Thermal Effects on Ecological Traits of Salmonids
Abstract
:1. Introduction
2. Metabolic Rates and Aerobic Scope
3. Growth
4. Adult Size
5. Reproductive Traits
6. Behavioural Traits
7. Discussion
8. Future Research
9. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Smolting
References
- USGCRP. Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 1–470. [Google Scholar]
- NOAA. State of the Climate: Global Climate Report for 2021. WMO 2022, 1290, 1–54. [Google Scholar]
- McKenzie, D.J.; Zhang, Y.; Eliason, E.J.; Schulte, P.M.; Claireaux, G.; Blasco, F.R.; Nati, J.J.H.; Farrell, A.P. Intraspecific variation in tolerance of warming in fishes. J. Fish Biol. 2021, 96, 1536–1551. [Google Scholar] [CrossRef]
- Volkoff, H.; Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 2020, 7, 307–320. [Google Scholar] [CrossRef]
- Schulte, P.M.; Healy, T.M.; Fangue, N.A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 2011, 51, 691–702. [Google Scholar] [CrossRef]
- Nelson, J.S. Fishes of the World, 4th ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kershner, J.L.; Williams, J.E.; Gresswell, R.E.; Lobón-Cerviá, J. Trout and Char of the World; American Fisheries Society: Bethesda, MD, USA, 2019. [Google Scholar]
- Bottom, D.L.; Jones, K.K.; Simenstad, C.A.; Smith, C.L. Reconnecting social and ecological resilience in salmon ecosystems. Ecol. Soc. 2009, 14, 5. [Google Scholar] [CrossRef]
- Watz, J.; Alvén, D.; Andreasson, P.; Aziz, K.; Blixt, M.; Calles, O.; Bjørnås, K.L.; Olsson, I.; Österling, M.; Stålhammar, S.; et al. Atlantic salmon in regulated rivers: Understanding river management through the ecosystem services lens. Fish Fish. 2022, 23, 478–491. [Google Scholar] [CrossRef]
- Jonsson, B.; Waples, R.S.; Friedland, K.D. Extinction considerations for diadromous fishes. ICES J. Mar. Sci. 1999, 56, 405–409. [Google Scholar] [CrossRef]
- Comte, L.; Buisson, L.; Daufresne, M.; Grenouillet, G. Climate-induced changes in freshwater fish distribution: Observed and predicted trends. Freshw. Biol. 2013, 58, 625–639. [Google Scholar] [CrossRef]
- Kovach, R.; Jonsson, B.; Jonsson, N.; Arismendi, I.; Williams, J.E.; Kerchner, J.L.; Al-Chokhachy, R.; Letcher, B.; Muhlfeld, C.C. Climate Change and the Future of Trout and Char. In Trout and Char of the World; American Fisheries Society: Bethesda, MD, USA, 2019; pp. 685–716. [Google Scholar]
- Muhlfeld, C.C.; Dauwalter, D.C.; D’Angelo, V.S.; Ferguson, A.; Giersch, J.J.; Impson, D.; Koizumi, I.; Kovach, R.; McGinnity, P.; Schöffmann, J.; et al. Global Status of Trout and Char: Conservation Challengers in the Twenty-First Century. In Trout and Char of the World; American Fisheries Society: Bethesda, MD, USA, 2019; pp. 717–760. [Google Scholar]
- Almodóvar, A.; Nicola, G.G.; Ayllón, D.; Elvira, B. Global warming threatens the persistence of Mediterranean brown trout. Glob. Chang. Biol. 2012, 18, 1549–1560. [Google Scholar] [CrossRef]
- Réalis-Doyelle, E.; Pasquet, A.; De Charleroy, D.; Fontaine, P.; Teletchea, F. Strong effects of temperature on the early life stages of a cold stenothermal fish species, brown trout (Salmo trutta L.). PLoS ONE 2016, 11, e0155487. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 9, 650. [Google Scholar] [CrossRef]
- Crozier, L.G.; Bruke, B.J.; Chasco, B.E.; Widener, D.L.; Zabel, R.W. Climate change threatens Chinook salmon throughout their life cycle. Commun. Biol. 2021, 4, 222. [Google Scholar] [CrossRef]
- Isaak, D.J.; Luce, C.H.; Rieman, B.E.; Nagel, D.E.; Peterson, E.E.; Horan, D.L.; Parkes, S.; Chandler, G.L. Effects of climate and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Ecol. Appl. 2010, 20, 1350–1371. [Google Scholar] [CrossRef]
- Kelly, S.; Moore, T.N.; de Eyto, E.; Dillane, M.; Goulon, C.; Guillard, J.; Lasne, E.; McGinnity, P.; Poole, R.; Winfield, I.J.; et al. Warming winters threaten peripheral Arctic charr populations of Europe. Clim. Chang. 2020, 63, 599–618. [Google Scholar] [CrossRef]
- Nicola, G.G.; Elvira, B.; Jonsson, B.; Ayllón, D.; Almodóvar, A. Local and global climatic drivers of Atlantic salmon decline in southern Europe. Fish. Res. 2018, 198, 78–85. [Google Scholar] [CrossRef]
- Almodóvar, A.; Ayllón, D.; Nicola, G.G.; Jonsson, B.; Elvira, B. Climate-driven bio-physical changes in feeding and breeding environments explain the decline of southernmost European Atlantic salmon populations. Can. J. Fish Aquat. Sci. 2019, 76, 1581–1595. [Google Scholar] [CrossRef]
- Atkins, P.W. Physical Chemistry, 6th ed.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Gillson, J.P.; Bašić, T.; Davison, P.I.; Riley, W.D.; Talks, L.; Walker, A.M.; Russell, I.C. A review of marine stressors impacting Atlantic salmon Salmo salar, with an assessment of the major threats to English stocks. Rev. Fish Biol. Fish. 2022, 32, 879–919. [Google Scholar] [CrossRef]
- Jonsson, B.; Forseth, T.; Jensen, A.J.; Næsje, T.F. Thermal performance in juvenile Atlantic salmon, Salmo salar L. Funct. Ecol. 2001, 15, 701–711. [Google Scholar] [CrossRef]
- Elliott, J.M.; Elliott, J.A. Temperature requirements of Atlantic salmon Salmo salar, brown trout, Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. J. Fish Biol. 2010, 77, 1793–1817. [Google Scholar] [CrossRef]
- Forseth, T.; Jonsson, B. The growth and food ration of piscivorous brown trout (Salmo trutta). Funct. Ecol. 1994, 8, 171–177. [Google Scholar] [CrossRef]
- Forseth, T.; Larsson, S.; Jensen, A.J.; Jonsson, B.; Näslund, I.; Berglund, I. Thermal growth performance of juvenile brown trout Salmo trutta: No support for thermal adaptation hypothesis. J. Fish Biol. 2009, 74, 133–149. [Google Scholar] [CrossRef]
- Lee, R.M.; Rinne, J.N. Critical thermal maxima of five trout species in the south-western United States. Trans. Am. Fish. Soc. 1980, 109, 632–635. [Google Scholar] [CrossRef]
