Spatiotemporal Variations and Convergence Characteristics of Green Technological Progress in China’s Mariculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method for Measuring GTP in Mariculture
2.2. Dagum Gini Coefficient
2.3. Test of Convergence
2.3.1. σ Convergence
2.3.2. Absolute β Convergence
2.3.3. Conditional β Convergence
3. Results and Discussion
3.1. Temporal Variation of GTP in Mariculture
3.2. Spatial Variation of GTP in Mariculture
3.2.1. Overall Differences and Sources of GTP in Mariculture
3.2.2. Intra-Regional and Inter-Regional Variation in Mariculture GTP
3.3. Convergence Results
3.3.1. σ Convergence Results
3.3.2. Absolute Convergence Results
3.3.3. Conditional Convergence Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mc Carthy, U.; Uysal, I.; Badia-Melis, R.; Mercier, S.; O’Donnell, C.; Ktenioudaki, A. Global food security—Issues, challenges and technological solutions. Trends Food Sci. Technol. 2018, 77, 11–20. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Han, B.; Sun, R.; Xu, W.; Li, H.; He, J.; Li, J. China’s food security situation and key questions in the new era: A perspective of farmland protection. J. Geogr. Sci. 2022, 32, 1001–1019. [Google Scholar] [CrossRef]
- Yu, J.; Han, Q. Food security of mariculture in China: Evolution, future potential and policy. Mar. Policy 2020, 115, 103892. [Google Scholar] [CrossRef]
- Meng, W.; Feagin, R.A. Mariculture is a double-edged sword in China. Estuar. Coast. Shelf Sci. 2019, 222, 147–150. [Google Scholar] [CrossRef]
- Yuan, B.; Yue, F.; Wang, X.; Xu, H. The Impact of Pollution on China Marine Fishery Culture: An Econometric Analysis of Heterogeneous Growth. Front. Mar. Sci. 2021, 8, 760539. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Yu, L.; Liu, D.; Xu, N. Special aquatic products supply chain coordination considering bilateral green input in the context of high-quality development. Int. J. Found. Comput. Sci. 2022, 33, 819–844. [Google Scholar] [CrossRef]
- Xu, J.; Qin, T. Research on the efficiency of marine aquaculture production in Guangdong province based on the Malmquist index. Ocean. Dev. Manag. 2018, 35, 98–103. [Google Scholar]
- Guo, W.; Dong, S.; Qian, J.; Lyu, K. Measuring the Green Total Factor Productivity in Chinese Aquaculture: A Zofio Index Decomposition. Fishes 2022, 7, 269. [Google Scholar] [CrossRef]
- Ji, J.; Zeng, Q. A study on the total factor productivity of China’s Mariculture—Considered undesirable outputs based on global Malmquist-Luenberger index. J. Ocean. Univ. China (Soc. Sci.) 2017, 1, 43–48. [Google Scholar]
- Sun, Y.; Ji, J. Measurement and analysis of technological progress bias in China’s mariculture industry. J. World Aquacult. Soc. 2022, 53, 60–76. [Google Scholar] [CrossRef]
- Ji, J.; Sun, Y.; Yin, X. Study on green output bias of China’s mariculture technological progress. Environ. Sci. Pollut. Res. 2022, 29, 60558–60571. [Google Scholar] [CrossRef]
- Bouwman, L.; Beusen, A.; Glibert, P.M.; Overbeek, C.; Pawlowski, M.; Herrera, J.; Mulsow, S.; Yu, R.; Zhou, M. Mariculture: Significant and expanding cause of coastal nutrient enrichment. Environ. Res. Lett. 2013, 8, 044026. [Google Scholar] [CrossRef]
- Xu, J.; Han, L.; Yin, W. Research on the ecologicalization efficiency of mariculture industry in China and its influencing factors. Mar. Policy 2022, 137, 104935. [Google Scholar] [CrossRef]
- Liang, Y.; Cheng, X.; Zhu, H.; Shutes, B.; Yan, B.; Zhou, Q.; Yu, X. Historical evolution of mariculture in China during past 40 years and its impacts on eco-environment. Chin. Geogr. Sci. 2018, 28, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wu, W.; Li, Y.; Liu, Y.; Wang, X. Environmental effects of mariculture in China: An overall study of nitrogen and phosphorus loads. Acta Oceanol. Sin. 2022, 41, 4–11. [Google Scholar] [CrossRef]
- Wang, P.; Ji, J. Research on China’s mariculture efficiency evaluation and influencing factors with undesirable outputs—An empirical analysis of China’s ten coastal regions. Aquacult. Int. 2017, 25, 1521–1530. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wu, W.; Yang, J.; Wu, N.; Zhang, J. Experimental Study of the Environmental Effects of Summertime Cocultures of Seaweed Gracilaria lemaneiformis (Rhodophyta) and Japanese Scallop Patinopecten yessoensis in Sanggou Bay, China. Fishes 2022, 6, 53. [Google Scholar] [CrossRef]
- Ji, J.; Li, Y. Research on green technology progress measurement and influencing factors in marine aquaculture industry in China. J. Ocean. Univ. China (Soc. Sci.) 2019, 2, 45–50. [Google Scholar]
- Ren, W.; Zeng, Q. Is the green technological progress bias of mariculture suitable for its factor endowment?—Empirical results from 10 coastal provinces and cities in China. Mar. