Comparison of Sample Preparation Methods for Multielements Analysis of Olive Oil by ICP-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Chemicals
2.3. Description of the Methods
2.3.1. Microwave Digestion
2.3.2. Optimization of the Combined Digestion-Evaporation
Description of the Protocol
Selection Criteria
2.3.3. Ultrasound-Assisted Extraction
2.4. Quality Control for Performance Comparison
2.4.1. Limit of Detection (LOD) and Limit of Quantification (LOQ)
2.4.2. Precision (Relative Standard Deviation, RSD)
2.4.3. Accuracy
2.5. ICP-MS Calibration
3. Results and Discussion
3.1. Microwave-Assisted Digestion
3.2. Combined Digestion-Evaporation
3.2.1. Carbon Content in Digest
3.2.2. Performance Parameters of the Proposed Combined Digestion-Evaporation Method
Linearity
LOD and LOQ
Precision (Repeatability)
3.3. Ultrasound-Assisted Extraction
3.3.1. Range of Linearity
3.3.2. LOD and LOQ
3.3.3. Precision (Repeatability)
3.3.4. Accuracy
3.4. Comparison between the Three Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Szyczewski, P.; Frankowski, M.; Zioła-Frankowska, A.; Siepak, J.; Szyczewski, T.; Piotrowski, P. A comparative study of the content of heavy metals in oils: Linseed oil, rapeseed oil and soybean oil in technological production processes. Arch. Environ. Prot. 2016, 42, 37–40. [Google Scholar] [CrossRef]
- Dammak, I.; Neves, M.; Souilem, S.; Isoda, H.; Sayadi, S.; Nakajima, M. Material Balance of Olive Components in Virgin Olive Oil Extraction Processing. Food Sci. Technol. Res. 2015, 21, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Lepri, F.G.; Chaves, E.S.; Vieira, M.A.; Ribeiro, A.S.; Curtius, A.J.; DeOliveira, L.C.C.; Decampos, R.C. Determination of Trace Elements in Vegetable Oils and Biodiesel by Atomic Spectrometric Techniques—A Review. Appl. Spectrosc. Rev. 2011, 46, 175–206. [Google Scholar] [CrossRef]
- Zeiner, M.; Steffan, I.; Cindrić, I.J. Determination of trace elements in olive oil by ICP-AES and ETA-AAS: A pilot study on the geographical characterization. Microchem. J. 2005, 81, 171–176. [Google Scholar] [CrossRef]
- Benincasa, C.; Lewis, J.; Perri, E.; Sindona, G.; Tagarelli, A. Determination of trace element in Italian virgin olive oils and their characterization according to geographical origin by statistical analysis. Anal. Chim. Acta 2007, 585, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Cindrić, I.J.; Zeiner, M.; Steffan, I. Trace elemental characterization of edible oils by ICP–AES and GFAAS. Microchem. J. 2007, 85, 136–139. [Google Scholar] [CrossRef]
- Mendil, D.; Dogan Uluözlüa, O.; Tüzena, M.; Soylak, M. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry. J. Hazard. Mater. 2009, 165, 724–728. [Google Scholar] [CrossRef]
- Gonzálvez, A.; Ghanjaoui, M.; El Rhazi, M.; De La Guardia, M. Inductively Coupled Plasma Optical Emission Spectroscopy Determination of Trace Element Composition of Argan Oil. Food Sci. Technol. Int. 2010, 16, 65–71. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Ortega-Barrales, P.; Córdova, M.F.-D.; Dominguez-Vidal, A.; Ruiz-Medina, A.; Pilar, O.-B. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain. Food Chem. 2011, 127, 1257–1262. [Google Scholar] [CrossRef]
