Previous Issue
Volume 9, March
 
 

Cryptography, Volume 9, Issue 2 (June 2025) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 1570 KiB  
Article
Affine Cipher Encryption Technique Using Residue Number System
by Mykhailo Kasianchuk, Ruslan Shevchuk, Bogdan Adamyk, Vladlena Benson, Inna Shylinska and Mykhailo Holembiovskyi
Cryptography 2025, 9(2), 26; https://doi.org/10.3390/cryptography9020026 - 24 Apr 2025
Abstract
This paper presents a new encryption technique, which combines affine ciphers and the residue number system. This makes it possible to eliminate the shortcomings and vulnerabilities of affine ciphers, which are sensitive to cryptanalysis, using the advantages of the residue number system, i.e., [...] Read more.
This paper presents a new encryption technique, which combines affine ciphers and the residue number system. This makes it possible to eliminate the shortcomings and vulnerabilities of affine ciphers, which are sensitive to cryptanalysis, using the advantages of the residue number system, i.e., the parallelization of calculation processes, performing operations on low bit numbers, and the linear combination of encrypted residues. A mathematical apparatus and a graphic scheme of affine encryption using the residue number system is developed, and a corresponding example is given. Special cases of affine ciphers such as shift and linear ciphers are considered. The cryptographic strength of the proposed cryptosystem when the moduli are prime numbers is estimated, and an example of its estimation is given. The number of bits and the number of moduli of the residue number system, which ensure the same cryptographic strength as the longest key of the AES algorithm, are determined. Full article
Show Figures

Figure 1

17 pages, 404 KiB  
Article
Bell–Clauser–Horne–Shimony–Holt Behavior Under Quantum Loss and Decoherence
by Ottó Hanyecz, András Bodor, Peter Adam and Mátyás Koniorczyk
Cryptography 2025, 9(2), 25; https://doi.org/10.3390/cryptography9020025 - 23 Apr 2025
Abstract
We present a detailed analysis of the effect of quantum loss and decoherence in the Bell-CHSH scenario. Adopting a device-independent approach, we study the change in the bipartite conditional probability distribution, i.e., the behavior of the realized nonlocal box pair when the elements [...] Read more.
We present a detailed analysis of the effect of quantum loss and decoherence in the Bell-CHSH scenario. Adopting a device-independent approach, we study the change in the bipartite conditional probability distribution, i.e., the behavior of the realized nonlocal box pair when the elements of the entangled qubit pair subjected to independent noisy quantum channels modeled by completely positive maps. As the verification of Bell inequalities is crucial in device-independent quantum cryptography, our considerations are instructive from the perspective of quantum realizations of nonlocal box pairs. We find that the impact of quantum channels cannot be described by an equivalent classical noise channel. Full article
Show Figures

Figure 1

18 pages, 806 KiB  
Article
Privacy-Enhancing Technologies in Collaborative Healthcare Analysis
by Manar Alnasser and Shancang Li
Cryptography 2025, 9(2), 24; https://doi.org/10.3390/cryptography9020024 - 22 Apr 2025
Abstract
Healthcare data is often fragmented across different institutions (hospitals, clinics, research centers), creating data silos. Privacy-enhancing technologies (PETs) play a fundamental role in collaborative healthcare analysis, enabling healthcare providers to improve care while protecting patient privacy. By providing a compliant framework for data [...] Read more.
Healthcare data is often fragmented across different institutions (hospitals, clinics, research centers), creating data silos. Privacy-enhancing technologies (PETs) play a fundamental role in collaborative healthcare analysis, enabling healthcare providers to improve care while protecting patient privacy. By providing a compliant framework for data sharing and research, PETs facilitate collaboration while adhering to stringent regulations like HIPAA and GDPR. This work conducts a comprehensive survey to investigate PETs in healthcare industry. It investigates the privacy requirements and challenges specific to healthcare, and the key enabling PETs are explored. A review of recent research trends that identify challenges, and AI related concerns is presented. Full article
Show Figures

Figure 1

22 pages, 1198 KiB  
Article
Malicious-Secure Threshold Multi-Party Private Set Intersection for Anonymous Electronic Voting
by Xiansong Qian, Lifei Wei, Jinjiao Zhang and Lei Zhang
Cryptography 2025, 9(2), 23; https://doi.org/10.3390/cryptography9020023 - 17 Apr 2025
Viewed by 77
Abstract
Threshold Multi-Party Private Set Intersection (TMP-PSI) is a cryptographic protocol that enables an element from the receiver’s set to be included in the intersection result if it appears in the sets of at least t1 other participants, where t represents the [...] Read more.
Threshold Multi-Party Private Set Intersection (TMP-PSI) is a cryptographic protocol that enables an element from the receiver’s set to be included in the intersection result if it appears in the sets of at least t1 other participants, where t represents the threshold. This protocol is crucial for a variety of applications, such as anonymous electronic voting, online ride-sharing, and close-contact tracing programs. However, most existing TMP-PSI schemes are designed based on threshold homomorphic encryption, which faces significant challenges, including low computational efficiency and a high number of communication rounds. To overcome these limitations, this study introduces the Threshold Oblivious Pseudo-Random Function (tOPRF) to fulfill the requirements of threshold encryption and decryption. Additionally, we extend the concept of the Oblivious Programmable Pseudo-Random Function (OPPRF) to develop a novel cryptographic primitive termed the Partially OPPRF (P-OPPRF). This new primitive retains the critical properties of obliviousness and randomness, along with the security assurances inherited from the OPPRF, while also offering strong resistance against malicious adversaries. Leveraging this primitive, we propose the first malicious-secure TMP-PSI protocol, named QMP-PSI, specifically designed for applications like anonymous electronic voting systems. The protocol effectively counters collusion attacks among multiple parties, ensuring robust security in multi-party environments. To further enhance voting efficiency, this work presents a cloud-assisted QMP-PSI to outsource the computationally intensive phases. This ensures that the computational overhead for participants is solely dependent on the set size and statistical security parameters, thereby maintaining security while significantly reducing the computational burden on voting participants. Finally, this work validates the protocol’s performance through extensive experiments under various set sizes, participant numbers, and threshold values. The results demonstrate that the protocol surpasses existing schemes, achieving state-of-the-art (SOTA) performance in communication overhead. Notably, in small-scale voting scenarios, it exhibits exceptional performance, particularly when the threshold is small or close to the number of participants. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

