Transcriptome Analysis of the Effect of Acute Ammonia Stress on Pseudobagrus ussuriensis Liver Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experimental Materials
2.3. Analysis of the Liver Tissue Structure
2.4. Analysis of the Liver Antioxidant Index
2.5. RNA Extraction and RNA-seq Sequencing
2.6. Quantitative Real-Time Fluorescence (qPCR) Validation
2.7. Data Analysis
3. Results and Analysis
3.1. Effects of Ammonia Stress on the Liver Micro-Structure of P. ussuriensis
3.2. Effects of Ammonia Stress on the Liver Enzyme Activity
3.3. Sequencing Data Filtering Results and Assembly
3.4. Differential Expression Analysis After Exposure to Ammonia Stress
3.5. Validation Analysis of DEGs Using qPCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.Z.; Li, M.; Wang, R.X.; Qian, Y.X. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish Shellfish. Immunol. 2018, 79, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Fu, Z.Y.; Liu, X.C.; Ma, Z.H. The impact of Acute Ammonia Nitrogen Stress on the Gill Tissue Structure and Antioxidant Ability of Gills and Red and White Muscle in Juvenile Yellowfin Tuna (Thunnus albacares). Antioxidants 2024, 13, 1357. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Peng, R.B.; Huang, C.; Zhao, C.X.; Li, J.P.; Xue, R.P.; Jiang, X.M. Effects of acute ammonia exposure on histopathology of liver, gill and brain in juvenile cuttlefish (Sepia pharaonis). J. Fish. Chin. 2018, 42, 1348–1357. [Google Scholar] [CrossRef]
- Gao, S.G.; Dai, L.X.; Wang, Y.; Liang, Z.L.; Zhou, Y.H.; Sun, C.B. Effects of WSSV and ammonia nitrogen stress on the enzyme activity and transcriptome of Litopenaeus vannamei. Aquacult. Rep. 2024, 39, 102412. [Google Scholar] [CrossRef]
- Wang, Z.J.; Chen, S.Q.; Cao, D.Z.; Lu, B.; Chang, Q.; Liu, C.L.; Yan, J.P. Effects of Acute Ammonia Nitrogen Stress on Histopathology of Gill and Liver and Enzyme Activities of Juvenile Verasper variegatus. Prog. Fish. Sci. 2017, 38, 59–69. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, J.; Zhang, Y.Q.; Yan, B.G.; Guan, Y.Q. Physico-chemical factors and microbial diversity analysis of water body in Chinese soft-shelled turtle Pelodiscus sinensis dark greenhouse culture. Hebei Fish. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Yin, H.B.; Yao, D.X.; Sun, Z.W.; Pan, W.Z.; Guo, S.Q. The nutritional composition of the muscles of siluriformes fishes in the river system of Heilomn Jiang. Acta Nutr. Sin. 2006, 28, 438–441. [Google Scholar] [CrossRef]
- He, J.Z.; Lv, Y.J.; Li, H.; Zhou, D.Y.; Huang, C.L. Research on nutritional composition based on Pseudobagrus ussuriensis. Agric. Technol. 2015, 35, 118–119. [Google Scholar] [CrossRef]
- Zhou, F.J.; Qiang, X.G.; Yu, X.S.; Chen, W.Y. Pseudobagrus Ussuriensis Domestication Breeding Trial. Sci. Fish. Farming 2010, 32–33. [Google Scholar]
- Cui, K.K.; Miao, J.C.; Li, H.M.; Bao, H.Y.; Xu, K.Q.; Zhang, J. Research on artificial breeding technology of Pseudobagrus ussuriensis. Hebei Fish. 2012, 3, 23–25. [Google Scholar] [CrossRef]
- Wu, Y.D. Fingerling cultivation and cage culture techniques of Pseudobagrus ussuriensis. Fujian Agric. Sci. Technol. 2016, 46–48. [Google Scholar] [CrossRef]
- He, H.M. Breeding Biology Research of Pseudobagrus ussuriensis. Master’s Dissertation, Soochow University, Suzhou, China, 2011. [Google Scholar] [CrossRef]