- Bear, E.A.; McMahon, T.E.; Zale, A.V. Comparative thermal requirements of Westslope cutthroat trout and rainbow trout: Implications for species interactions and development of thermal protection standards. Trans. Am. Fish. Soc. 2007, 136, 1113–1121. [Google Scholar] [CrossRef]
- Hokanson, K.E.; Kleiner, C.F.; Thorslund, T.W. Effects of constant temperatures and diel temperatures of specific growth and mortality rates and yield of juvelile rainbow trout, Salmo gairdneri. J. Fish. Res. Bd. Can. 1977, 34, 639–648. [Google Scholar] [CrossRef]
- Railsback, S.F.; Rose, K.A. Bioenergetics modelling of stream trout growth: Temperature and food consumption effects. Trans. Am. Fish. Soc. 1999, 128, 241–256. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Davis, G.E. Effects of temperature and ration level on the growth and food conservation efficiency of Salmo gairdneri, Richardson. J. Fish Biol. 1977, 11, 87–98. [Google Scholar] [CrossRef]
- Brett, J.R. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Bd. Can. 1952, 9, 265–323. [Google Scholar] [CrossRef]
- Brett, J.R. Energic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of the sockeye salmon (Oncorhynchus nerka). Am. Zool. 1971, 11, 99–113. [Google Scholar] [CrossRef]
- Chen, Z.; Anttila, K.; Wu, J.; Whitney, C.K.; Hinch, S.G.; Farrell, A.P. Optimum and maximum temperatures of sockeye salmon (Oncorhynchus nerka) populations hatched at different temperatures. Can. J. Zool. 2013, 91, 265–274. [Google Scholar] [CrossRef]
- De Staso, J., III; Rahel, F.J. Influence of water temperature on interactions between juvenile Colorado River cutthroat trout and brook trout in a laboratory stream. Trans. Am. Fish. Soc. 1994, 123, 289–297. [Google Scholar] [CrossRef]
- Dickerson, B.R.; Vinyard, G.L. Effects of high chronic temperatures and diel temperature cycles on the survival and growth of Lahontan cutthroat trout. Trans. Am. Fish. Soc. 1999, 128, 516–521. [Google Scholar] [CrossRef]
- Beschta, R.L.; Bilby, R.E.; Brown, G.W.; Holtby, L.B.; Hofstra, T.D. Stream Temperature and Aquatic Habitat: Fisheries and Forestry Interactions. In Streamside Management: Forestry and Fishery Interactions; Salo, E.O., Cundy, T.W., Eds.; University of Washington, Institute of Forest Resources: Seattle, DC, USA, 1987; Volume 57, pp. 191–232. [Google Scholar]
- Snyder, G.R.; Blahm, T.H. Effects of increased temperature on cold-water organisms. J. Water Pollut. Cont. Fed. 1971, 43, 890–899. [Google Scholar]
- McCormick, J.H.; Hokanson, K.E.F.; Jones, B.R. Effects of temperature on growth and survival of young brook trout, Salvelinus fontinalis. J. Fish. Res. Bd. Can. 1972, 29, 1107–1112. [Google Scholar] [CrossRef]
- Selong, J.H.; McMahon, T.E.; Zale, A.V.; Barrows, F.T. Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Trans. Am. Fish. Soc. 2001, 130, 1026–1037. [Google Scholar] [CrossRef]
- McMahon, T.E.; Zale, A.V.; Barrows, F.T.; Selong, J.H.; Danehy, R.J. Temperature and competition between bull trout and brook trout: A test of the elevation refuge hypothesis. Trans. Am. Fish. Soc. 2007, 136, 1313–1326. [Google Scholar] [CrossRef]
- Larsson, S.; Forseth, T.; Berglund, I.; Jensen, A.J.; Näslund, I.; Elliott, J.M.; Jonsson, B. Thermal adaptation of Arctic charr: Experimental studies of growth in eleven charr populations from Sweden, Norway and Britain. Freshw. Biol. 2005, 50, 353–368. [Google Scholar] [CrossRef]
- Jobling, M.; Jørgensen, E.H.; Arnesen, A.M.; Ringø, E. Feeding, growth and environmental requirements of Arctic charr: A review of aquaculture potential. Aquacult. Int. 1993, 1, 20–46. [Google Scholar] [CrossRef]
- Takami, T.; Kitano, F.; Nakano, S. High water temperature influences on foraging responses and thermal death of dolly varden Salvelinus malma and whitespotted charr S. leucomaenis. Fish. Sci. 1997, 63, 6–8. [Google Scholar] [CrossRef]
- Kelly, N.I.; Burness, G.; McDermid, J.L.; Wilson, C.C. Ice age fish in a warming world: Minimal variation in thermal acclimation capacity among lake trout (Salvelinus namaycush) populations. Cons. Physiol. 2014, 16, cou025. [Google Scholar] [CrossRef]
- Edsall, T.A.; Cleland, J. Optimum temperature for growth and preferred temperatures of age-0 lake trout. N. Am. J. Fish. Manag. 2000, 20, 804–809. [Google Scholar] [CrossRef]
- Gibson, E.S.; Fry, F.E.J. The performance of the lake trout, Salvelinus namaycush, at various levels of temperature and oxygen pressure. Can. J. Zool. 1954, 32, 252–260. [Google Scholar] [CrossRef]
- Hasnain, S.S.; Minns, C.K.; Shuter, B.J. Key Ecological Temperature Metrics for Canadian Freshwater Fishes; Ontario Ministry of Natural Resources, Applied Research and Development Branch: Sault Ste. Marie, ON, Canada, 2010; pp. 1–42. [Google Scholar]
- Mallet, J.P.; Charles, S.; Persat, H.; Auger, P. Growth modelling in accordance with daily water temperature in European grayling (Thymallus thymallus L.). Can. J. Fish. Aquat. Sci. 1999, 56, 994–1000. [Google Scholar] [CrossRef]
- McLeay, D.J.; Knox, A.J.; Malick, J.G.; Birtwell, I.K.; Hartman, G.; Ennis, G.L. Effects on Arctic grayling (Thymallus arcticus) of short-term exposure to Yukon mining sediments: Laboratory and field studies. Can. Tech. Rep. Fish. Aquat. Sci. Ott. 1983, 1171, 1–134. [Google Scholar]
- Lohr, S.C.; Byorth, P.A.; Kaya, C.M.; Dwyer, W.P. High temperature tolerances of fluvial Arctic grayling and comparisons with summer river temperatures of the Big Hole River, Montana. Trans. Am. Fish. Soc. 1996, 125, 933–939. [Google Scholar] [CrossRef]
- Bennett, S.; Duarte, C.M.; Marbà, N.; Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B 2019, 374, 20180550. [Google Scholar] [CrossRef]
