Effects of Dissolved Potassium on Growth Performance, Body Composition, and Welfare of Juvenile African Catfish (Clarias gariepinus)
Abstract
:1. Introduction
2. Results
2.1. Water Quality
2.2. Fish Performance and Welfare Indicators
2.3. Proximate Body Composition
3. Discussion
3.1. Water Quality
3.2. Fish Performance and Welfare Indicators
3.3. Body Composition
3.4. Potential KOH Application
4. Materials and Methods
4.1. Experimental Design
4.2. Fish and Feeding
4.3. Experimental Units and Water Quality
4.4. Analysis of Feed and Fish
4.5. Performance Calculations
4.6. Ethology
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, C.W.; Wilson, J.R. Changes in Levels of Solutes during Osmotic Adjustment to Water Stress in Leaves of Four Tropical Pasture Species. Aust. J. Plant Physiol. 1981, 8, 77–91. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Beasley, C.A.; Ting, I.P. Osmoregulation in cotton fiber: Accumulation of potassium and malate during growth. Plant Physiol. 1975, 56, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Sodek, L.; Lea, P.J.; Miflin, B.J. Distribution and Properties of a Potassium-dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants. Plant Physiol. 1980, 65, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Murata, T.; Akazawa, T. Enzymic mechanism of starch synthesis in sweet potato roots: I. Requirement of potassium ions for starch synthetase. Arch. Biochem. Biophys. 1968, 126, 873–879. [Google Scholar] [CrossRef]
- Gajdanowicz, P.; Michard, E.; Sandmann, M.; Rocha, M.; Corrêa, L.G.G.; Ramírez-Aguilar, S.J.; Gomez-Porras, J.L.; González, W.; Thibaud, J.-B.; van Dongen, J.T.; et al. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc. Natl. Acad. Sci. USA 2011, 108, 864–869. [Google Scholar] [CrossRef] [Green Version]
- Hodgkin, A.L.; Horowicz, P. The Influence of Potassium and Chloride Ions on the Membrane Potential of Single Muscle Fibres. J. Physiol. 1959, 148, 127–160. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, A.; Takeuchi, N. On the Permeability of End-Plate Membrane during the Action of Transmitter. J. Physiol. 1960, 154, 52–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, A.; Laseter, A.H. A sodium-and potassium-stimulated adenosine triphosphatase from cardiac tissues—II: The effects of ouabain and other agents that modify enzyme activity. Biochem. Pharmacol. 1964, 13, 337–340. [Google Scholar] [CrossRef]
- Schweet, R.S.; Holley, R.W.; Allen, E.H. Amino Acid Activation in Hog Pancreas. Arch. Biochem. Biophys. 1957, 71, 311–325. [Google Scholar] [CrossRef]
- Garrahan, P.J.; Pouchan, M.I.; Rega, A.F. Potassium Activated Phosphatase from Human Red Blood Cells. The Mechanism of Potassium Activation. J. Physiol. 1969, 202, 305–327. [Google Scholar] [CrossRef] [Green Version]
- Gruener, N.; Avi-Dor, Y. Temperature-dependence of activation and inhibition of rat-brain adenosine triphosphatase activated by sodium and potassium ions. Biochem. J. 1966, 100, 762–767. [Google Scholar] [CrossRef] [Green Version]