- Qi, Q.; Zhang, C.N.; Shi, S.; Liu, X.L.; Liu, Y.; Fu, L.; Meng, P.Y.; Zhang, Y.P.; Lv, P.P. Effects of ammonia stress on liver microstructure, antioxidant capability and inflammation-related genes and post-exposure recovery in the hybrid sturgeon (Acipenser baerii ♀ × Acipenser schrencki ♂). Aquac. Res. 2021, 53, 1782–1789. [Google Scholar] [CrossRef]
- Wu, L.M.; Xu, Y.F.; Li, Y.Q.; Li, Y.F.; Ma, X.; Wang, L.; Liu, H.F.; Yuan, S.Y.; Yang, H.; Li, X.J. Effects of acute ammonia nitrogen exposure on brain, gill, liver, and kidney histology of Qi River crucian carp (Carassius auratus). J. Fish. Sci. China 2020, 27, 789–800. [Google Scholar] [CrossRef]
- Zhang, W.X.; Sun, S.M.; Ge, X.P.; Zhu, J.; Li, B.; Miu, L.H.; Xia, S.L.; Zhang, Q.; Jiang, X.J. Acute effects of ammonia exposure on histopathology of gill, liver and kidney in juvenile Megalobrama amblycephala and the post-exposure recovery. J. Fish. China 2015, 39, 233–244. [Google Scholar] [CrossRef]
- Xue, L.Z.; Wu, S.Q.; Zhang, K.; Fan, H.P.; Chen, B.; Tian, T.; Lin, X. Ammonia Nitrogen: Effects on Acute Toxicity and Antioxidant Enzymes System in Liver of Juvenile of Allogynogenetic gibel carp ‘CASⅢ’. J. Agric. 2019, 9, 44–50. [Google Scholar]
- Li, M.J.; Wang, Q.; Zhang, T.; Ren, J.L.; Wang, Z.Y.; Zhao, W.L.; Wang, H.J.; Wang, C.L.; Yuan, X.Y. Growth, Antioxidant Capability, and Immunity of Blunt Snout Bream (Megalobrama amblycephala) Juveniles under Chronic Ammonia Nitrogen Stress. Fish. Sci. 2024, 43, 640–647. [Google Scholar] [CrossRef]
- Yang, S.Y.; Yang, X.X.; Li, Y.K.; Li, D.T.; Gong, Q.; Huang, X.L.; Wu, J.Y.; Huang, A.Q.; Kong, F.L.; Han, X.F.; et al. The multilevel responses of Acipenser baerii and its hybrids (A. baerii ♀ × A. schrenckii ♂) to chronic heat stress. Aquaculture 2021, 541, 736773. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.W.; Wang, L.K.; Feng, Z.X.; Zhang, X.G. A Review on The Processing and Analysis of Next-generation RNA-seg Data. Prog. Biochem. Biophys. 2010, 37, 834–846. [Google Scholar] [CrossRef]
- Huang, L.; Yin, H.; Qiu, H.Y.; Wang, H.Y.; Tao, C.Z.; Ran, Z.Q.; Xu, J.H.; Wang, P. Effects of starvation on the growth and metabolism of large yellow croaker(Larimichthys crocea) as revealed by transcriptomic analyses. Oceanol. Limnol. Sin. 2024, 55, 765–774. [Google Scholar] [CrossRef]
- Jia, S.T.; Li, G.; Huang, Y.C.; Hou, Y.S.; Gao, B.Q.; Lv, J.J. Identification of Genes and Long Non-Coding RNAs Putatively Related to Portunus trituberculatus Sex Determination and Differentiation Using Oxford Nanopore Technology Full-Length Transcriptome Sequencing. Int. J. Mol. Sci. 2024, 25, 11845. [Google Scholar] [CrossRef]
- Han, Z.F. Transcriptome Profiling Analysis and Transforming upon Acute Overstocking Stress in Larimichthys crocea. Master’s Dissertation, Jimei University, Xiamen, China, 2016. [Google Scholar]
- Zheng, Q.Z.; Tian, X. Study on determination method improvement of total nitrogen in wastewater with high concentration of ammonia nitrogen. Chin. J. Anal. Lab. 2017, 36, 957–960. [Google Scholar] [CrossRef]