- Burggren, W.W. Inadequacy of typical physiological experimental protocols for investigating consequences of stochastic weather events emerging from global warming. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 316, 318–322. [Google Scholar] [CrossRef]
- Pacifici, M.; Foden, W.B.; Visconti, P.; Watson, J.E.M.; Butchart, S.H.M.; Kovacs, K.M.; Rondinini, C. Assessing species vulnerability to climate change. Nat. Clim. Chang. 2015, 5, 215–225. [Google Scholar] [CrossRef]
- Thorstad, E.B.; Bliss, D.; Breau, C.; Damon-Randall, K.; Sundt-Hansen, L.E.; Hatfield, E.M.C.; Horsburgh, G.; Hansen, H.; Maoiléidigh, N.Ó.; Sheehan, T.; et al. Atlantic salmon in a rapidly changing environment—Facing the challenges of reduced marine survival and climate. Aquat. Cons. Mar. Freshw. Ecosyst. 2021, 31, 2654–2665. [Google Scholar] [CrossRef]
- Sparks, M.M.; Westley, P.A.H.; Falke, J.A.; Quinn, T.P. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon. Glob. Chang. Biol. 2017, 23, 5203–5217. [Google Scholar] [CrossRef]
- Moran, E.V.; Hartig, F.; Bell, D.M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Chang. Biol. 2016, 22, 137–150. [Google Scholar] [CrossRef]
- Dahlke, F.T.; Wohlrab, S.; Butzin, M.; Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 2020, 369, 65–70. [Google Scholar] [CrossRef]
- Elliott, J.M. Quantitative Ecology and the Brown Trout; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Edwards, M.J.; Saunders, R.D.; Shiota, K. Effects of heat on embryos and foetuses. Int. J. Hypertherm. 2003, 19, 295–324. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N.; Hansen, M.M. Knock-on effects of environmental influences during embryonic development of ectothermic vertebrates. Q. Rev. Biol. 2022, 97, 95–139. [Google Scholar] [CrossRef]
- Verhoeven, K.J.F.; von Holdt, B.M.; Sork, V.L. Epigenetics in ecology and evolution: What we know and what we need to know. Mol. Ecol. 2016, 25, 1631–1638. [Google Scholar] [CrossRef]
- Greenberg, M.V.C.; Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607. [Google Scholar] [CrossRef]
- Fry, F.E.J. The Effect of Environmental Factors on the Physiology of Fish. In Fish Physiology VI; Hoar, W.S., Randall, D.J., Eds.; Academic Press: London, UK, 1971; pp. 1–98. [Google Scholar]
- Auer, S.K.; Anderson, G.J.; McKelvey, S.; Bassar, R.D.; McLennan, D.; Armstrong, J.D.; Nislow, K.H.; Downie, H.K.; McKelvey, L.; Morgan, T.A.J.; et al. Nutrients from salmon parents alter selection pressures on their offspring. Ecol. Lett. 2018, 21, 287–295. [Google Scholar] [CrossRef]
- Norin, T.; Malte, H.; Clark, T.D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 2014, 217, 244–251. [Google Scholar] [CrossRef]
- Schmidt-Nielsen, K. Scaling: Why Is Animal Size So Important? Cambridge University Press: New York, NY, USA, 1984. [Google Scholar]
- Rosenfeldt, J.; Van Leeuwen, T.; Richards, J.; Allen, D. Relationship between growth and standard metabolic rate: Measurement artefacts and implications for habitat use and life-history adaptation in salmonids. J. Anim. Ecol. 2015, 84, 4–20. [Google Scholar] [CrossRef]
- O’Connor, K.I.; Taylor, A.C.; Metcalfe, N.B. The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. J. Fish Biol. 2005, 57, 41–51. [Google Scholar] [CrossRef]
- McCarthy, I.D. Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation. J. Fish Biol. 2005, 57, 224–238. [Google Scholar] [CrossRef]
- Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 2010, 213, 881–893. [Google Scholar] [CrossRef]
- Reidy, S.P.; Kerr, S.R.; Nelson, J.A. Aerobic and anaerobic swimming performance of individual Atlantic cod. J. Exp. Biol. 2000, 203, 347–357. [Google Scholar] [CrossRef]
- Biro, P.A.; Stamps, J.A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol. Evol. 2010, 25, 653–659. [Google Scholar] [CrossRef]
- O’Connor, M.I.; Selig, E.R.; Pinsky, M.L.; Altermatt, T. Toward a conceptual synthesis for climate change responses. Glob. Ecol. Biogeogr. 2012, 21, 693–703. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Gutt, J. Impacts of climate variability and change on (marine) animals: Physiological underpinnings and evolutionary consequences. Integr. Comp. Biol. 2016, 56, 31–44. [Google Scholar] [CrossRef]
- Nati, J.J.H.; Svendsen, M.B.S.; Marras, S.; Killen, S.S.; Steffensen, J.F.; McKenzie, D.J.; Domenici, P. Intraspecific variation in thermal tolerance differs between tropical and temperate fishes. Sci. Rep. 2021, 11, 21272. [Google Scholar] [CrossRef]
- Eliason, E.J.; Clark, T.D.; Hague, M.J.; Hanson, L.M.; Gallagher, Z.S.; Jeffries, K.M.; Gale, M.K.; Patterson, D.A.; Hinch, S.G.; Farrell, A.P. Differences in thermal tolerance among sockeye salmon populations. Science 2011, 332, 109–112. [Google Scholar] [CrossRef]
- Oliny-Hébert, H.; Senay, C.; Enders, E.C.; Boisclair, D. Effects of diel temperature fluctuation on the standard metabolic rate of juvenile Atlantic salmon (Salmo salar): Influence of acclimation temperature and provenience. Can. J. Fish. Aquat. Sci. 2015, 72, 1306–1315. [Google Scholar] [CrossRef]
- Bossdorf, O.; Richards, C.L.; Pigliucci, M. Epigenetics for ecologists. Ecol. Lett. 2008, 11, 106–115. [Google Scholar] [CrossRef]
- Cook, C.J.; Wilson, C.C.; Burness, G. Impacts of environmental matching on the routine metabolic rate and mass of native and mixed-ancestry brook trout (Salvelinus fontinalis) fry. Cons. Physiol. 2018, 6, coy023. [Google Scholar] [CrossRef]
- Durtsche, R.D.; Jonsson, B.; Greenberg, L.A. Thermal conditions during embryogenesis influence metabolic rates of juvenile brown trout Salmo trutta. Ecosphere 2021, 12, e03374. [Google Scholar] [CrossRef]
- Conover, D.; Schultz, E.T. Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol. Evol. 1995, 10, 248–252. [Google Scholar] [CrossRef]
