druzhyna, S.; Biderman, S.; Eliyahu, I.; Oster, L.; Horowitz, Y.S. Study of the effect of optical bleaching at selected photon energies on the optical absorption and thermoluminescence of LiF: Mg, Ti (TLD-100). Radiat. Meas. 2017, 106, 26–29. [Google Scholar] [CrossRef]
- Ma, C.M.; Coffey, C.W.; DeWerd, L.A.; Liu, C.; Nath, R.; Seltzer, S.M.; Seuntjens, J.P. American Association of Physicists in Medicine. AAPM protocol for 40-300 kV X-ray beam dosimetry in radiotherapy and radiobiology. Med. Phys. 2001, 28, 868, Erratum in Med. Phys. 2023, 50, 3886. [Google Scholar]
- Henriques, L.M.S.; Cerqueira, R.A.D.; Santos, W.S.; Pereira, A.J.S.; Rodrigues, T.M.A.; Júnior, A.C.; Maia, A.F. Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams. Rad. Phys. Chem. 2014, 95, 296–298. [Google Scholar] [CrossRef]
2.4 mmAl | 2.8 mmAl | 3.2 mmAl | 3.6 mmAl | |
---|---|---|---|---|
TLD Number | mAs | mAs | mAs | mAs |
1–3 | 1.2 | 1.0 | 0.8 | 0.6 |
4–6 | 4.0 | 3.2 | 2.5 | 2.0 |
7–9 | 8.0 | 6.3 | 5.0 | 4.0 |
10–12 | 16.0 | 12.5 | 10.0 | 8.0 |
13–15 | 50.0 | 40.0 | 32.0 | 25.0 |
16–18 | 100.0 | 80.0 | 63.0 | 50.0 |
19–21 | 200.0 | 160.0 | 125.0 | 100.0 |
HVL | Output (mAs/mGy) |
---|---|
2.4 mmAl | 0.08 ± 0.01 |
2.8 mmAl | 0.11 ± 0.01 |
3.2 mmAl | 0.13 ± 0.01 |
3.6 mmAl | 0.16 ± 0.01 |
HVL | mAs | Angle (°) | SSD (cm) |
---|---|---|---|
2.8 mmAl | 12.5 | 0 | 75 |
5 | 77 | ||
10 | 77 | ||
15 | 80 | ||
20 | 82 |
RX Mode | DTS Mode | |
---|---|---|
kV | 100 | 100 |
HVL | 3.6 mmAl | 3.6 mmAl |
mAs | 1.63 | 14.33 |
Field | 40 cm × 40 cm | 40 cm × 40 cm |
SSD | 80 cm | 80 cm |
Angle tube | Fixed zero | Sweep angle 15° |
Number of projections | 1 | 67 |
Peak Number | Tm (K) | E (eV) | s (s−1) |
---|---|---|---|
1 | 347 ± 3 | 0.95 ± 0.03 | 5.48 × 1012 |
2 | 394 ± 3 | 1.07 ± 0.04 | 3.73 × 1012 |
3 | 455 ± 4 | 1.32 ± 0.05 | 3.09 × 1013 |
4 | 495 ± 4 | 2.24 ± 0.06 | 7.20 × 1021 |
5 | 521 ± 5 | - | - |
2.4 mmAl | 2.8 mmAl | 3.2 mmAl | |
---|---|---|---|
2.8 mmAl | 12.3% | - | - |
3.2 mmAl | 12.5% | 0.2% | - |
3.6 mmAl | 17.5% | 4.7% | 4.5% |
TLDs Position | Method | Skin Dose (mGy) | Lung Dose (mGy) | Heart Dose (mGy) |
---|---|---|---|---|
Lung SX | DTS | 2.96 [2.77, 3.30] | 3.32 [3.10, 3.46] | |
RX | 0.29 [0.24, 0.40] | 0.33 [0.27, 0.45] | ||
Lung Dx | DTS | 2.86 [2.47, 3.16] | 3.21 [2.77, 3.55] | |
RX | 0.27 [0.23, 0.30] | 0.31 [0.26, 0.34] | ||
Heart | DTS | 2.81 [2.61, 3.14] | 3.11 [2.90, 3.49] | |
RX | 0.25 [0.22, 0.26] | 0.27 [0.25, 0.29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stella, G.; Asero, G.; Nicotra, M.; Candiano, G.; Galvagno, R.; Gueli, A.M. Assessing the Organ Dose in Diagnostic Imaging with Digital Tomosynthesis System Using TLD100H Dosimeters. Tomography 2025, 11, 32. https://doi.org/10.3390/tomography11030032
Stella G, Asero G, Nicotra M, Candiano G, Galvagno R, Gueli AM. Assessing the Organ Dose in Diagnostic Imaging with Digital Tomosynthesis System Using TLD100H Dosimeters. Tomography. 2025; 11(3):32. https://doi.org/10.3390/tomography11030032
Chicago/Turabian StyleStella, Giuseppe, Grazia Asero, Mariajessica Nicotra, Giuliana Candiano, Rosaria Galvagno, and Anna Maria Gueli. 2025. "Assessing the Organ Dose in Diagnostic Imaging with Digital Tomosynthesis System Using TLD100H Dosimeters" Tomography 11, no. 3: 32. https://doi.org/10.3390/tomography11030032
APA StyleStella, G., Asero, G., Nicotra, M., Candiano, G., Galvagno, R., & Gueli, A. M. (2025). Assessing the Organ Dose in Diagnostic Imaging with Digital Tomosynthesis System Using TLD100H Dosimeters. Tomography, 11(3), 32. https://doi.org/10.3390/tomography11030032