- Shi, F.; Chen, Z.L.; Yao, M.S.; Huang, Y.; Xiao, J.; Ma, L.X.; Mo, J.J.; Lin, L.; Qin, Z.D. Effects of glutaraldehyde and povidone-iodine on apoptosis of grass carp liver and hepatocytes. Ecotoxicol. Environ. Saf. 2024, 272, 116078. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative the 2(-Delta Delta C(T)) Method. Methods 2002, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, C.Y.; Liu, W.J.; Xia, H.; Li, J.; Zhang, X.Z. Effects of toxic cyanobacteria and ammonia on flesh quality of blunt snout bream (Megalobrama amblycephala). J. Sci. Food Agric. 2017, 97, 1200–1206. [Google Scholar] [CrossRef]
- Shiogiri, N.S.; Paulino, M.G.; Carraschi, S.P.; Baraldi, F.G.; Cruz, C.D.; Fernandes, M.N. Acute exposure of a glyphosate-based herbicide affects the gills and liver of the Neotropical fish, Piaractus mesopotamicus. Environ. Toxicol. Pharmacol. 2012, 34, 388–396. [Google Scholar] [CrossRef]
- Hegazi, M.M.; Attia, Z.I.; Ashour, O.A. Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquat. Toxicol. 2010, 99, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, K. Effect of Ammonia on Some Tissue and Haematological Parameters of Juvenile Carp (Cyprinus carpio Linnaeus). Ph.D. Dissertation, Northeast Agricultural University, Harbin, China, 2007. [Google Scholar] [CrossRef]
- Hao, X.F.; Liu, Y.; Ling, Q.F. Acute Toxicity Test of Ammonia Nitrogen and Effects of Ammonia-N Stress on the Ultrastructure of Gill and Liver of Misgurnus andudicaudatus. J. Hydroecol. 2012, 33, 101–107. [Google Scholar] [CrossRef]
- Chen, Z.W.; Xu, R.; Zheng, X.D. Effects of Acute Ammonia Exposure on Histopathology of Gill, Liver and Kidney of Octopus minor. Period. Ocean Univ. China 2022, 52, 62–68. [Google Scholar] [CrossRef]
- Wen, J.F.; Lan, J.N.; Zhou, H.; Wang, P.F.; Qu, Y.J.; Li, J.E. Effects of different salinities on histological structure of digestive organs of juvenile Lateolabrax maculatus. J. South. Agric. 2019, 50, 2826–2832. [Google Scholar] [CrossRef]
- Chen, J.P.; Wu, H.H.; Shen, F.F.; Zhang, J.X.; Yu, R.M.; Fu, Y.J.; Zhao, D.Q.; Xie, G.Q.; He, Y.Q.; Li, X.J. Effects of Acute Temperature Stress on Antioxidant Enzyme Activities and Non-Specific lmmune Function in Juvenile Bullhead Fish Pseudobagrus ussuriensis. Fish. Sci. 2024, 43, 580–589. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, L.; Hu, Y.; Guo, Y.; Shi, Y.; Liu, Y.X.; Chen, K.J.; Wang, S.C.; Dai, J.H. Effects of Amino Acid-Chelated Trace Elements on the Liver and intestinal Health of Grass Carp. Period. Ocean Univ. China 2024, 54, 149–158. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, S.; Meng, L.X. Acute Toxicity of Thiamethoxam and Activities of Antioxidant Enzymes and Acetylcholinesterase in Juvenile Crucian Carp Carassius auratus. Fish. Sci. 2020, 39, 922–927. [Google Scholar] [CrossRef]
- Melanie, M.; Sergi, M.B. Malondialdehyde: Facts and Artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Banik, B.K.; Borah, P.; Jain, A. Reactive oxygen species(RoS): Key components in Cancer Therapies. Anti-Cancer Agents Med. Chem. 2022, 2, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Zhang, C.N.; Xu, R.Y.; Lv, C.R.; Xue, Y.; Wang, P.; Li, Z.Y.; Chen, M.Y. High Ammonia Nitrogen-Induced Reproductive Toxicity in Goldfish (Carassius auratus) Mature Ovary. Aquac. Res. 2024, 9, 1–9. [Google Scholar] [CrossRef]