- Levins, R. Evolution in Changing Environments; Princeton University Press: Princeton, NJ, USA, 1968. [Google Scholar]
- Álvarez, D.; Cano, J.M.; Nicieza, A.G. Microgeographic variation in metabolic rate and energy storage of brown trout: Countergradient selection or thermal sensitivity? Evol. Ecol. 2006, 20, 345–363. [Google Scholar] [CrossRef]
- Millidine, K.J.; Armstrong, J.D.; Metcalfe, N.B. Juvenile salmon with high standard metabolic rates have higher energy costs but can process meals faster. Proc. R. Soc. Lond. B 2009, 276, 2103–2108. [Google Scholar] [CrossRef]
- Norin, T.; Clark, T.D. Fish face a trade-off between ‘eating big’ for growth efficiency and ‘eating small’ to retain aerobic capacity. Biol. Lett. 2017, 13, 20170298. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life Histories; Fish & Fisheries Series 33; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Brett, J.R. Some principles in the thermal requirements of fishes. Q. Rev. Biol. 1956, 31, 75–87. [Google Scholar] [CrossRef]
- Elliott, J.M. The energetics of feeding, metabolism, and growth of brown trout (Salmo trutta L.) in relation to body weight, water temperature and ration size. J. Anim. Ecol. 1976, 45, 923–948. [Google Scholar] [CrossRef]
- Elliott, J.M.; Hurley, M.A. Daily energy intake and growth of piscivorous brown trout, Salmo trutta. Freshw. Biol. 2000, 44, 237–245. [Google Scholar] [CrossRef]
- Rodnick, K.J.; Gamperl, A.K.; Lizars, K.R.; Bennett, M.T.; Rausch, R.N.; Keele, E.R. Thermal tolerane and metabolic physiology among redband trout population in south-eastern Oregon. J. Fish Biol. 2004, 64, 310–335. [Google Scholar] [CrossRef]
- Verhille, C.E.; English, K.K.; Cocherell, D.E.; Farrell, A.P.; Fangue, N.A. High thermal tolerance of a rainbow trout population near its southern range limit suggests local thermal adjustment. Cons. Physiol. 2016, 4, cow057. [Google Scholar] [CrossRef]
- Debes, P.V.; Solberg, M.F.; Matre, I.H.; Dyrhovden, L.; Glover, K.A. Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon. Heredity 2021, 127, 455–466. [Google Scholar] [CrossRef]
- Morita, K.; Fukuwaka, M.; Tanimata, N.; Yamamura, O. Size-dependent thermal preferences in a pelagic fish. Oikos 2010, 119, 1265–1272. [Google Scholar] [CrossRef]
- Haraldstad, Ø.; Jonsson, B. Age and sex segregation in habitat utilization by brown trout in a Norwegian lake. Trans. Am. Fish. Soc. 1983, 112, 27–37. [Google Scholar] [CrossRef]
- Lindmark, M.; Ohlberger, J.; Gårdmark, A. Optimum growth temperature declines with body size within fish species. Glob. Chang. Biol. 2022, 28, 2259–2271. [Google Scholar] [CrossRef]
- Archer, L.C.; Hutton, S.A.; Harman, L.; Poole, R.W.; Gargan, P.; McGinnity, P.; Reed, T.E. Associations between metabolic traits and growth rate in brown trout (Salmo trutta) depend on thermal regime. Proc. R. Soc. Lond. B 2021, 288, 20211509. [Google Scholar] [CrossRef]
- Finstad, A.G.; Jonsson, B. Effect of incubations temperature on growth performance in Atlantic salmon. Mar. Ecol. Progr. Ser. 2012, 454, 75–82. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N.; Finstad, A.G. Linking embryonic temperature with adult reproductive investment. Mar. Ecol. Progr. Ser. 2014, 515, 217–226. [Google Scholar] [CrossRef]
- Burgerhout, E.; Mommens, M.; Johansen, H.; Aunsmo, A.; Santi, N.; Andersen, Ø. Genetic background and embryonic temperature affect DNA methylation and expression of myogenin and muscle development in Atlantic salmon (Salmo salar). PLoS ONE 2017, 12, e179918. [Google Scholar] [CrossRef]
- Flewelling, S.; Parker, S.L. Effects of temperature and oxygen on growth and differentiation of embryos of the ground skink, Scincella lateralis. J. Exp. Zool. A 2015, 323, 445–455. [Google Scholar] [CrossRef]
- José-Edwards, D.S.; Oda-Ishii, I.; Nibu, Y.; Di Gregorio, A. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development. Development 2013, 140, 2422–2433. [Google Scholar] [CrossRef]
- Dorrity, M.W.; Saunders, L.M.; Duran, M.; Srivatsan, S.R.; Ewing, B.; Queitsch, C.; Shendure, J.; Raible, D.W.; Kimelman, D.; Trapnell, C. Proteostasis governs differential temperature sensitivity across embryonic cell types. bioRxiv 2022. [Google Scholar] [CrossRef]
- Jonsson, N.; Hansen, L.P.; Jonsson, B. Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge. J. Anim. Ecol. 1991, 60, 937–947. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Sexual size dimorphism in anadromous brown trout Salmo trutta. J. Fish Biol. 2015, 87, 187–193. [Google Scholar] [CrossRef]
- Atkinson, D. Temperature and organism size—A biological law for ectotherms? Adv. Ecol. Res. 1994, 25, 1–58. [Google Scholar]
- Alm, G. Connection between maturity, size and age in fishes. Rep. Inst. Freshw. Res. Drottningholm 1959, 40, 5–145. [Google Scholar]
- Jonsson, B.; Finstad, A.G.; Jonsson, N. Winter temperature and food quality affect age and size at maturity in ectotherms: An experimental test with Atlantic salmon. Can. J Fish. Aquat. Sci. 2012, 69, 1817–1826. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N.; Finstad, A.G. Effects of temperature and food quality on age at maturity of ectotherms: An experimental test of Atlantic salmon. J. Anim. Ecol. 2013, 82, 201–210. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N.; Albretsen, J. Environmental change influences the life history of salmon in the North Atlantic. J. Fish Biol. 2016, 88, 618–637. [Google Scholar] [CrossRef]
- Vollset, K.W.; Urdal, K.; Utne, K.; Thorstad, E.B.; Sægrov, H.; Raunsgard, A.; Skagseth, Ø.; Lennox, R.J.; Østborg, G.M.; Ugedal, O.; et al. Ecological regime shift in the Northeast Atlantic Ocean revealed from the unprecedented reduction in marine growth of Atlantic salmon. Sci. Adv. 2022, 8, eabk2542. [Google Scholar] [CrossRef]