26 pages, 4765 KiB  
Article
Dynamic Sharding and Monte Carlo for Post-Quantum Blockchain Resilience
by Dahhak Hajar, Nadia Afifi and Imane Hilal
Cryptography 2025, 9(2), 22; https://doi.org/10.3390/cryptography9020022 - 11 Apr 2025
Viewed by 256
Abstract
Scalability and security restrictions are posing new challenges for blockchain networks, especially in the face of Distributed Denial-of-Service (DDoS) attacks and upcoming quantum threats. Previous research also found that post-quantum blockchains, despite their improved cryptographic algorithms, are still vulnerable to DDoS attacks, emphasizing [...] Read more.
Scalability and security restrictions are posing new challenges for blockchain networks, especially in the face of Distributed Denial-of-Service (DDoS) attacks and upcoming quantum threats. Previous research also found that post-quantum blockchains, despite their improved cryptographic algorithms, are still vulnerable to DDoS attacks, emphasizing the need for more resilient architectural solutions. This research studies the use of dynamic sharding, an innovative approach for post-quantum blockchains that allows for adaptive division of the network into shards based on workload and network conditions. Unlike static sharding, dynamic sharding optimizes resource allocation in real time, increasing transaction throughput and minimizing DDoS-induced disruptions. We provide a detailed study using Monte Carlo simulations to examine transaction success rates, resource consumption, and fault tolerance for both dynamic sharding-based and non-sharded post-quantum blockchains under simulated DDoS attack scenarios. The findings show that dynamic sharding leads to higher transaction success rates and more efficient resource use than non-sharded infrastructures, even in high-intensity attack scenarios. Furthermore, the combination of dynamic sharding and the Falcon post-quantum signature technique creates a layered strategy that combines cryptographic robustness, scalability, and resilience. This paper provides light on the potential of adaptive blockchain designs to address major scalability and security issues, opening the path for quantum-resilient systems. Full article
(This article belongs to the Special Issue Emerging Trends in Blockchain and Its Applications)
Show Figures

Figure 1

21 pages, 5152 KiB  
Article
Compact 8-Bit S-Boxes Based on Multiplication in a Galois Field GF(24)
by Phuc-Phan Duong, Tuan-Kiet Dang, Trong-Thuc Hoang and Cong-Kha Pham
Cryptography 2025, 9(2), 21; https://doi.org/10.3390/cryptography9020021 - 3 Apr 2025
Viewed by 311
Abstract
Substitution boxes (S-Boxes) function as essential nonlinear elements in contemporary cryptographic systems, offering robust protection against cryptanalytic attacks. This study presents a novel technique for generating compact 8-bit S-Boxes based on multiplication in the Galois Field GF(24). [...] Read more.
Substitution boxes (S-Boxes) function as essential nonlinear elements in contemporary cryptographic systems, offering robust protection against cryptanalytic attacks. This study presents a novel technique for generating compact 8-bit S-Boxes based on multiplication in the Galois Field GF(24). The goal of this method is to create S-Boxes with low hardware implementation cost while ensuring cryptographic properties. Experimental results indicate that the suggested S-Boxes achieve a nonlinearity value of 112, matching the AES S-Box. They also maintain other cryptographic properties, such as the Bit Independence Criterion (BIC), the Strict Avalanche Criterion (SAC), Differential Approximation Probability, and Linear Approximation Probability, within acceptable security thresholds. Notably, compared to existing studies, the proposed S-Box architecture demonstrates enhanced hardware efficiency, significantly reducing resource utilization in implementations. Specifically, the implementation cost of the S-Box consists of 31 XOR gates, 32 two-input AND gates, 6 two-input OR gates, and 2 MUX21s. Moreover, this work provides a thorough assessment of the S-Box, covering cryptographic properties, side channel attacks, and implementation aspects. Furthermore, the study estimates the quantum resource requirements for implementing the S-Box, including an analysis of CNOT, Toffoli, and NOT gate counts. Full article
(This article belongs to the Special Issue Emerging Topics in Hardware Security)
Show Figures

Figure 1

Previous Issue
Back to TopTop