Influence of Total Suspended Solids on the Growth of the Sea Lettuce Ulva lactuca Integrated with the Pacific White Shrimp Litopenaeus vannamei in a Biofloc System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Origin of the Animals and Macroalgae
2.2. Lab-Scale Experiments
2.2.1. Experimental Design and Facilities
2.2.2. Biofloc Effluent and Culture Medium
2.3. Experiments in Greenhouse Conditions
2.3.1. Experimental Design and Facilities
2.3.2. Biofloc Effluent
2.4. Physical and Chemical Parameters
2.5. Growth and Nutrient Absorption by U. lactuca
2.6. Protein Analysis in U. lactuca
2.7. Performance of the Shrimp
- Final average weight (g): final biomass of live animals (g)/total number of animals;
- Final biomass yield (g): final weight of all live animals (g);
- Survival (%) = (final number of animals/initial number of animals) × 100;
- Feed conversion rate (FCR) = feed offered (g)/(final biomass (g) − initial biomass (g));
- Specific growth rate (g week−1): weight gain (g)/number of weeks;
- Productivity (kg m−3): [(final biomass (kg) − initial biomass (kg)) × 100]/tank volume (L).
2.8. Statistical Analysis
3. Results
3.1. Lab-Scale Experiments
3.2. Experiments in Greenhouse Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Da Silva, K.R.; Wasielesky, W.; Abreu, P.C. Nitrogen and Phosphorus Dynamics in the Biofloc Production of the Pacific White Shrimp, Litopenaeus vannamei. J. World Aquac. Soc. 2013, 44, 30–41. [Google Scholar] [CrossRef]
- Krummenauer, D.; Abreu, P.C.; Poersch, L.; Reis, P.A.C.P.; Suita, S.M.; dos Reis, W.G.; Wasielesky, W. The Relationship between Shrimp (Litopenaeus vannamei) Size and Biofloc Consumption Determined by the Stable Isotope Technique. Aquaculture 2020, 529, 735635. [Google Scholar] [CrossRef]
- Ferreira, G.S.; Santos, D.; Schmachtl, F.; Machado, C.; Fernandes, V.; Bögner, M.; Schleder, D.D.; Seiffert, W.Q.; Vieira, F.N. Heterotrophic, Chemoautotrophic and Mature Approaches in Biofloc System for Pacific White Shrimp. Aquaculture 2021, 533, 736099. [Google Scholar] [CrossRef]
- Verdian, A.H.; Effendi, I.; Budidardi, T.; Diatin, I. Production Performance Improvement of White Shrimp (Litopenaeus vannamei) Culture with Integrated Multi Trophic Aquaculture System in Seribu Islands, Jakarta, Indonesia. Iran. J. Fish. Sci. 2020, 19, 1415–1427. [Google Scholar] [CrossRef]
- Gaona, C.A.P.; de Almeida, M.S.; Viau, V.; Poersch, L.H.; Wasielesky, W. Effect of Different Total Suspended Solids Levels on a Litopenaeus vannamei (Boone, 1931) BFT Culture System during Biofloc Formation. Aquac. Res. 2017, 48, 1070–1079. [Google Scholar] [CrossRef]
- Ahmad, I.; Babitha Rani, A.M.; Verma, A.K.; Maqsood, M. Biofloc Technology: An Emerging Avenue in Aquatic Animal Healthcare and Nutrition. Aquac. Int. 2017, 25, 1215–1226. [Google Scholar] [CrossRef] [Green Version]