- Bigler, B.S.; Welch, D.W.; Helle, J.H. A review of size trends among North Pacific salmon (Oncorhynchus spp.). Can. J. Fish. Aquat. Sci. 2011, 53, 455–465. [Google Scholar] [CrossRef]
- Oke, K.B.; Cunningham, C.J.; Westley, P.A.H.; Baskett, M.L.; Carlson, S.M.; Clark, J.; Hendry, A.P.; Karatayev, V.A.; Kendall, N.W.; Kibele, J.; et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 2020, 11, 4155. [Google Scholar] [CrossRef]
- Naiman, R.J.; Bilby, R.E.; Schindler, D.E.; Helfield, J.M. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 2002, 5, 399–417. [Google Scholar] [CrossRef]
- Walsh, J.C.; Pendray, J.E.; Godwin, S.C.; Artelle, K.A.; Kindsvater, H.K.; Field, R.D.; Harding, J.N.; Swain, N.R.; Reynolds, J.D. Relationships between Pacific salmon and aquatic and terrestrial ecosystems: Implications for ecosystem-based management. Ecology 2020, 101, e03060. [Google Scholar] [CrossRef]
- Ferguson, A.; Prodöhl, P.A. Identifying and conserving sympatric diversity in trout of the genus Salmo, with particular reference to Lough Melvin, Ireland. Ecol. Freshw. Fish 2022, 31, 177–207. [Google Scholar] [CrossRef]
- Levin, B.; Simonov, E.; Gabrielyan, B.K.; Mayden, R.L.; Rastorguev, S.M.; Roubenyan, H.R.; Sharko, F.S.; Nedoluzhko, A.V. Caucasian treasure: Genomics sheds light on the evolution of half-extinct Sevan trout, Salmo ischchan, species flock. Mol. Phylogen. Evol. 2022, 167, 107346. [Google Scholar] [CrossRef]
- Jonsson, B.; Hindar, K. Reproductive strategy of dwarf and normal Arctic charr (Salvelinus alpinus) from Vangsvatnet Lake, western Norway. Can. J. Fish. Aquat. Sci. 1982, 39, 1404–1413. [Google Scholar] [CrossRef]
- Bernatchez, L.; Renaut, S.; Whiteley, A.R.; Derome, N.; Jeukens, J.; Landry, L.; Lu, G.; Nolte, A.W.; Østbye, K.; Rogers, S.M.; et al. On the origin of species: Insights from the ecological genomics of lake whitefish. Philos. Trans. R. Soc. B 2010, 365, 1783–1800. [Google Scholar] [CrossRef]
- Hindar, K.; Jonsson, B. Habitat and food segregation of dwarf and normal Arctic charr (Salvelinus alpinus) from Vangsvatnet Lake, western Norway. Can. J. Fish. Aquat. Sci. 1982, 39, 1030–1045. [Google Scholar] [CrossRef]
- Hindar, K.; Jonsson, B. Ecological polymorphism in Arctic charr. Biol. J. Linn. Soc. 1993, 8, 63–74. [Google Scholar] [CrossRef]
- Snorrason, S.S.; Skulason, S.; Jonsson, B.; Malmqvist, H.; Jonasson, P.M.; Sandlund, O.T.; Lindem, T. Trophic specialization in Arctic charr Salvelinus alpinus (Pisces: Salmonidae): Morphological divergence and ontogenetic shifts. Biol. J. Linn. Soc. 1994, 52, 1–18. [Google Scholar] [CrossRef]
- Rougeux, C.; Bernatchez, L.; Gagnaire, P.-A. Modeling the multiple facets of speciation-with-gene-flow toward inferring the divergence history of lake whitefish species pairs (Coregonus clupeaformis). Gen. Biol. Evol. 2017, 9, 2057–2074. [Google Scholar] [CrossRef]
- Steinbacher, P.; Wanzenböck, J.; Brandauer, M.; Holper, R.; Landertshammer, J.; Mayr, M.; Platzl, C.; Stoiber, W. Thermal experience during embryogenesis contributes to the induction of dwarfism in whitefish Coregonus lavaretus. PLoS ONE 2017, 12, e0185384. [Google Scholar] [CrossRef]
- Scott, G.R.; Johnston, I.A. Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proc. Natl. Acad. Sci. USA 2012, 109, 14247–14252. [Google Scholar] [CrossRef]
- Morita, K.; Tamate, T.; Kuroki, M.; Nagasawa, T. Temperature-dependent variation in alternative migratory tactics and its implications for fitness and population dynamics in a salmonid fish. J. Anim. Ecol. 2014, 83, 1268–1278. [Google Scholar] [CrossRef]
- Morán, P.; Pérez-Figueroa, A. Methylation changes associated with early maturation stages in the Atlantic salmon. BMC Gen. 2011, 12, 86. [Google Scholar] [CrossRef]
- Pankhurst, N.W.; King, H. Temperature and salmonid reproduction: Implications for aquaculture. J. Fish Biol. 2010, 76, 69–85. [Google Scholar] [CrossRef]
- Debes, P.V.; Piavchenko, N.; Ruokolainen, A.; Ovaskainen, O.; Moustakas-Verho, J.E.; Parre, N.; Aykanat, T.; Erkinaro, J.; Primmer, C.R. Large single-locus effects for maturation timing are mediated via body condition in Atlantic salmon. bioRxiv 2019. [Google Scholar] [CrossRef]
- Fjelldal, P.G.; Hansen, T.; Huang, T.-S. Continuous light and elevated temperature can trigger maturation both during and immediately after smoltification in male Atlantic salmon (Salmo salar). Aquaculture 2011, 321, 93–100. [Google Scholar] [CrossRef]
- Baum, D.; Armstrong, J.D.; Metcalfe, N.B. The effect of temperature on growth and early maturation in a wild population of Atlantic salmon parr. J. Fish Biol. 2005, 67, 1370–1380. [Google Scholar] [CrossRef]
- Jonsson, N.; Jonsson, B. Trade-off between egg size and numbers in brown trout. J. Fish Biol. 1999, 55, 767–783. [Google Scholar] [CrossRef]
- Braun, D.C.; Patterson, D.A.; Reynolds, J.D. Maternal and environmental influences on egg size and juvenile life-history traits in Pacific salmon. Ecol. Evol. 2013, 3, 1727–1740. [Google Scholar] [CrossRef]
- Takatsu, K.; Brodersen, J. Repeated elevational clines of early life-history traits and their proximate mechanisms in brown trout. Freshw. Biol. 2023, 68, 609–620. [Google Scholar] [CrossRef]
- Einum, S.; Hendry, A.P.; Fleming, I.A. Egg-size evolution in aquatic environments: Does oxygen availability constrain size? Proc. R. Soc. Lond. B 2002, 269, 2325–2330. [Google Scholar] [CrossRef]
- Fleming, I.A.; Gross, M.R. Latitudinal clines: A trade-off between egg number and size in Pacific salmon. Ecology 1990, 71, 1–11. [Google Scholar] [CrossRef]