- Reuben, J.; Cohn, M. Magnetic Resonance Studies of Manganese (II) Binding Sites of Pyruvate Kinase temperature effects and frequency dependence of proton relaxation rates of water. J. Biol. Chem. 1970, 245, 6539–6546. [Google Scholar] [CrossRef]
- Dersjant-Li, Y. Impact of dietary cation anion difference in fish and pigs: A comparative study. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 18 September 2000. [Google Scholar]
- Strauch, S.M.; Wenzel, L.C.; Bischoff, A.; Dellwig, O.; Klein, J.; Schüch, A.; Wasenitz, B.; Palm, H.W. Commercial African Catfish (Clarias gariepinus) Recirculating Aquaculture Systems: Assessment of Element and Energy Pathways with Special Focus on the Phosphorus Cycle. Sustainability 2018, 10, 1805. [Google Scholar] [CrossRef] [Green Version]
- Trejo-Téllez, L.I.; Gómez-Merino, F.C. Nutrient solutions for hydroponic systems. In Hydroponics—A Standard Methodology for Plant Biological Researches, 23rd ed.; Asao, T., Ed.; IntechOpen: London, UK, 2012; pp. 1–22. [Google Scholar]
- Palm, H.W.; Knaus, U.; Wasenitz, B.; Bischoff, A.A.; Strauch, S.M. Proportional up scaling of African catfish (Clarias gariepinus Burchell, 1822) commercial recirculating aquaculture systems disproportionally affects nutrient dynamics. Aquaculture 2018, 491, 155–168. [Google Scholar] [CrossRef]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Jijakli, M.H.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Emmens, C.W.; Marks, H.P. The effect of sodium and calcium on the toxicity of potassium in mice. J. Physiol. 1942, 101, 131–135. [Google Scholar] [CrossRef]
- Finch, C.A.; Sawyer, C.G.; Flynn, J.M. Clinical syndrome of potassium intoxication. Am. J. Med. 1946, 1, 337–352. [Google Scholar] [CrossRef]
- Neathery, M.W.; Pugh, D.G.; Miller, W.J.; Whitlock, R.H.; Gentry, R.P.; Allen, J.C. Potassium Toxicity and Acid-Base Balance from Large Oral Doses of Potassium to Young Calves. J. Dairy Sci. 1979, 62, 1758–1765. [Google Scholar] [CrossRef]
- Dowden, B.F.; Bennett, H.J. Toxicity of Selected Chemicals to Certain Animals. J. Water Pollut. Control Fed. 1965, 37, 1308–1316. [Google Scholar] [PubMed]
- Trama, F.B. The Acute Toxicity of Some Common Salts of Sodium, Potassium and Calcium to the Common Bluegill (Lepomis macrochirus Rafinesque). Proc. Acad. Nat. Sci. Phila. 1954, 106, 185–205. [Google Scholar]
- Wilson, R.P.; Naggar, G.E. Potassium requirements of fingerling channel catfish, Ichtalurus punctatus. Aquaculture 1992, 108, 169–175. [Google Scholar] [CrossRef]
- Shearer, K.D. Dietary Potassium Requirement of Juvenile Chinook Salmon. Aquaculture 1988, 73, 119–129. [Google Scholar] [CrossRef]
- Masser, M.P.; Rakocy, J.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems. SARC 1992, 452, 1–12. [Google Scholar]
- Shabala, S.; Shabala, L.; Van Volkenburgh, E. Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct. Plant Biol. 2003, 30, 507–514. [Google Scholar] [CrossRef]