- Azim, M.E.; Little, D.C. The Biofloc Technology (BFT) in Indoor Tanks: Water Quality, Biofloc Composition, and Growth and Welfare of Nile Tilapia (Oreochromis niloticus). Aquaculture 2008, 283, 29–35. [Google Scholar] [CrossRef]
- Wasielesky, W.; Bezerra, A.; Poersch, L.; Hoffling, F.B.; Krummenauer, D. Effect of Feeding Frequency on the White Shrimp Litopenaeus vannamei during the Pilot-Scale Nursery Phase of a Superintensive Culture in a Biofloc System. J. World Aquac. Soc. 2020, 51, 1175–1191. [Google Scholar] [CrossRef]
- Brito, L.O.; Arantes, R.; Magnotti, C.; Derner, R.; Pchara, F.; Olivera, A.; Vinatea, L. Water Quality and Growth of Pacific White Shrimp Litopenaeus vannamei (Boone) in Co-Culture with Green Seaweed Ulva lactuca (Linaeus) in Intensive System. Aquac. Int. 2014, 22, 497–508. [Google Scholar] [CrossRef]
- Legarda, E.C.; da Silva, D.; Miranda, C.S.; Pereira, P.K.M.; Martins, M.A.; Machado, C.; de Lorenzo, M.A.; Hayashi, L.; do Nascimento Vieira, F. Sea Lettuce Integrated with Pacific White Shrimp and Mullet Cultivation in Biofloc Impact System Performance and the Sea Lettuce Nutritional Composition. Aquaculture 2021, 534, 736265. [Google Scholar] [CrossRef]
- Chopin, T. Marine Aquaculture in Canada: Well-Established Monocultures of Finfish and Shellfish and an Emerging Integrated Multi-Trophic Aquaculture (IMTA) Approach Including Seaweeds, Other Invertebrates, and Microbial Communities. Fisheries 2015, 40, 28–31. [Google Scholar] [CrossRef]
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.G. Ecological Engineering in Aquaculture—Potential for Integrated Multi-Trophic Aquaculture (IMTA) in Marine Offshore Systems. Aquaculture 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Mansilla, A.; Rodriguez, J.P.; Souza, J.M.C.; Rosenfeld, S.; Ojeda, J.; Yokoya, N.S. Growth Responses to Temperature, Salinity and Nutrient Variations, and Biomass Variation and Phenology of Ahnfeltia plicata (Rhodophyta, Ahnfeltiales): A Commercially Interesting Agarophyte from the Magellanic Region, Chile. J. Appl. Phycol. 2014, 26, 1133–1139. [Google Scholar] [CrossRef]
- Kılınç, B.; Cirik, S.; Turan, G. Seaweeds for Food and Industrial Applications. In Food Industry; IntechOpen: London, UK, 2013; pp. 735–748. [Google Scholar]
- de Alencar, J.R.; Junior, P.A.H.; Celino, J.J. Cultivo de Camarão Branco Litopenaeus vannamei (Boone, 1931) Com a Macroalga Ulva lacuata Linneaus ( Chlorophyta ) No Tratamento de Efluentes Em Sistema Fechado de Recirculação. Rev. Biol. Ciênc. Terra 2010, 10, 117–137. [Google Scholar]
- Ramos, R.; Vinatea, L.; Santos, J.; Da Costa, R. Tratamiento de Efluentes Del Cultivo de Litopenaeus vannamei Mediante Procesos de Sedimentación, Filtración y Absorción. Lat. Am. J. Aquat. Res. 2010, 38, 188–200. [Google Scholar] [CrossRef]