- Beacham, T.D.; Murray, C.B. Fecundity and egg size variation in North American Pacific salmon (Oncorhynchus). J. Fish Biol. 1993, 42, 485–508. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Early environments affect later performances in fishes. J. Fish Biol. 2014, 85, 155–188. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Trans-generational maternal effect: Temperature influences egg size of the offspring in Atlantic salmon Salmo salar. J. Fish Biol. 2016, 89, 1482–1489. [Google Scholar] [CrossRef]
- Venney, C.J.; Wellband, K.W.; Houle, C.; Garant, D.; Audet, C.; Bernatchez, L. Thermal regime during parental sexual maturation, but not during offspring rearing, modulates DNA methylation in brook charr (Salvelinus fontinalis). Proc. R. Soc. Lond. B 2022, 289, 20220670. [Google Scholar] [CrossRef]
- Biro, P.A.; Beckman, C.; Stamps, J.A. Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proc. R. Soc. Lond. B 2010, 277, 71–77. [Google Scholar] [CrossRef]
- Bartolini, T.; Burtail, S.; Porfiri, M. Temperature influences sociality and activity of freshwater fish. Environ. Biol. Fish. 2015, 98, 825–832. [Google Scholar] [CrossRef]
- Jonsson, B.; Ruud-Hansen, J. Water temperature as the primary influence on timing of seaward migrations of Atlantic salmon smolts. Can. J. Fish. Aquat. Sci. 1985, 42, 593–595. [Google Scholar] [CrossRef]
- Sykes, G.E.; Johnson, C.J.; Shrimpton, J.M. Temperature and flow effects on migration timing of Chinook salmon smolts. Trans. Am. Fish. Soc. 2009, 138, 1252–1265. [Google Scholar] [CrossRef]
- Otero, J.; L’Abée-Lund, J.H.; Castro-Santos, T.; Leonardsson, K.; Storvik, G.O.; Jonsson, B.; Dempson, B.; Russell, I.C.; Jensen, A.J.; Baglinière, J.L.; et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob. Chang. Biol. 2014, 20, 61–75. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Migratory timing, marine survival and growth of anadromous brown trout Salmo trutta in the River Imsa, Norway. J. Fish Biol. 2009, 74, 621–638. [Google Scholar] [CrossRef]
- Jonsson, N.; Jonsson, B. Time and size at seaward migration influence the sea survival of Atlantic salmon (Salmo salar L.). J. Fish Biol. 2014, 84, 1457–1473. [Google Scholar] [CrossRef]
- Russell, I.C.; Aprahamian, M.W.; Barry, J.; Davidson, I.C.; Fiske, P.; Ibbotson, A.T.; Kennedy, R.J.; Maclean, J.C.; Moore, A.; Otero, J.; et al. The influence of the freshwater environment and the biological characteristics of Atlantic salmon smolts on their subsequent marine survival. ICES J. Mar. Sci. 2012, 69, 1563–1573. [Google Scholar] [CrossRef]
- L’Abée-Lund, J.H.; Jonsson, B.; Jensen, A.J.; Sættem, L.M.; Heggberget, T.G.; Johnsen, B.O.; Næsje, T.F. Latitudinal variation in life history characteristics of sea-run migrant brown trout Salmo trutta. J. Anim. Ecol. 1989, 58, 525–542. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, M.; Jonsson, N. Optimal size at seaward migration in an anadromous salmonid. Mar. Ecol. Progr. Ser. 2016, 559, 193–200. [Google Scholar] [CrossRef]
- Jonsson, B.; L’Abée-Lund, J.H. Latitudinal clines in life history variables of anadromous brown trout in Europe. J. Fish Biol. 1993, 43 (Suppl. A), 1–16. [Google Scholar] [CrossRef]
- Budy, P.; Thiede, G.P.; Bouwes, N.; Petrosky, C.E.; Schaller, H. Evidence linking delayed mortality of snake river salmon to their earlier hydrosystem experience. N. Am. J. Fish Manag. 2002, 22, 35–51. [Google Scholar] [CrossRef]
- Lee, C.G.; Farrell, A.P.; Lotto, A.; Hinch, S.G.; Healey, M.C. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming. J. Exp. Biol. 2003, 206, 3253–3260. [Google Scholar] [CrossRef]
- Lee, C.G.; Farrell, A.P.; Lotto, A.; MacNutt, M.J.; Hinch, S.G.; Healey, M.C. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks. J. Exp. Biol. 2003, 206, 3239–3251. [Google Scholar] [CrossRef]
- Mathes, M.T.; Hinch, S.G.; Cooke, S.J.; Crossin, G.T.; Patterson, D.A.; Lotto, A.G.; Farrell, A.P. Effect of water temperature, timing, physiological condition, and lake thermal refugia on migrating adult Weaver Creek sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 2010, 67, 70–84. [Google Scholar] [CrossRef]
- Breau, C.; Cunjak, R.A.; Peake, S.J. Behaviour during elevated water temperatures: Can physiology explain movement of juvenile Atlantic salmon to cool water? J. Anim. Ecol. 2011, 80, 844–853. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Bergeron, N.E.; St-Hilaire, A. Temporal variability of thermal refuges and water temperature patterns in Atlantic salmon rivers. Remote Sens. Environ. 2013, 136, 358–373. [Google Scholar] [CrossRef]
- Wang, T.; Kelson, S.J.; Greer, G.; Tompson, S.E.; Carlson, S.M. Tributary confluences are dynamic thermal refuges for a juvenile salmonid in a warming river network. River Res. Appl. 2020, 36, 1076–1086. [Google Scholar] [CrossRef]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Hinch, S.G.; Rand, P.S. Optimal swimming speeds and forward-assisted propulsion: Energy-conserving behaviours of upriver-migrating adult salmon. Can. J. Fish. Aquat. Sci. 2000, 57, 2470–2478. [Google Scholar] [CrossRef]
- McElroy, B.; DeLonay, A.; Jacobson, R. Optimum swimming pathways of fish spawning migrations in rivers. Ecology 2012, 93, 29–34. [Google Scholar] [CrossRef]
- Armstrong, J.B.; Ward, E.J.; Schindler, D.E.; Lisi, P.J. Adaptive capacity at the northern front: Sockeye salmon behaviourally thermoregulate during novel exposure to warm temperatures. Cons. Physiol. 2016, 4, cow039. [Google Scholar] [CrossRef]
- Fakhari, M.; Raymond, J.; Martel, R.; Dugdale, S.J.; Bergeron, N.E. Identification of thermal refuges and water temperature patterns in salmonid-bearing subarctic rivers of northern Quebec. Geographies 2022, 2, 528–548. [Google Scholar] [CrossRef]
- Fenkes, M.; Shiels, H.A.; Fitzpatrick, J.L.; Nudds, R.L. The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes. Comp. Biochem. Physiol. A 2016, 193, 11–21. [Google Scholar] [CrossRef]