- De Rijck, G.; Schrevens, E. Elemental bioavailability in nutrient solutions in relation to precipitation reactions. J. Plant Nutr. 1998, 21, 2103–2113. [Google Scholar] [CrossRef]
- Prüter, J.; Strauch, S.M.; Wenzel, L.C.; Klysubun, W.; Palm, H.W.; Leinweber, P. Organic Matter Composition and Phosphorus Speciation of Solid Waste from an African Catfish Recirculating Aquaculture System. Agriculture 2020, 10, 466. [Google Scholar] [CrossRef]
- Pantanella, E.; Cardarelli, M.; Colla, G.; Rea, E.; Marcucci, A. Aquaponics vs. Hydroponics: Production and Quality of Lettuce Crop. ISHS Acta Hortic. 2012, 927, 887–893. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture. SARC 2006, 454, 1–16. [Google Scholar]
- FAO. Fisheries and Aquaculture Information and Statistics Branch; FAO: Rome, Italy, 2021. [Google Scholar]
- Rakocy, J.E.; Bailey, D.S.; Shultz, R.C.; Thoman, E.S. Update on tilapia and vegetable production in the UVI aquaponic system. In New Dimensions on farmed Tilapia, Proceedings of the 6th International Symposium on Tilapia in Aquaculture Philippine International Convention Center Roxas Boulevard, Manila, Philippines, 12–16 September 2004, Band 1; Bolivar, R., Fitzsimmons, K.M., Mair, G.C., Eds.; Creative Unlimited: Old Bridge, NJ, USA, 2004. [Google Scholar]
- Schram, E.; Roques, J.A.; Abbink, W.; Spanings, T.; De Vries, P.; Bierman, S.; van de Vis, H.; Flik, G. The impact of elevated water ammonia concentration on physiology, growth and feed intake of African catfish (Clarias gariepinus). Aquaculture 2010, 306, 108–115. [Google Scholar] [CrossRef]
- Roques, J.A.C.; Schram, E.; Spanings, T.; van Schaik, T.; Abbink, W.; Boerrigter, J.; de Vries, P.; van de Vis, H.; Flik, G. The impact of elevated water nitrite concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822). Aquac. Res. 2015, 46, 1384–1395. [Google Scholar] [CrossRef]
- Schram, E.; Roques, J.A.C.; Abbink, W.; Yokohama, Y.; Spanings, T.; de Vries, P.; Bierman, S.; van de Vis, H.; Flik, G. The impact of elevated water nitrate concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822). Aquac. Res. 2014, 45, 1499–1511. [Google Scholar] [CrossRef]
- Strauch, S.M.; Bahr, J.; Baßmann, B.; Bischoff, A.A.; Oster, M.; Wasenitz, B.; Palm, H.W. Effects of Ortho-Phosphate on Growth Performance, Welfare and Product Quality of Juvenile African Catfish (Clarias gariepinus). Fishes 2019, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Lekang, O.I. Ammonia Removal. In Aquaculture Engineering, 1st ed.; Lekang, O.I., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2008; Volume 2, p. 122. [Google Scholar]
- Thurston, R.V.; Russo, R.C.; Vinogradov, G.A. Ammonia toxicity to fishes. Effect of pH on the toxicity of the unionized ammonia species. Environ. Sci. Technol. 1981, 15, 837–840. [Google Scholar] [CrossRef]
- Oellermann, L.K. A Comparison of the Aquaculture Potential of Clarias gariepinus (Burchell, 1822) and Its Hybrid with Heterobranchus longifilis Valenciennes, 1840 in Southern Africa. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 1995. [Google Scholar]