- El Baz, F.K.; El-Baroty, G.S.; Ibrahim, A.E.; Abd El Baky, H.H. Cytotoxicity, Antioxidants and Antimicrobial Activities of Lipids Extracted from Some Marine Algae. J. Aquac. Res. Dev. 2014, 5, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Turan, G.; Tekogul, H. The Turkish Mezzes Formulated with Protein-Rich Green Sea Vegetable (Chlorophyta), Ulva rigida, Cultured in Onshore Tank System. J. Aquat. Food Prod. Technol. 2014, 23, 447–452. [Google Scholar] [CrossRef]
- Copertino, M.D.S.; Tormena, T.; Seeliger, U. Biofiltering Efficiency, Uptake and Assimilation Rates of Ulva clathrata (Roth) J. Agardh (Clorophyceae) Cultivated in Shrimp Aquaculture Waste Water. J. Appl. Phycol. 2009, 21, 31–45. [Google Scholar] [CrossRef]
- Wei, Z.; You, J.; Wu, H.; Yang, F.; Long, L.; Liu, Q.; Huo, Y.; He, P. Bioremediation Using Gracilaria lemaneiformis to Manage the Nitrogen and Phosphorous Balance in an Integrated Multi-Trophic Aquaculture System in Yantian Bay, China. Mar. Pollut. Bull. 2017, 121, 313–319. [Google Scholar] [CrossRef]
- del Río, M.J.; Ramazanov, Z.; García-Reina, G. Ulva rigida (Ulvales, Chlorophyta) Tank Culture as Biofilters for Dissolved Inorganic Nitrogen from Fishpond Effluents. Hydrobiologia 1996, 326, 61–66. [Google Scholar] [CrossRef]
- Guiry, M.D.; Cunningham, E.M. Photoperiodic and Temperature Responses in the Reproduction of North-Eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 1984, 23, 357–367. [Google Scholar] [CrossRef]
- Krummenauer, D.; Peixoto, S.; Cavalli, R.O.; Poersch, L.H.; Wasielesky, W. Superintensive Culture of White Shrimp, Litopenaeus vannamei, in a Biofloc Technology System in Southern Brazil at Different Stocking Densities. J. World Aquac. Soc. 2011, 42, 726–733. [Google Scholar] [CrossRef]
- Unesco. Chemical Methods for Use in Marine Environmental Monitoring; Intergovernmental Oceanographic Commission: Paris, France, 1983. [Google Scholar]
- Bendschneider, K.; Robinson, R.J. A New Spectrophotometric Method for the Determination of Nitrite in Water; Technical Report No. 8; Office of Naval Research: Seattle, WA, USA, 1952. [Google Scholar]
- Samocha, T.M.; Patnaik, S.; Speed, M.; Ali, A.M.; Burger, J.M.; Almeida, R.V.; Ayub, Z.; Harisanto, M.; Horowitz, A.; Brock, D.L. Use of Molasses as Carbon Source in Limited Discharge Nursery and Grow out Systems for Litopenaeus vannamei. Aquac. Eng. 2007, 36, 184–191. [Google Scholar] [CrossRef]
- Aminot, A.; Chaussepied, M. Manuel des Analyses Chimiques en Milieu Marin; Centre National Pour L’Exploitation des Océans: Paris, France, 1983. [Google Scholar]
- Baumgarten, M.D.G.Z.; De Barros Rocha, J.M.; Niencheski, L.F.H. Manual de Análises em Oceanografia Química; Universidade Federal do Rio Grande: Rio Grande, Brazil, 1996. [Google Scholar]