- Videler, J.J.; Weihs, D. Energetic advantages of burst-and-coast swimming of fish at high speeds. J. Exp. Biol. 1082, 97, 169–178. [Google Scholar] [CrossRef]
- Jonsson, B.; Gravem, F.R. Use of space and food by resident and migrant brown trout. Environ. Biol. Fish. 1985, 14, 281–293. [Google Scholar] [CrossRef]
- Hedger, R.D.; Kjellman, M.; Thorstad, E.B.; Strøm, J.F.; Rikardsen, A.H. Diving and feeding of adult Atlantic salmon when migrating through the coastal zone in Norway. Environ. Biol. Fish. 2022, 105, 589–604. [Google Scholar] [CrossRef]
- Jonsson, N.; Jonsson, B.; Hansen, L.P. Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon Salmo salar. J. Anim. Ecol. 1997, 66, 425–436. [Google Scholar] [CrossRef]
- Hendry, A.P.; Berg, O.K. Secondary sexual characters, energy use, senescence, and the cost of reproduction in sockeye salmon. Can. J. Zool. 1999, 77, 1663–1675. [Google Scholar] [CrossRef]
- Glebe, B.D.; Leggett, W.C. Temporal, intra-population differences in energy allocation and use by American shad (Alosa sapidissima) during the spawning migration. Can. J. Fish. Aquat. Sci. 1981, 38, 795–805. [Google Scholar] [CrossRef]
- Kallio-Nyberg, I.; Saloniemi, I.; Koljonen, M.L. Increasing temperature associated with increasing grilse proportion and smaller grilse size of Atlantic salmon. J. Appl. Ichthyol. 2020, 36, 288–297. [Google Scholar] [CrossRef]
- Quinn, T.P.; Adams, D.J. Environmental changes affecting the migratory timing of American shad and sockeye salmon. Ecology 1996, 77, 1151–1162. [Google Scholar] [CrossRef]
- Cooke, S.J.; Hinch, S.G.; Crossin, G.T.; Patterson, D.A.; English, K.K.; Healey, M.C.; Macdonald, J.S.; Shrimpton, J.M.; Young, J.L.; Lister, A.; et al. Physiological correlates of coastal arrival and river entry timing in late summer Fraser River sockeye salmon (Oncorhynchus nerka). Behav. Ecol. 2008, 19, 747–758. [Google Scholar] [CrossRef]
- Robarts, M.D.; Quinn, T.P. The migratory timing of adult summer-run steelhead in the Columbia River over six decades of environmental change. Trans. Am. Fish. Soc. 2002, 131, 523–536. [Google Scholar] [CrossRef]
- Berman, C.H.; Quinn, T.P. Behavioural thermoregulation and homing by spring chinook salmon, Oncorhynchus tshawytscha (Walbaum), in the Yakima River. J. Fish Biol. 1991, 39, 301–312. [Google Scholar] [CrossRef]
- Goniea, T.M.; Keefer, M.L.; Bjornn, T.C.; Peery, C.A.; Bennett, D.H.; Stuehrenberg, L.C. Behavioral thermoregulation and slowed migration by adult fall Chinook salmon in response to high Columbia River water temperatures. Trans. Am. Fish. Soc. 2006, 135, 408–419. [Google Scholar] [CrossRef]
- Hyatt, K.D.; Stockwell, M.M.; Rankin, D.P. Impact and adaptation responses of Okanagan River sockeye salmon (Oncorhynchus nerka) to climate variation and change effects during freshwater migration: Stock restoration and fisheries management implications. Can. Water Res. J. 2003, 28, 689–713. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Egg incubation temperature affects the timing of the Atlantic salmon Salmo salar homing migration. J. Fish Biol. 2018, 1016–1020. [Google Scholar] [CrossRef]
- Takatsu, K.; Selz, O.M.; Brodersen, J. Temperature regime during embryogenesis alters subsequent behavioural phenotypes of brown trout. Biol. Lett. 2022, 18, 20220369. [Google Scholar] [CrossRef]
- Bærum, K.M.; Finstad, A.G.; Ulvan, E.M.; Haugen, T.O. Population consequences of climate change through effects on functional traits of lentic brown trout in the sub-Arctic. Sci. Rep. 2021, 11, 14246. [Google Scholar] [CrossRef]
- Jonsson, B.; Greenberg, L. Egg incubation temperature influences population-specific outmigration rate of juvenile brown trout Salmo trutta. J. Fish Biol. 2022, 100, 909–917. [Google Scholar] [CrossRef]
- Koteja, P. The evolution of concepts on the evolution of endothermy in birds and mammals. Physiol. Biochem. Zool. 2004, 77, 1043–1050. [Google Scholar] [CrossRef]
- Brown, J.H.; Sibly, R.M. Life-history evolution under a production constrain. Proc. Natl. Acad. Sci. USA 2006, 103, 17595–17599. [Google Scholar] [CrossRef]
- Korwin-Kossakowski, M. The influence of temperature during the embryonic period on larval growth and development in carp Cyprinus carpio L. and grass carp, Ctenopharyngodon idella (Val.): Theoretical and practical aspects. Arch. Pol. Fish. 2008, 16, 231–314. [Google Scholar] [CrossRef]
- Martell, D.J.; Kieffer, J.D.; Trippel, E.A. Effects of temperature during early life history on embryonic and larval development and growth in haddock. J. Fish Biol. 2005, 66, 1558–1575. [Google Scholar] [CrossRef]
- Carballo, C.; Firmino, J.; Anjos, L.; Santos, S.; Power, D.M.; Manchad, M. Short- and long-term effects on growth and expression patterns in response to incubation temperatures in Singalese sole. Aquaculture 2018, 495, 222–231. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Differences in growth between offspring of anadromous and freshwater brown trout Salmo trutta. J. Fish Biol. 2021, 99, 18–24. [Google Scholar] [CrossRef]
- Mousseau, T.A.; Fox, C.W. The adaptive significance of maternal effects. Trends Ecol. Evol. 1998, 13, 403–407. [Google Scholar] [CrossRef]
- Salinas, S.; Munch, S.B. Thermal legacies: Trans-generational effects of temperature on growth in avertebrate. Ecol. Lett. 2012, 15, 159–163. [Google Scholar] [CrossRef]
- Stamps, J.A.; Luttbeg, B. Sensitive period diversity: Insight from evolutionary models. Q. Rev. Biol. 2022, 97, 243–295. [Google Scholar] [CrossRef]
- Nettle, D.; Bateson, M. Adaptive developmental plasticity: What is it, how can we recognize it and when can it evolve? Proc. R. Soc. Lond. B 2015, 282, 20151005. [Google Scholar] [CrossRef]