- Ni, Z.; Chen, Z.; Yu, Q.; Sun, X.; Tang, F. Microwave-assisted digestion for trace elements analysis of tree nut oil: Evaluation of residual carbon content. Spectrosc. Lett. 2019, 51, 1–6. [Google Scholar] [CrossRef]
- Damak, F.; Asano, M.; Baba, K.; Suda, A.; Araoka, D.; Wali, A.; Isoda, H.; Nakajima, M.; Ksibi, M.; Tamura, K. Interregional traceability of Tunisian olive oils to the provenance soil by multielemental fingerprinting and chemometrics. Food Chem. 2019, 283, 656–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pošćić, F.; Turk, M.F.; Bačić, N.; Mikac, N.; Bertoldi, D.; Camin, F.; Špika, M.J.; Žanetić, M.; Rengel, Z.; Perica, Z. Removal of pomace residues is critical in quantification of element concentrations in extra virgin olive oil. J. Food. Compos. Anal. 2019, 77, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Bressy, F.C.; Brito, G.B.; Barbosa, I.S.; Teixeira, L.S.G.; Korn, M.G.A. Determination of trace element concentrations in tomato samples at different stages of maturation by ICP OES and ICP-MS following microwave-assisted digestion. Microchem. J. 2013, 109, 145–149. [Google Scholar] [CrossRef]
- Chudzinska, M.; Debska, A.; Baralkiewicz, D. Method validation for determination of 13 elements in honey samples by ICP-MS. Accredit. Qual. Assur. 2012, 17, 65–73. [Google Scholar] [CrossRef]
- Camin, F.; Larcher, R.; Perini, M.; Bontempo, L.; Bertoldi, D.; Gagliano, G.; Nicolini, G.; Versini, G. Characterisation of authentic Italian extra-virgin olive oils by stable isotope ratios of C, O and H and mineral composition. Food Chem. 2010, 118, 901–909. [Google Scholar] [CrossRef]
- Trindade, A.S.; Dantas, A.F.; Lima, D.C.; Ferreira, S.L.; Teixeira, L.S. Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry. Food Chem. 2015, 185, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorent-Martínez, E.J.; Córdova, M.L.F.-D.; Ortega-Barrales, P.; Ruiz-Medina, A. Quantitation of Metals During the Extraction of Virgin Olive Oil from Olives Using ICP-MS after Microwave-assisted Acid Digestion. J. Am. Oil Chem. Soc. 2014, 91, 1823–1830. [Google Scholar] [CrossRef]
- Konieczka, P. The Role of and the Place of Method Validation in the Quality Assurance and Quality Control (QA/QC) System. Crit. Rev. Anal. Chem. 2007, 37, 173–190. [Google Scholar] [CrossRef]
- Khan, N.; Jeong, I.S.; Hwang, I.M.; Kim, J.S.; Choi, S.H.; Nho, E.Y.; Choi, J.Y.; Kwak, B.-M.; Ahn, J.-H.; Yoon, T.; et al. Method validation for simultaneous determination of chromium, molybdenum and selenium in infant formulas by ICP-OES and ICP-MS. Food Chem. 2013, 141, 3566–3570. [Google Scholar] [CrossRef]
- Castro, J.T.; Santos, E.C.; Santos, W.P.; Costa, L.M.; Korn, M.; Nóbrega, J.A.; Korn, M.G.A. A critical evaluation of digestion procedures for coffee samples using diluted nitric acid in closed vessels for inductively coupled plasma optical emission spectrometry. Talanta 2009, 78, 1378–1382. [Google Scholar] [CrossRef]