- American Public Health Association APHA; American Water Works Association; Water Pollution Control Association. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Furtado, P.S.; Poersch, L.H.; Wasielesky, W. Effect of Calcium Hydroxide, Carbonate and Sodium Bicarbonate on Water Quality and Zootechnical Performance of Shrimp Litopenaeus vannamei Reared in Biofloc Technology (BFT) Systems. Aquaculture 2011, 321, 130–135. [Google Scholar] [CrossRef]
- Loureiro, R.R.; Reis, R.P.; Critchley, A.T. In Vitro Cultivation of Three Kappaphycus alvarezii (Rhodophyta, Areschougiaceae) Variants (Green, Red and Brown) Exposed to a Commercial Extract of the Brown Alga Ascophyllum nodosum (Fucaceae, Ochrophyta). J. Appl. Phycol. 2010, 22, 101–104. [Google Scholar] [CrossRef]
- Baethgen, W.E.; Alley, M. A Manual Colorimetric Procedure for Measuring Ammonium Nitrogen in Soil and Plant Kjeldahl Digests. Commun. Soil Sci. Plant Anal. 1989, 20, 961–969. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 2005; p. 245. [Google Scholar]
- Gaona, C.A.P.; Poersch, L.H.; Krummenauer, D.; Foes, G.K.; Wasielesky, W.J. Effect of Solids Removal on Production of Shrimp. Int. J. Recirc. Aquac. 2011, 12, 54–73. [Google Scholar]
- Khanjani, M.H.; Zahedi, S.; Mohammadi, A. Integrated Multitrophic Aquaculture (IMTA) as an Environmentally Friendly System for Sustainable Aquaculture: Functionality, Species, and Application of Biofloc Technology (BFT). Environ. Sci. Pollut. Res. 2022, 29, 67513–67531. [Google Scholar] [CrossRef]
- Granada, L.; Lopes, S.; Novais, S.C.; Lemos, M.F.L. Modelling Integrated Multi-Trophic Aquaculture: Optimizing a Three Trophic Level System. Aquaculture 2018, 495, 90–97. [Google Scholar] [CrossRef]
- Luo, M.B.; Liu, F.; Xu, Z.L. Growth and Nutrient Uptake Capacity of Two Co-Occurring Species, Ulva prolifera and Ulva linza. Aquat. Bot. 2012, 100, 18–24. [Google Scholar] [CrossRef]
- Duke, C.S.; Litaker, W.; Ramus, J. Effects of the Temperature, Nitrogen Supply and Tissue Nitrogen on Ammonium Uptake Rates of the Chlorophyte Seaweeds Ulva Curvata and Codium decorticatum. J. Phycol. 1989, 25, 113–120. [Google Scholar] [CrossRef]
- Fong, P.; Boyer, K.E.; Desmond, J.S.; Zedler, J.B. Salinity Stress, Nitrogen Competition, and Facilitation: What Controls Seasonal Succession of Two Opportunistic Green Macroalgae? J. Exp. Mar. Biol. Ecol. 1996, 206, 203–221. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Castelar, B.; Reis, R.P.; dos Santos Calheiros, A.C. Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) Cultivation in Brazilian Tropical Waters: Recruitment, Growth, and Ulvan Yield. J. Appl. Phycol. 2014, 26, 1989–1999. [Google Scholar] [CrossRef]
- Wyban, J.; Walsh, W.A.; Godin, D.M. Temperature Effects on Growth, Feeding Rate and Feed Conversion of the Pacific White Shrimp (Penaeus vannamei). Aquaculture 1995, 138, 267–279. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Sharifinia, M.; Hajirezaee, S. Effects of Different Salinity Levels on Water Quality, Growth Performance and Body Composition of Pacific White Shrimp (Litopenaeus vannamei Boone, 1931) Cultured in a Zero Water Exchange Heterotrophic System. Ann. Anim. Sci. 2020, 20, 1471–1486. [Google Scholar] [CrossRef]