- Schlichting, C.D. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Syst. 1986, 17, 667–693. [Google Scholar] [CrossRef]
- Kelly, S.A.; Panhuis, T.M.; Stoehr, A.M. Phenotypic plasticity: Molecular mechanisms and adaptive significance. Comp. Physiol. 2012, 2, 1417–1439. [Google Scholar]
- Elphick, M.J.; Shine, R. Longterm effects of incubation temperature on the morphology and locomotor performance of hatchling lizards (Bassiana duperreyi, Scincidae). Biol. J. Linn. Soc. 1998, 63, 429–447. [Google Scholar] [CrossRef]
- Richards, C.L.; Bossdorf, O.; Pigliucci, M. What role does heritable epigenetic variation play in phenotypic evolution. BioScience 2010, 60, 232–237. [Google Scholar] [CrossRef]
- Rey, O.; Danchin, E.; Mirouze, M.; Loot, C.; Blanchet, S. Adaptation to global change: A transposable element-epigenetics perspective. Trends Ecol. Evol. 2016, 31, 514–526. [Google Scholar] [CrossRef]
- Donelson, J.M.; Wong, M.; Bootth, D.J.; Munday, P.L. Transgenerational plasticity of reproduction depends on rate of warming across generations. Evol. Appl. 2016, 9, 1072–1081. [Google Scholar] [CrossRef]
- Hu, J.; Barrett, R.D.H. Epigenetics in natural animal populations. J. Evol. Biol. 2017, 30, 1612–1632. [Google Scholar] [CrossRef]
- Tariel, J.; Luquet, É.; Plénet, S. Interactions between maternal, paternal, developmental, and immediate environmental effects on anti-predator behaviour of the snail Physa acuta. Front. Ecol. Evol. 2020, 8, 591074. [Google Scholar] [CrossRef]
- Kawecki, T.J.; Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 2004, 7, 1225–1241. [Google Scholar] [CrossRef]
- Bateson, P.; Gluckman, P.; Hanson, M. The biology of developmental plasticity and the Predictive Adaptive Response hypothesis. J. Physiol. 2014, 592, 2357–2368. [Google Scholar] [CrossRef]
- Lea, A.J.; Altman, J.; Alberts, S.C.; Tung, J. Resource base influences genome-wide DNA Methylation levels in wild baboons (Papio cynocephalus). Mol. Ecol. 2016, 25, 1681–1696. [Google Scholar] [CrossRef]
- Varriale, A.; Bernardi, G. DNA methylation and body temperature in fishes. Gene 2006, 385, 111–121. [Google Scholar] [CrossRef]
- Lallias, D.; Bernard, M.; Ciobotaru, C.; Dechamp, N.; Labbé, L.; Goardon, L.; Le Calvez, J.-M.; Bideau, M.; Fricot, A.; Prézelin, A.; et al. Sources of variation of DNA methylation in rainbow trout: Combined effects of temperature and genetic background. Epigenetics 2021, 16, 1031–1052. [Google Scholar] [CrossRef]
- Skjærven, K.H.; Hamre, K.; Penglase, S.; Finn, R.N.; Olsvik, P.A. Thermal stress alters expression of genes involved in one carbon and DNA methylation pathways in Atlantic cod embryos. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2014, 173, 17–27. [Google Scholar] [CrossRef]
- Ryu, T.; Veilleux, H.D.; Munday, P.L.; Jung, I.; Donelson, J.M.; Ravasi, T. An Epigenetic signature for within-generational plasticity of a reef fish to ocean warming. Front. Mar. Sci. 2020, 7, 00284. [Google Scholar] [CrossRef]
- Anastasiadi, D.; Diaz, N.; Piferrer, F. Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci. Rep. 2017, 7, 12401. [Google Scholar] [CrossRef]
- Beemelmanns, A.; Ribas, L.; Anastasiadi, D.; Moraleda-Prados, J.; Zanuzzo, F.S.; Rise, M.L.; Gamperl, A.K. DNA methylation dynamics in Atlantic salmon (Salmo salar) challenged with high temperature and moderate hypoxia. Front. Mar. Sci. 2021, 7, 604878. [Google Scholar] [CrossRef]
- Finstad, A.G.; Forseth, T.; Jonsson, B.; Bellier, E.; Hesthagen, T.; Jensen, A.J.; Hessen, D.O.; Foldvik, A. Competition exclusion along climate gradients: Energy efficiency influences the distribution of two salmonid fishes. Glob. Chang. Biol. 2011, 17, 1703–1711. [Google Scholar] [CrossRef]
Species | Optimal Temperature for Growth (°C) | Upper Critical Maximum Temperature (°C) | Upper Incipient Critical Temperature (°C) | References |
---|---|---|---|---|
Atlantic salmon Salmo salar | 16–20 | 28–33 | 27 | [24,25] |
Brown trout Salmo trutta | 13–17 | 26–30 | 22–25 | [25,26,27,28] |
Rainbow trout Oncorhynchus mykiss (Walbaum, 1792) | 15–19 | 30 | 24–27 | [29,30,31,32] |
Chinook salmon Oncorhynchus tshawytscha | 15–19 | 29 | 25 | [33] |
Sockeye salmon Oncorhynchus nerka (Walbaum, 1759) | 15 | 23–26 | [34,35] | |
Cutthroat trout Oncorhynchus clarkia (Richardson, 1836) | 13–14 | 28 | 19–25 | [29,36,37] |
Coho salmon Oncorhynchus kisutch (Walbaum, 1792) | 12–15 | 29 | 25–26 | [33,38] |
Chum salmon Oncorhynchus keta (Walbaum, 1792) | 12–14 | 32–34 | 22–24 | [33,38,39] |
Brook trout Salvelinus fontinalis (Mitchill, 1814) | 12–16 | 28–31 | 25 | [36,40,41,42] |
Arctic charr Salvelinus alpinus (L.) | 14–17 | 26–27 | 22–23 | [25,43,44] |
Whitespotted charr Salvelinus leucomaenis (Pallas, 1814) | 26–28 | [45] | ||
Lake trout Salvelinus namaycush (Walbaum, 1792) | 12 | 28–29 | 24 | [46,47,48,49] |
Bull trout Salvelinus confluentus | 12–16 | 25–29 | 21 | [41,42,44] |
Dolly varden Salvelinus malma (Walbaum, 1792) | 22–23 | [45] | ||
European grayling Thymallus thymallus (L., 1759) | 17 | 21 | [50] | |
Arctic grayling Thymallus arcticus (Pallas, 1776) | 29 | 23–25 | [51,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonsson, B. Thermal Effects on Ecological Traits of Salmonids. Fishes 2023, 8, 337. https://doi.org/10.3390/fishes8070337
Jonsson B. Thermal Effects on Ecological Traits of Salmonids. Fishes. 2023; 8(7):337. https://doi.org/10.3390/fishes8070337
Chicago/Turabian StyleJonsson, Bror. 2023. "Thermal Effects on Ecological Traits of Salmonids" Fishes 8, no. 7: 337. https://doi.org/10.3390/fishes8070337
APA StyleJonsson, B. (2023). Thermal Effects on Ecological Traits of Salmonids. Fishes, 8(7), 337. https://doi.org/10.3390/fishes8070337