- Coetzee, P.P.; Steffens, F.E.; Eiselen, R.J.; Augustyn, O.P.; Balcaen, L.; Vanhaecke, F. Multi-element Analysis of South African Wines by ICP−MS and Their Classification According to Geographical Origin. J. Agric. Food Chem. 2005, 53, 5060–5066. [Google Scholar] [CrossRef]
Parameter | Method | ||
---|---|---|---|
Microwave Digestion | Digestion-Evaporation | Ultrasonic Extraction | |
Instrument | ELAN | NexION | NexION |
ICP Rf power (W) | 1100 | 1600 | 1600 |
Plasma Ar flow rate (L·min–1) | 15 | 18 | 18 |
Auxiliary Ar flow rate (L·min–1) | 1.30 | 1.20 | 1.20 |
Nebulizer (carrier gas) flow rate (L·min–1) | 0.77 | 0.98 | 0.98 |
Sampler and skimmer cones | Nickel | Nickel | Nickel |
lens voltage (Deflector voltage) (V) | 7.5 | −11.50 | −11.50 |
Analog stage voltage (V) | −1700 | −1800 | −1800 |
Pulse stage voltage (V) | 950 | 1100 | 1100 |
Discriminator threshold (V) | 19 | 13 | 13 |
Quadrupole rod offset (V) | −1.5(STD), –7.5 (DRC) | 0 or 0.50 (STD), –12 (KED), –7.5 (DRC) | 0 or 0.50 (STD), –12 (KED), –7.5 (DRC) |
Detector | Pulse | Pulse | Pulse |
Speed of peristaltic pump (rpm) | 20 | 20 | 20 |
Sweeps/reading | 20 | 20 | 20 |
Replicate/reading | 1 | 1 | 1 |
Replicates | 3 | 3 | 3 |
Dwell time (ms) | 50 | 50 | 50 |
Scan mode | Peak hopping | Peak hopping | Peak hopping |
STD and KED: rejection parameter a and rejection parameter q | 0, 0.25 | 0, 0.25 | 0, 0.25 |
DRC mode: CH4 reaction gas flow (L·min–1) | 0.60 | 0.60 | 0.60 |
DRC mode: rejection parameter a and Rejection parameter q | 0, 0.65 | 0, 0.65 | 0, 0.65 |
KED mode He reaction gas flow (L·min–1) | - | 3.5 | 3.5 |
Batch N° | Step | Time (mn) | Power (W) | Temp 1 (°C) |
---|---|---|---|---|
1 | 1 | 2 | 1000 | 50 |
2 | 1 | 0 | 30 | |
3 | 31 | 1000 | 190 | |
4 | 1 | 0 | 160 | |
5 | 6 | 1000 | 190 | |
6 | 13 | 1000 | 190 | |
2 | 1 | 2 | 1000 | 70 |
2 | 1 | 0 | 50 | |
3 | 31 | 1000 | 210 | |
4 | 1 | 0 | 180 | |
5 | 6 | 1000 | 210 | |
6 | 13 | 1000 | 210 | |
3 | 1 | 2 | 1000 | 90 |
2 | 1 | 0 | 70 | |
3 | 31 | 1000 | 230 | |
4 | 1 | 0 | 200 | |
5 | 6 | 1000 | 230 | |
6 | 13 | 1000 | 230 |
Solution Name (Concentrations in µg·L−1) | ||||||
---|---|---|---|---|---|---|
Method | Na | Ca | Mg | Fe | XSTC-622B | N * |
Digestion | - | - | - | - | 0.01–50 | 8 |
Combined digestion-evaporation | 0.05–100 | 0.025–50 | 0.01–20 | 0.01–20 | 0.005–10 | 11 |
Ultrasound-assisted extraction | 0.05–50 | 0.025–25 | 0.01–10 | 0.01–10 | 0.005–5 | 12 |
Element | Isotope | Operation Mode | LOD (µg·kg−1) | LOQ (µg ·kg −1) | Repeatability (RSD %) * | Linearity (R2) | Accuracy (%) |
---|---|---|---|---|---|---|---|
Na | 23 | Standard | 120 | 350 | 9.9 | 0.9998 | 84 |
Mg | 24 | Standard | 160 | 470 | 12 | 0.9991 | 66 |
Fe | 56 | DRC (CH4) | 120 | 390 | 13 | 0.9999 | 88 |
Zn | 66 | DRC (CH4) | 110 | 360 | 16 | 0.9997 | 97 |
V | 51 | Standard | 1.7 | 5.6 | 14 | 1.0000 | 97 |
Mn | 55 | Standard | 6.0 | 20 | 20 | 1.0000 | 103 |
As | 75 | Standard | 0.73 | 2.4 | 20 | 0.9990 | |
Rb | 85 | Standard | 0.30 | 1.0 | 17 | 0.9996 | |