- Schveitzer, R.; Arantes, R.; Costódio, P.F.S.; do Espírito Santo, C.M.; Arana, L.V.; Seiffert, W.Q.; Andreatta, E.R. Effect of Different Biofloc Levels on Microbial Activity, Water Quality and Performance of Litopenaeus vannamei in a Tank System Operated with No Water Exchange. Aquac. Eng. 2013, 56, 59–70. [Google Scholar] [CrossRef]
- Wasielesky, W.; Krummenauer, D.; Lara, G.; Fóes, G. Cultivo de Camarões Em Sistema de Bioflocos: Realidade e perspectivas. Rev. ABCC 2013, 15, 16–26. [Google Scholar]
- Poli, M.A.; Legarda, E.C.; de Lorenzo, M.A.; Pinheiro, I.; Martins, M.A.; Seiffert, W.Q.; do Nascimento Vieira, F. Integrated Multitrophic Aquaculture Applied to Shrimp Rearing in a Biofloc System. Aquaculture 2019, 511, 734274. [Google Scholar] [CrossRef]
Chemical Compounds | Medium Solution (g·L−1 dH2O) | Concentration Used | Concentration in the Final Medium (M) |
---|---|---|---|
Na2 β-glycerophosphate | 5.36 | 10 mL | 2.48 × 10−4 |
NaNO3 | 42.52 | 10 mL | 5.00 × 10−3 |
FeSO4·7H2O | 0.28 | 10 mL | 1.00 × 10−5 |
MnCl2·4H2O | 1.96 | 10 mL | 1.00 × 10−4 |
Na2 EDTA·2H2O | 3.72 | 10 mL | 1.00 ×10−4 |
Vitamins | - | 10 mL | |
Vitamins | |||
Thiamine HCl | - | 200 mg | 5.93 × 10−6 |
Biotin | 0.1 | 1 mL | 4.09 × 10−9 |
Cyanocobalamin | 0.2 | 1 mL | 1.48 × 10−9 |
Parameters | Treatments | ||
---|---|---|---|
BFT | DEC | VS | |
Initial weight (g) | 6.2 ± 0.1 | 6.2 ± 0.1 | 6.3 ± 0.1 |
Final weight (g) | 9.1 ± 2.2 | 7.9 ± 1.1 | 8.3 ± 1.8 |
RGR (% day−1) | 1.0 ± 0.7 | 0.7 ± 0.4 | 0.8 ± 0.6 |
Protein content (%) | 18.4 ± 0.5 a | 19.6 ± 1.4 a | 10.8 ± 2.4 b |
Parameters | Treatments | ||
---|---|---|---|
BFT | DEC | VS | |
Temperature (°C) | 26.6 ± 0.8 | 26.6 ± 0.8 | 26.5 ± 0.7 |
D.O (mg L−1) | 7.6 ± 0.2 | 7.8 ± 0.2 | 7.8 ± 0.2 |
pH | 8.3 ± 0.1 | 8.4 ± 0.1 | 8.4 ± 0.1 |
Salinity (‰) | 29.2 ± 2.9 | 29.1 ± 3.0 | 29.3 ± 2.3 |
Turbidity (NTU) | 30.3 ± 37.4 a | 3.3 ± 1.4 a | 1.0 ± 0.4 b |
Alkalinity (mg CaCO3 L−1) | 145.8 ± 6.0 | 140.3 ± 6.8 | Nd |
TSS (mg L−1) | 228.0 ± 109.8 b | 22.5 ± 6.8 a | Nd |
TAN (mg L−1) | 0.1 ± 0.0 a | 0.1 ± 0.0 a | 0.1 ± 0.0 a |
Nitrite (mg L−1) | 0.2 ± 0.1 a | 0.2± 0.1 a | 0.0± 0.0 b |
Nitrate (mg L−1) | 64.3 ± 4.6 a | 62.2 ± 4.6 a | 10.3 ± 2.9 b |
Phosphate (mg L−1) | 4.5 ± 0.8 a | 4.0 ± 0.7 a | 0.9 ± 0.2 b |
Parameters | Treatments | ||
---|---|---|---|
IMTA 1 | IMTA 2 | IMTA 3 | |
Initial fresh weight (g) | 150.5 ± 0.3 a | 300.5 ± 0.4 b | 450.6 ± 0.4 c |
Final fresh weight (g) | 88.5 ± 31.6 | 120.9 ± 18.8 | 195.8 ± 69.8 |
RGR (% day−1) | −1.7 ± 1.2 | −2.6 ± 0.4 | −2.5 ± 0.9 |
Initial Protein Content | Final Protein Content | |||
---|---|---|---|---|
