DeepOtolith v1.0: An Open-Source AI Platform for Automating Fish Age Reading from Otolith or Scale Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Platform Architecture
2.2. Case Studies
2.2.1. Greenland Halibut (Reinhardtius hippoglossoides)
2.2.2. Atlantic Salmon (Salmo salar)
2.2.3. Greek Red Mullet (Mullus barbatus)
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Carbonara, P.; Follesa, M.C. Handbook on Fish Age Determination: A Mediterranean Experience; Studies and Reviews; FAO: Rome, Italy, 2019; p. 192. [Google Scholar]
- Wang, C.-H.; Benjamin, D.; Walther, B.D.; Gillanders, B.M. Introduction to the 6th International Otolith symposium. Mar. Freshw. Res. 2019, 70, i. [Google Scholar] [CrossRef]
- Williams, T.; Bedford, B.C. The use of otoliths for age determination. In The Ageing of Fish. Proceedings of the International Symposium; Bagenal, T.B., Ed.; Allen & Unwin: London, UK, 1974; pp. 114–123. [Google Scholar]
- Fisher, M.; Hunter, E. Digital omaging techniques in otolith data capture, analysis and interpretation. MEPS 2018, 598, 213–231. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.; Morison, A. Development of an Artificial Neural Network for Automated Age Estimation; Department of Natural Resources and Environment: Victoria, Australia, 2001; p. 299. ISBN 0-7311-5038-4.
- Fablet, R.; Le Josse, N. Automated fish age estimation from otolith images using statistical learning. Fish. Res. 2005, 72, 279–290. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.; Khan, M.B.; Bashier, E.B.M. Machine Learning: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of image classification algorithms based on convolutional neural networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Rothe, R.; Timofte, R.; Van Gool, L. Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 2018, 126, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Sabottke, C.F.; Breaux, M.A.; Spieler, B.M. Estimation of age in unidentified patients via chest radiography using convolutional neural network regression. Emerg. Radiol. 2020, 27, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.J.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2015; p. 433. [Google Scholar]
- Moen, E.; Handegard, N.O.; Allken, V.; Albert, O.T.; Harbitz, A.; Malde, K. Automatic interpretation of otoliths using deep learning. PLoS ONE 2018, 13, e0204713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordoñez, A.; Eikvil, L.; Salberg, A.B.; Harbitz, A.; Murray, S.M.; Kampffmeyer, M.C. Explaining decisions of deep neural networks used for fish age prediction. PLoS ONE 2020, 15, e0235013. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.R.; McLaren, J.; Peat, C.; Anjomrouz, M.; Horn, P.L.; Hoyle, S. Feasibility of Automating Otolith Ageing Using CT Scanning and Machine Learning. New Zealand Fish. Assess. Rep. 2019, 58, 23. [Google Scholar]
- Vabø, R.; Moen, E.; Smolinksi, S.; Husebo, A.; Handegard, N.O.; Malde, K. Automatic interpretation of salmon scales using deep learning. Ecol. Inform. 2021, 63, 101322. [Google Scholar] [CrossRef]
- Politikos, D.V.; Petasis, G.; Chatzispyrou, A.; Mytilineou, C.; Anastasopoulou, A. Automating fish age estimation combining otolith images and deep learning: The role of multitask learning. Fish. Res. 2021, 242, 106033. [Google Scholar] [CrossRef]
- Banks, A.; Porcello, E. Learning React, 2nd ed.; O’Reilly Media, Inc.: Newton, MA, USA, 2020. [Google Scholar]
- Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv 2013, arXiv:1312.6034. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database (In CVPR09). In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar] [CrossRef] [Green Version]
- ICES CM 2012/ACOM:60; Report of the Workshop on Age Reading of Red Mullet and Striped Red Mullet. ICES: Boulogne-sur-Mer, France, 2012; p. 52.
- ICES CM 2017/SSGIEOM:31; ICES, 2017. Workshop on Ageing Validation Methodology of Mullus Species (WKVALMU). Conversano. ICES: Conversano, Italy, 2017; p. 74.
