Practical Protocols for Solid-Phase Peptide Synthesis 4.0
Author Contributions
Funding
Conflicts of Interest
References
- Small Business Assistance: Frequently Asked Questions for New Drug Product Exclusivity. Available online: https://www.fda.gov/drugs/cder-small-business-industry-assistance-sbia/small-business-assistance-frequently-asked-questions-new-drug-product-exclusivity (accessed on 26 September 2022).
- What Are “Biologics” Questions and Answers. Available online: https://www.fda.gov/about-fda/center-biologics-evaluation-and-research-cber/what-are-biologics-questions-and-answers (accessed on 26 September 2022).
- Frederick, M.O.; Boyse, R.A.; Braden, M.B.; Calvin, J.R.; Campbell, B.M.; Changi, S.M.; Coffin, S.R.; Condon, C.; Gowran, O.; Groh, J.M.; et al. Kilogram-Scale GMP Manufacture of Tirzepatide Using a Hybrid SPPS/LPPS Approach with Continuous Manufacturing. Org. Process Res. Dev. 2021, 25, 1628–1636. [Google Scholar] [CrossRef]
- Lamb, Y.N. Inclisiran: First Approval. Drugs 2021, 81, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, R.B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154. [Google Scholar] [CrossRef]
- Letsinger, R.L.; Mahadevan, V. Stepwise synthesis of oligodeoxyribonucleotides on an insoluble polymer support. J. Am. Chem. Soc. 1966, 88, 5319–5324. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, R.B. Solid Phase Synthesis (Nobel Lecture). Angew. Chem. 1985, 24, 799–810. [Google Scholar] [CrossRef]
- Marshall, G.R. The Early Years—Across the Bench From Bruce (1963–1966). Biopolymers (Pept. Sci.) 2008, 90, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Bruckdorfer, T.; Marder, O.; Albericio, F. From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr. Pharm. Biotechnol. 2004, 5, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Zompra, A.A.; Galanis, A.S.; Werbitzky, O.; Albericio, F. Preparation of Peptides as Active Pharmaceutical Ingredients (API). Future Med. Chem. 2009, 1, 361–377. [Google Scholar] [CrossRef] [PubMed]
- D’Aloisio, V.; Dognini, P.; Hutcheon, G.A.; Coxon, G.A. PepTherDia: Database and structural composition analysis of approved peptide therapeutics and diagnostics. Drug Discov. Today 2021, 26, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://peptherdia.herokuapp.com/list (accessed on 27 September 2022).
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2021. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2022, 27, 1075. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2020. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2021, 26, 627. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2019. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2020, 25, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2018. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2019, 24, 809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2017. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2018, 23, 533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2016. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2017, 22, 368. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2022 (accessed on 30 September 2022).
Active Ingredient a | Trade Name a | Indication | Year of Approval |
---|---|---|---|
Lixisenatide | AdlyxinTM | Type 2 diabetes | 2016 |
Abaloparatide | TymlosTM | Osteoporosis | 2017 |
Angiotensin II | GiaprezaTM | Control of blood pressure | 2017 |
Etelcalcetide | ParsabivTM | Hyperparathyroidism | 2017 |
Macimorelin | MacrilenTM | Adult growth hormone deficiency | 2017 |
Plecanatide | TrulanceTM | Chronic idiopathic constipation | 2017 |
Semaglutide | OzempicTM | Type 2 diabetes | 2017 |
Afamelanotide | ScenesseTM | To prevent skin damage and pain after exposure to the sun. | 2019 |
Bremelanotide | VyleesiTM | Hypoactive sexual desire in premenopausal women | 2019 |
Setmelanotide | ImcivreeTM | Obesity and hunger | 2020 |
Dasiglucagon | ZegalogueTM | Hypoglycemia in diabetes | 2021 |
Difelikefalin | KorsuvaTM | Pruritus | 2021 |
Melphalan flufenamide | PepaxtoTM | Multiple myeloma | 2021 |
Odevixibat | BylvayTM | Pruritus | 2021 |
Pegcetacoplan | EmpaveliTM | Paroxysmal nocturnal hemoglobinuria | 2021 |
Voclosporin | LupkynisTM | Lupus nephritis | 2021 |
Vosoritide | VoxzogoTM | Achondroplasia (Dwarfism) | 2021 |
Gadopiclenol | Elucirem™ | Diagnostic of lesions in the central nervous system | 2022 |
Terlipressin | TerlivazTM | Low blood pressure | 2022 |
Tirzepatide | MounjaroTM | Type 2 diabetes and obesity | 2022 |
Active Ingredient a | Trade Name a | Indication | Year of Approval |
---|---|---|---|
Lutetium 177 DOTA-TATE | LutatheraTM | Theragnostic for neuroendocrine tumors | 2018 |
Gallium 68 DOTA-TOC | Diagnostic for tumors | 2019 | |
Copper 64 dotatate | DetectnetTM | Diagnostic for neuroendocrine tumors | 2020 |
Gallium 68 PSMA-1 | Diagnostic for prostate cancer | 2020 | |
Piflufolastat F-18 | PylarifyTM | Diagnostic for prostate cancer | 2021 |
Lutetium 177 vipivotide tetraxetan | PluvictoTM | Theragnostic for prostate cancer | 2022 |
Active Ingredient a | Trade Name a | Indication | Year of Approval |
---|---|---|---|
Enfortumab vedotin-ejfv b | PadcevTM | Cancers expressing Nectin-4 | 2019 |
Polatuzumab vedotin-piiq b | PolivyTM | Diffuse large B-cell lymphoma | 2019 |
Belantamab mafodotin-blm | BlenrepTM | Multiple myeloma | 2020 |
Tisotumab vedotin-tftv b | Tivdak TM | Cervical cancer | 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Torre, B.G.; Albericio, F. Practical Protocols for Solid-Phase Peptide Synthesis 4.0. Methods Protoc. 2022, 5, 85. https://doi.org/10.3390/mps5060085
de la Torre BG, Albericio F. Practical Protocols for Solid-Phase Peptide Synthesis 4.0. Methods and Protocols. 2022; 5(6):85. https://doi.org/10.3390/mps5060085
Chicago/Turabian Stylede la Torre, Beatriz G., and Fernando Albericio. 2022. "Practical Protocols for Solid-Phase Peptide Synthesis 4.0" Methods and Protocols 5, no. 6: 85. https://doi.org/10.3390/mps5060085
APA Stylede la Torre, B. G., & Albericio, F. (2022). Practical Protocols for Solid-Phase Peptide Synthesis 4.0. Methods and Protocols, 5(6), 85. https://doi.org/10.3390/mps5060085