- Hogendoorn, H.; Jansen, J.A.J.; Koops, W.J.; Machiels, M.A.M.; Van Ewijk, P.H.; Van Hees, J.P. Growth and production of the African catfish, Clarias lazera (C. & V.): II. Effects of body weight, temperature and feeding level in intensive tank culture. Aquaculture 1983, 34, 265–285. [Google Scholar]
- Britz, P.J.; Hecht, T. Temperature preferences and optimum temperature for growth of African sharptooth catfish (Clarias gariepinus) larvae and postlarvae. Aquaculture 1987, 63, 205–214. [Google Scholar] [CrossRef]
- Britz, P.J. Environmental Requirements for the Hatchery Rearing of African Catfish Clarias gariepinus (Pisces: Clariidae) Larvae and Juveniles. Ph.D. Dissertation, Rhodes University Grahamstown, Grahamstown, South Africa, 1988. [Google Scholar]
- Van de Nieuwegiessen, P.G.; Boerlage, A.S.; Verreth, J.A.J.; Schrama, J.W. Assessing the effects of a chronic stressor, stocking density, on welfare indicators of juvenile African catfish, Clarias gariepinus Burchell. Appl. Anim. Behav. Sci. 2008, 115, 233–243. [Google Scholar] [CrossRef]
- Santos, G.A.; Schrama, J.W.; Mamauag, R.E.P.; Rombout, J.H.W.M.; Verreth, J.A.J. Chronic stress impairs performance, energy metabolism and welfare indicators in European seabass (Dicentrarchus labrax): The combined effects of fish crowding and water quality deterioration. Aquaculture 2010, 299, 73–80. [Google Scholar] [CrossRef]
- Ortuño, J.; Esteban, M.A.; Meseguer, J. Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L.) innate immune response. Fish Shellfish Immun. 2001, 11, 187–197. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Médale, F. Energy requirements, utilization and dietary supply to salmonids. Aquaculture 1994, 124, 81–97. [Google Scholar] [CrossRef]
- McCormick, S.; Farrell, A.; Brauber, C. Fish Physiology: Euryhaline Fishes, 1st ed.; Academic Press: Cambridge, UK, 2013. [Google Scholar]
- Furukawa, F.; Watanabe, S.; Kakumura, K.; Hiroi, J.; Kaneko, T. Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration. Am. J. Physiol. Regul. 2014, 307, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Horng, J.L.; Yu, L.L.; Liu, S.T.; Chen, P.Y.; Lin, L.Y. Potassium regulation in medaka (Oryzias latipes) larvae acclimated to fresh water: Passive uptake and active secretion by the skin cells. Sci. Rep. 2017, 7, 16215. [Google Scholar] [CrossRef] [Green Version]
- Toko, I.I.; Fiogbe, E.D.; Kestemont, P. Mineral status of African catfish (Clarias gariepinus) fed diets containing graded levels of soybean or cottonseed meals. Aquaculture 2008, 275, 298–305. [Google Scholar] [CrossRef]
- Ersoy, B.; Özeren, A. The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chem. 2009, 115, 419–422. [Google Scholar] [CrossRef]
- Gbadamosi, O.K.; Osungbemiro, N.R. Growth and nutritional performance of African catfish, Clarias gariepinus (Burchell, 1822) fed varying inclusion levels of dietary Moringa oleifera leaf meal. Livest. Res. Rural. Dev. 2016, 28, 1–9. [Google Scholar]