- Vitale, F.; Clausen, L.W. Handbook of Fish Age Estimation Protocols and Validation Methods, ICES Cooperative Research Report No. 346. Available online: http://doi.org/10.17895/ices.pub.5221(accessed on 1 November 2021).
- Ordoñez, A.; Eikvil, L.; Salberg, A.-B.; Harbitz, A.; Elvarsson, B.Þ. Automatic fish age determination across different otolith image labs using domain adaptation. Fishes 2022, 7, 71. [Google Scholar] [CrossRef]
- Moore, B.R.; Ámar, Z.T.; Schimel, A.C.G.; Maolagáin, C.Ó.; Hoyle, S.D. Development of Deep Learning Approaches for Automating Age Estimation of Hoki and Snapper, New Zealand Fisheries Assessment Report 2021/69. 2021; 38. Available online: https://www.researchgate.net/publication/356601174_Development_of_deep_learning_approaches_for_automating_age_estimation_of_hoki_and_snapper_New_Zealand_Fisheries_Assessment_Report_202169(accessed on 1 November 2021).
- Salimi, N.; Loh, K.H.; Kaur Dhillon, S.; Chong, V.C. Fully-automated identification of fish species based on otolith contour: Using short-time Fourier transform and discriminant analysis (STFT-DA). PeerJ 2016, 4, e1664. [Google Scholar] [CrossRef] [PubMed]
- Lombarte, A.; Òscar, C.; Parisi-Baradad, V.; Olivella, R.; Piera, J.; García-Ladona, E. A Web-based Environment for Shape Analysis of Fish Otoliths. The AFORO database. Sci. Mar. 2006, 70, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Van Gansbeke, W.; Vandenhende, S.; Georgoulis, S.; Proesmans, M.; Van Gool, L. SCAN: Learning to Classify Images without Labels. arXiv 2020, arXiv:2005.12320. [Google Scholar]
- Blount, D.; Gero, S.; Van Oast, J.; Parham, J.; Kingen, C.; Scheiner, B.; Stere, T.; Fisher, M.; Minton, G.; Khan, C.; et al. Flukebook: An open-source ai platform for cetacean photo identification. Mamm. Biol. 2021, 5. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politikos, D.V.; Sykiniotis, N.; Petasis, G.; Dedousis, P.; Ordoñez, A.; Vabø, R.; Anastasopoulou, A.; Moen, E.; Mytilineou, C.; Salberg, A.-B.; et al. DeepOtolith v1.0: An Open-Source AI Platform for Automating Fish Age Reading from Otolith or Scale Images. Fishes 2022, 7, 121. https://doi.org/10.3390/fishes7030121
Politikos DV, Sykiniotis N, Petasis G, Dedousis P, Ordoñez A, Vabø R, Anastasopoulou A, Moen E, Mytilineou C, Salberg A-B, et al. DeepOtolith v1.0: An Open-Source AI Platform for Automating Fish Age Reading from Otolith or Scale Images. Fishes. 2022; 7(3):121. https://doi.org/10.3390/fishes7030121
Chicago/Turabian StylePolitikos, Dimitris V., Nikolaos Sykiniotis, Georgios Petasis, Pavlos Dedousis, Alba Ordoñez, Rune Vabø, Aikaterini Anastasopoulou, Endre Moen, Chryssi Mytilineou, Arnt-Børre Salberg, and et al. 2022. "DeepOtolith v1.0: An Open-Source AI Platform for Automating Fish Age Reading from Otolith or Scale Images" Fishes 7, no. 3: 121. https://doi.org/10.3390/fishes7030121
APA StylePolitikos, D. V., Sykiniotis, N., Petasis, G., Dedousis, P., Ordoñez, A., Vabø, R., Anastasopoulou, A., Moen, E., Mytilineou, C., Salberg, A. -B., Chatzispyrou, A., & Malde, K. (2022). DeepOtolith v1.0: An Open-Source AI Platform for Automating Fish Age Reading from Otolith or Scale Images. Fishes, 7(3), 121. https://doi.org/10.3390/fishes7030121