- Chatterjee, R.; Chatterjee, J. Ros and oncogenesis with special reference to EMT and stemness. Eur. J. Cell Biol. 2020, 99, 151073. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Mailloux, R.J.; Jakob, U. Author Correction: Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Biol. 2024, 25, 758. [Google Scholar] [CrossRef] [PubMed]
- Karolina, J.; Karolina, D.; Justyna, K.; Dorota, K.; Joanna, K.; Katarzyna, J. Reactive oxygen species-sources, functions, oxidative damage. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2020, 48, 124–127. [Google Scholar]
- Zhang, L.X.; Wang, X.W.; Cueto, R.; Effi, C.; Zhang, Y.L.; Tan, H.M.; Qin, X.B.; Ji, Y.; Yang, X.F.; Wang, H. Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 2019, 26, 101284. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Jin, J.L.; Wang, Y.; Wu, Z.X.; Hergazy, A.; Lan, J.F.; Zhao, L.J.; Liu, X.L.; Chen, N.; Lin, L. Transcriptomic analysis of liver from grass carp (Ctenopharyngodon idellus) exposed to high environmental ammonia reveals the activation of antioxidant and apoptosis pathways. Fish Shellfish. Immunol. 2017, 63, 444–451. [Google Scholar] [CrossRef]
- Li, Y.D.; Zhou, F.L.; Huang, J.H.; Yang, L.S.; Jiang, S.; Yang, Q.B.; He, J.G.; Jiang, S.G. Transcriptome reveals involvement of immune defense, oxidative imbalance, and apoptosis in ammonia-stress response of the black tiger shrimp (Penaeus monodon). Fish Shellfish. Immunol. 2018, 83, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.Z.; Dan, L.J.; Bi, J.L.; Qin, H.; Zi, N.M.; Hao, R.L.; Xia, J.H. Differential Transcriptomic and Metabolomic Responses in the Liver of Nile tilapia (Oreochromis niloticus) Exposed to Acute Ammonia. Mar. Biotechnol. 2019, 21, 488–502. [Google Scholar] [CrossRef]
- Liu, P.; Wang, W.B.; Li, C.; Yan, S.P.; Li, Q.; Luo, X.M.; Zhang, S.H.; Zhang, Y.C.; Yao, L.R. Liver transcriptome of largemouth bass (Micropterus Samoides) under acute ammonia nitrogen stress. Acta Hydrobiol. Sin. 2024, 48, 713–724. [Google Scholar] [CrossRef]
- Dangelmaier, C.; Manne, B.K.; Liverani, E.; Jin, J.; Bray, P.; Kunapuli, S.P. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses. Thromb. Haemost. 2014, 111, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.L.; Yin, W.C.; Zhong, Y.C.; Luo, J.Q.; Liu, L.L.; Liu, W.Y.; Zhao, K. The role of PI3K/Akt signaling pathway in spinal cord injury. Biomed. Pharmacother. 2022, 156, 113881. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.B.; Chen, Q.Q.; Yang, J.S.; Huo, Q.S.; Chen, J.L.; Zhang, H.W. Research Progress on the Mechanism of Cell Autophagy on Steroid-Induced Avascular Necrosis of Femoral Head Based on PI3K/Akt/mTOR Signal Pathway. Tradit. Chin. Med. Rehabil. 2024, 1, 38–42+46. [Google Scholar] [CrossRef]
- Mercurio, L.; Albanesi, C.; Madonna, S. Recent Updates on the Involvement of P13K/AKT/mTOR Molecular Cascade in the pathogenesis of Hyperproliferative skin disorders. Front Med. 2021, 8, 665647. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xie, W.W.; Fang, Y.Z.; Xie, K.F.; Liu, W.D.; Tan, W.L. HnRNP-F promotes the proliferation of bladder cancer cells mediated by PI3K/AKT/FOXO1. J. Cancer 2021, 12, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.F.; Wang, Z.L.; Hao, M. The Research Progress of Pl3K/AKT/mTOR Signal Pathway in Gynecologic Malignancies. World Latest Med. Inf. 2018, 18, 85–87+92. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.Y. Relationship between KRAS and PlK3CA gene mutations and clinicopathological features and prognosis in breast cancer patients. Chin. J. Birth Health Hered. 2022, 30, 1767–1774. [Google Scholar] [CrossRef]
- Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Vari-ationsons on a theme. Oncogene 2008, 27, 5497–5510. [Google Scholar] [CrossRef]
- Yi, N.; Wang, L.; Wang, S.; Bao, Z.; Hu, N.; Li, L.H.; Jiang, Z.J.; Xu, G. Peiminine induces apoptosis in breast cancer MCF-7 cells by regulating Pl3K/Akt signaling pathway. J. Mod. Oncol. 2023, 31, 2180–2185. [Google Scholar] [CrossRef]
- Shen, Y.L.; Gao, X.D.; Gu, J.F. Study on the Hsp90 Inhibitors. World Notes Antibiot. 2013, 34, 145–148. [Google Scholar] [CrossRef]
- Gallerne, C.; Prola, A.; Lemaire, C. Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2. BBA-Mol. Cell Res. 2013, 1833, 1356–1366. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.Y.; Xue, M.; Chen, J.F.; Shi, H.Y.; Zhang, X.; Shi, D.; Liu, J.B.; Huang, L.P.; Wei, Y.W.; Liu, C.M.; et al. Porcine parvovirus replication is suppressed by activation of the PERK signaling pathway and endoplasmic reticulum stress-mediated apoptosis. Virology 2020, 539, 1–10. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence |
---|---|
lpl | F: GCAGAACACTATGAGGATGA |
R: CGGCACAACTACTGGAAT | |
fas | F: TTCATCCAGCAGTTCACAA |
R: CTCCAAGTCCATCTCCATAG | |
hspa4b | F: CTGAGGATGGTGTAAGTGAA |
R: GTGATGTGGTCTGTTCTGT | |
gapdhs | F: TCAAGGAGGCTGTCAAGA |
R: AAGATGGAGGAGTGAGTGT | |
il-1β | F: AAGGAGAACGATGGAATGG |
R: TCACAAGACAGTCAGGTATC | |
sod1 | F: GCAGGACCTCACTTCAAC |
R: GATGCCTATCACACCACAA | |
mydgf | F: CACATTCACCTACGCTTCT |
R: GGACATCATTCATCTCTTCTTC | |
elf1a | F: TCACTGCTCAGGTCATTATC |
R: CCAGACTTCAGGTTCTTAGG |
Sample | Clean Reads | Clean Data | Q30 (%) | GC Content (%) |
---|---|---|---|---|
CL1 | 44,208,260 | 6.56 | 93.61 | 47.78 |
CL2 | 47,306,374 | 7.01 | 93.32 | 48.01 |
CL3 | 42,949,174 | 6.38 | 92.72 | 47.76 |
T1L1 | 43,929,150 | 6.52 | 93.36 | 47.61 |
T1L2 | 52,127,084 | 7.74 | 93.20 | 47.67 |
T1L3 | 47,679,364 | 7.06 | 93.46 | 47.92 |
T2L1 | 43,789,086 | 6.52 | 93.12 | 47.78 |
T2L2 | 41,562,430 | 6.15 | 93.39 | 47.88 |
T3L3 | 41,109,378 | 6.12 | 93.21 | 48.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Sun, X.; Zhang, C.; Lv, C.; Liu, Y.; Du, J.; Qi, Q. Transcriptome Analysis of the Effect of Acute Ammonia Stress on Pseudobagrus ussuriensis Liver Tissue. Fishes 2025, 10, 17. https://doi.org/10.3390/fishes10010017
Shi S, Sun X, Zhang C, Lv C, Liu Y, Du J, Qi Q. Transcriptome Analysis of the Effect of Acute Ammonia Stress on Pseudobagrus ussuriensis Liver Tissue. Fishes. 2025; 10(1):17. https://doi.org/10.3390/fishes10010017
Chicago/Turabian StyleShi, Shun, Xiaohui Sun, Chunnuan Zhang, Chenran Lv, Yajuan Liu, Juan Du, and Qian Qi. 2025. "Transcriptome Analysis of the Effect of Acute Ammonia Stress on Pseudobagrus ussuriensis Liver Tissue" Fishes 10, no. 1: 17. https://doi.org/10.3390/fishes10010017
APA StyleShi, S., Sun, X., Zhang, C., Lv, C., Liu, Y., Du, J., & Qi, Q. (2025). Transcriptome Analysis of the Effect of Acute Ammonia Stress on Pseudobagrus ussuriensis Liver Tissue. Fishes, 10(1), 17. https://doi.org/10.3390/fishes10010017