Parameter | Unit | Group | |||
---|---|---|---|---|---|
K0 | K200 | K400 | K600 | ||
DO | (mg L−1) | 6.5 a ± 4.6 | 6.3 b ± 5.1 | 6.4 a ± 7.2 | 6.2 a ± 5.0 |
DO | (%) | 84.9 a ± 5.8 | 81.6 b ± 5.3 | 84.1 a ± 6.9 | 84.8 a ± 4.9 |
Temperature | (°C) | 29.5 ab ± 2.4 | 29.1 c ± 2.3 | 29.5 a ± 2.5 | 29.8 b ± 2.4 |
pH | 6.8 ± 9.6 | 6.8 ± 7.9 | 6.8 ± 9.0 | 6.8 ± 7.1 | |
Conductivity | (µS cm−1) | 2382 a ± 4.7 | 2344 b ± 4.3 | 2411 a ± 4.6 | 2376 ab ± 3.6 |
TAN | (mg L−1) | 1.48 ± 128.9 | 0.98 ± 122.2 | 1.61 ± 133.9 | 0.66 ± 106.2 |
NO2−-N | (mg L−1) | 0.48 ab ± 56.9 | 0.35 b ± 44.4 | 0.59 a ± 63.0 | 0.52 a ± 49.1 |
TON | (mg L−1) | 30.0 ± 46.3 | 29.5 ± 43.9 | 32.9 ± 43.4 | 31.3 ± 40.6 |
NO3−-N | (mg L−1) | 29.6 ± 47.0 | 29.1 ± 44.4 | 32.3 ± 44.2 | 30.8 ± 41.4 |
TDN | (mg L−1) | 31.5 ± 48.4 | 30.4 ± 45.00 | 34.5 ± 46.3 | 32.0 ± 40.9 |
K+ | (mg L−1) | 11.7 a ± 34.7 | 217.7 b ± 27.4 | 418.5 c ± 30.6 | 671.0 d ± 23.5 |
PO43−-P | (mg L−1) | 3.4 ± 50.1 | 3.3 ± 61.1 | 3.6 ± 51.6 | 3.4 ± 50.8 |
Mg2+ | (mg L−1) | 9.6 ± 34.9 | 10.1 ± 29.5 | 10.2 ± 29.8 | 10.8 ± 22.7 |
Parameter | Unit | Group | |||
---|---|---|---|---|---|
K0 | K200 | K400 | K600 | ||
Initial weight (W0) | (g fish−1) | 28.6 ± 20.5 | 28.3 ± 22.0 | 29.6 ± 24.8 | 30.5 ± 23.6 |
Final weight (Wt) | (g fish−1) | 135.0 ± 22.3 | 138.7 ± 28.3 | 145.6 ± 32.7 | 140.7 ± 28.5 |
Final total length | (cm) | 26.4 ± 8.3 | 26.5 ± 9.1 | 26.6 ± 10.2 | 26.7 ± 8.4 |
Final standard length | (cm) | 23.7 ± 8.5 | 23.8 ± 9.1 | 23.9 ± 10.4 | 24.0 ± 8.5 |
Growth (G) | (g fish−1) | 106.6 ± 6.8 | 110.4 ± 2.1 | 116.0 ± 4.5 | 110.3 ± 13.5 |
SGR | (% BW d−1) | 3.4 ± 3.0 | 3.5 ± 0.6 | 3.5 ± 1.3 | 3.3 ± 5.6 |
FCR | - | 0.80 ± 5.91 | 0.76 ± 1.28 | 0.75 ± 2.50 | 0.80 ± 7.36 |
TFI | (g fish−1) | 84.5 ± 1.2 | 83.7 ± 1.3 | 87.4 ± 2.0 | 87.6 ± 7.5 |
Parameter | Unit | K0 | K200 | K400 | K600 |
---|---|---|---|---|---|
Skin lesions (biting wounds) * | (n fish−1) | 3.3 ab ± 68.7 | 3.0 b ± 78.9 | 4.1 ab ± 77.7 | 4.7 a ± 66.9 |
Swimming (individual) ** | (%) | 64.5 a ± 7.4 | 33.9 ab ± 20.6 | 53.8 a ± 15.9 | 23.1 b ± 3.3 |
Resting (individual) ** | (%) | 24.2 a ± 19.6 | 62.4 bc ± 12.4 | 42.5 ab ± 26.4 | 74.2 c ± 3.6 |
Agonistic behavior (individual) ** | (%) | 7.5 a ± 10.1 | 1.1 ab ± 70.7 | 1.1 ab ± 141.4 | 0.0 b ± N/A |
Air breathing (individual) ** | (n fish−1 h−1) | 30 ± 28.3 | 8 ± 93.5 | 10 ± 102.0 | 16 ± 77.1 |
Stereotypic behavior (individual) ** | (%) | 11.3 ± 141.4 | 0.0 ± N/A | 1.6 ± 141.4 | 0.0 ± N/A |
Stock resting (group) ** | (%) | 15.1 a ± 52.7 | 69.4 b ± 11.6 | 39.3 ab ± 36.8 | 71.0 b ± 21.9 |
Fight event (group) ** | (%) | 7.5 a ± 20.2 | 1.1 b ± 70.7 | 3.2 ab ± 40.8 | 0.0 b ± N/A |
Aggregation behavior (group) ** | (%) | 43.6 ± 15.1 | 87.6 ± 5.3 | 45.2 ± 44.0 | 78.5 ± 17.0 |
Feeding time *** | (min) | 2.8 a ± 27.9 | 4.1 b ± 56.1 | 3.7 b ± 28.5 | 15.1 c ± 78.7 |
Parameter | Unit | Group | |||
---|---|---|---|---|---|
K0 | K200 | K400 | K600 | ||
Moisture | (%, ww) | 73.4 ± 1.6 | 74.0 ± 0.6 | 75.2 ± 2.2 | 73.3 ± 0.2 |
Protein | (%, ww) | 14.8 ± 16.3 | 14.9 ± 14.6 | 14.7 ± 11.9 | 15.0 ± 12.9 |
Fat | (%, ww) | 5.8 ± 5.1 | 5.2 ± 8.7 | 5.2 ± 13.1 | 5.7 ± 3.8 |
Ash | (%, ww) | 3.7 ± 5.8 | 3.6 ± 11.3 | 4.1 ± 10.9 | 3.6 ± 6.0 |
Calcium | (g kg−1, dm) | 37.0 ± 6.3 | 39.7 ± 27.6 | 47.1 ± 24.0 | 42.7 ± 6.9 |
Phosphorus | (g kg−1, dm) | 24.4 ± 5.7 | 26.8 ± 16.3 | 29.6 ± 19.0 | 27.5 ± 4.7 |
Sodium | (g kg−1, dm) | 4.4 ± 10.5 | 5.2 ± 36.7 | 4.7 ± 2.2 | 5.0 ± 18.8 |
Magnesium | (g kg−1, dm) | 1.5 ± 1.4 | 1.5 ± 9.0 | 1.6 ± 9.8 | 1.5 ± 3.2 |
Potassium | (g kg−1, dm) | 12.2 ± 7.1 | 13.2 ± 18.5 | 13.1 ± 5.1 | 11.5 ± 0.5 |
Parameter | K0 | K200 | K400 | K600 |
---|---|---|---|---|
Protein | 35.6 ± 21.9 | 37.6 ± 18.4 | 37.3 ± 17.0 | 36.2 ± 16.0 |
Phosphorus | 63.4 ± 4.3 | 71.5 ± 16.0 | 76.2 ± 22.2 | 72.9 ± 7.7 |
Potassium | 50.0 ± 18.4 | 55.6 ± 20.7 | 52.1 ± 9.7 | 46.1 ± 6.8 |
Behavior | Definition | |
---|---|---|
Individual | Swimming | Active displacement of the body while browsing, moving, and eating. |
Resting | Moving passively through the water or lying still at the bottom of the tank. | |
Agonistic behavior | Chasing or biting a fish or being chased upon or bitten by another. | |
Air-breathing | The animal moves to the water surface and takes a gulp of air. Air from the gills of the fish escapes when it swims back to the bottom of the tank. | |
Stereotypic behavior | Continuous and compulsive swimming under a fixed, repetitive pattern for at least 10 s. | |
Group | Stock resting | More than 60% of the fishes in the stock show the behavior pattern “resting”. |
Fight event | Fight events between fishes that are not being individually observed. | |
Aggregation behavior | Gathering of more than 30% of the fishes of the stock in a small area, generally touching each other. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wenzel, L.C.; Strauch, S.M.; Eding, E.; Presas-Basalo, F.X.; Wasenitz, B.; Palm, H.W. Effects of Dissolved Potassium on Growth Performance, Body Composition, and Welfare of Juvenile African Catfish (Clarias gariepinus). Fishes 2021, 6, 11. https://doi.org/10.3390/fishes6020011
Wenzel LC, Strauch SM, Eding E, Presas-Basalo FX, Wasenitz B, Palm HW. Effects of Dissolved Potassium on Growth Performance, Body Composition, and Welfare of Juvenile African Catfish (Clarias gariepinus). Fishes. 2021; 6(2):11. https://doi.org/10.3390/fishes6020011
Chicago/Turabian StyleWenzel, Lisa Carolina, Sebastian Marcus Strauch, Ep Eding, Francisco Xose Presas-Basalo, Berit Wasenitz, and Harry Wilhelm Palm. 2021. "Effects of Dissolved Potassium on Growth Performance, Body Composition, and Welfare of Juvenile African Catfish (Clarias gariepinus)" Fishes 6, no. 2: 11. https://doi.org/10.3390/fishes6020011
APA StyleWenzel, L. C., Strauch, S. M., Eding, E., Presas-Basalo, F. X., Wasenitz, B., & Palm, H. W. (2021). Effects of Dissolved Potassium on Growth Performance, Body Composition, and Welfare of Juvenile African Catfish (Clarias gariepinus). Fishes, 6(2), 11. https://doi.org/10.3390/fishes6020011