Sr | 88 | Standard | 5.1 | 17 | 5 | 0.9999 | |
Ba | 138 | Standard | 4.6 | 15 | 15 | 1.0000 | 102 |
Pb | 208 | Standard | 6.9 | 23 | 21 | 1.0000 | 97 |
LOD (µg·Kg−1) | ||
---|---|---|
Element | Our Study | Original Study |
Fe | 120 | 600 |
V | 1.7 | 15 |
As | 0.73 | 15 |
Pb | 6.9 | 4 |
One Step | Two Steps | |||||||
---|---|---|---|---|---|---|---|---|
190 °C | 210 °C | 230 °C | 210 °C then 230 °C | |||||
Mass number | NE* | E** | NE | E | NE | E | NE | E |
12 | 172,855,743 | 13,216,179 | 217,036,881 | 77,300,752 | 219,254,250 | 191,976,927 | over range | 76,931,314 |
Element | Isotope | Mode | LOD (µg·kg−1) | LOQ (µg· kg−1) | Repeatability (RSD %) | Linearity (R2) |
---|---|---|---|---|---|---|
Na | 23 | He | 13 | 45 | 5.4 | 0.9985 |
Mg | 24 | He | 3.5 | 11 | 27 | 0.9991 |
Ca | 44 | CH4 | 190 | 640 | 6.6 | 0.9990 |
V | 51 | He | 0.012 | 0.041 | 53 | 0.9996 |
Cr | 52 | CH4 | 0.47 | 1.6 | 25 | 0.9996 |
Mn | 55 | He | 0.49 | 1.6 | 52 | 0.9989 |
Fe | 56 | He | 5.8 | 19 | 45 | 0.9957 |
Ni | 60 | CH4 | 2.5 | 8.2 | 26 | 0.9998 |
Cu | 63 | He | 2.3 | 7.7 | 16 | 0.9989 |
Zn | 64 | CH4 | 13 | 42 | 12 | 0.9997 |
As | 75 | He | 0.093 | 0.31 | 99 | 0.9993 |
Rb | 85 | STD | 0.036 | 0.12 | 38 | 1.000 |
Sr | 88 | STD | 0.098 | 0.33 | 15 | 1.000 |
Mo | 98 | CH4 | 0.15 | 0.51 | 46 | 0.9999 |
Pb | 208 | STD | 2.4 | 8.1 | 22 | 0.9999 |
Element | Isotope | Mode | LOD (µg·kg−1) | LOQ (µg·kg−1) | Repeatability (RSD %) | Linearity (R2) | Accuracy (%) |
---|---|---|---|---|---|---|---|
Na | 23 | He | 0.42 | 1.4 | 11 | 0.9985 | 136 |
Mg | 24 | He | 0.11 | 0.35 | 11 | 0.9986 | 73 |
Ca | 44 | He | 1.5 | 4.9 | 13 | 0.9811 | |
Ti | 47 | He | 0.16 | 0.45 | 11 | 0.9977 | |
V | 51 | He | 0.069 | 0.23 | 1.9 | 0.9975 | |
Cr | 52 | He | 0.035 | 0.12 | 12 | 0.9987 | 64 |
Mn | 55 | He | 0.0060 | 0.021 | 10 | 0.9979 | 67 |
Fe | 56 | He | 0.14 | 0.47 | 5.1 | 0.9984 | |
Ni | 60 | CH4 | 0.18 | 0.60 | 40 | 0.9974 | 81 |
Cu | 63 | He | 0.20 | 0.66 | 30 | 0.9931 | 80 |
Zn | 66 | He | 0.077 | 0.26 | 18 | 0.9988 | 84 |
As | 75 | CH4 | 0.036 | 0.12 | 6.2 | 0.9987 | |
Rb | 85 | STD | 0.00061 | 0.0021 | 8.9 | 0.9993 | 79 |
Sr | 88 | STD | 0.0025 | 0.0085 | 9.1 | 0.9993 | 77 |
Mo | 98 | STD | 0.0047 | 0.016 | 8.6 | 0.9970 | 78 |
Ba | 138 | STD | 0.0014 | 0.0049 | 13 | 0.9990 | 133 |
Pb | 208 | STD | 0.0035 | 0.012 | 13 | 0.9989 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damak, F.; Asano, M.; Baba, K.; Ksibi, M.; Tamura, K. Comparison of Sample Preparation Methods for Multielements Analysis of Olive Oil by ICP-MS. Methods Protoc. 2019, 2, 72. https://doi.org/10.3390/mps2030072
Damak F, Asano M, Baba K, Ksibi M, Tamura K. Comparison of Sample Preparation Methods for Multielements Analysis of Olive Oil by ICP-MS. Methods and Protocols. 2019; 2(3):72. https://doi.org/10.3390/mps2030072
Chicago/Turabian StyleDamak, Fadwa, Maki Asano, Koji Baba, Mohamed Ksibi, and Kenji Tamura. 2019. "Comparison of Sample Preparation Methods for Multielements Analysis of Olive Oil by ICP-MS" Methods and Protocols 2, no. 3: 72. https://doi.org/10.3390/mps2030072