IMTA 1 | IMTA 2 | IMTA 3 | ||
U. lactuca | 11.8 ± 0.0 b | 20.1 ± 0.7 a | 20.1 ± 1.3 a | 20.1 ± 1.0 a |
Parameters | Treatments | |||
---|---|---|---|---|
MONO C | IMTA 1 | IMTA 2 | IMTA 3 | |
Temperature (°C) | 26.3 ± 1.0 | 26.5 ± 0.8 | 26.5 ± 1.0 | 26.7 ± 0.9 |
D.O (mg L−1) | 7.3 ± 0.2 | 7.3 ± 0.2 | 7.3 ± 0.2 | 7.3 ± 0.2 |
pH | 8.1 ± 0.1 | 8.2 ± 0.1 | 8.2 ± 0.1 | 8.1 ± 0.1 |
Salinity (‰) | 30.0 ± 0.3 | 29.8 ± 0.3 | 28.8 ± 0.6 | 29.6 ± 0.5 |
Turbidity (NTU) | 243.6 ± 66.8 b | 142.6 ± 43.0 b | 117.5 ± 30.2 a | 121.1 ± 45.4 a |
Alkalinity (mg CaCO3 L−1) | 136.7 ± 12.4 b | 152.0 ± 8.7 a | 143.2 ± 9.8 ab | 148.8 ± 8.7 a |
TSS (mg L−1) | 423.3 ± 109.7 | 295.3 ± 92.7 | 297.3 ± 92.1 | 302.0 ± 78.7 |
SS (ml L−1) | 13.9 ± 7.80 b | 5.5 ± 2.7 a | 4.6 ± 2.3 a | 6.4 ± 3.5 a |
TAN (mg L−1) | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
Nitrite (mg L−1) | 1.3 ± 0.7 | 1.7 ± 0.8 | 1.3 ± 0.6 | 1.5 ± 0.7 |
Nitrate (mg L−1) | 62.0 ± 4.0 b | 42.0 ± 2.0 a | 51.3 ± 3.5 ab | 50.7 ± 5.5 ab |
Phosphate (mg L−1) | 3.4 ± 0.8 | 4.6 ± 1.1 | 2.7 ± 0.4 | 3.2 ± 0.0 |
Parameters | Treatments | |||
---|---|---|---|---|
MONO C | IMTA 1 | IMTA 2 | IMTA 3 | |
Final average weight (g) | 6.5 ± 0.5 | 6.8 ± 0.3 | 7.6 ± 0.3 | 7.4 ± 0.2 |
Survival (%) | 99.3 ± 0.7 | 100.0 ± 0.0 | 99.3 ± 0.7 | 99.3 ± 0.7 |
FCR | 2.0 ± 0.1 | 1.8 ± 0.1 | 1.7 ± 0.0 | 1.8 ± 0.1 |
WGW (g week−1) | 0.8 ± 0.3 | 0.9 ± 0.2 | 1.1 ± 0.2 | 1.0 ± 0.1 |
Final biomass (g) | 187.3 ± 22.4 | 205.2 ± 16.0 | 239.2 ± 11.5 | 230.4 ± 9.0 |
Productivity (kg m−3) | 1.9 ± 0.1 | 2.0 ± 0.1 | 2.3 ± 0.1 | 2.2 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, A.; Costa, L.C.d.O.; Holanda, M.; Poersch, L.H.; Turan, G. Influence of Total Suspended Solids on the Growth of the Sea Lettuce Ulva lactuca Integrated with the Pacific White Shrimp Litopenaeus vannamei in a Biofloc System. Fishes 2023, 8, 163. https://doi.org/10.3390/fishes8030163
Carvalho A, Costa LCdO, Holanda M, Poersch LH, Turan G. Influence of Total Suspended Solids on the Growth of the Sea Lettuce Ulva lactuca Integrated with the Pacific White Shrimp Litopenaeus vannamei in a Biofloc System. Fishes. 2023; 8(3):163. https://doi.org/10.3390/fishes8030163
Chicago/Turabian StyleCarvalho, Andrezza, Léa Carolina de Oliveira Costa, Mariana Holanda, Luís H. Poersch, and Gamze Turan. 2023. "Influence of Total Suspended Solids on the Growth of the Sea Lettuce Ulva lactuca Integrated with the Pacific White Shrimp Litopenaeus vannamei in a Biofloc System" Fishes 8, no. 3: 163. https://doi.org/10.3390/fishes8030163
APA StyleCarvalho, A., Costa, L. C. d. O., Holanda, M., Poersch, L. H., & Turan, G. (2023). Influence of Total Suspended Solids on the Growth of the Sea Lettuce Ulva lactuca Integrated with the Pacific White Shrimp Litopenaeus vannamei in a Biofloc System. Fishes, 8(3), 163. https://doi.org/10.3390/fishes8030163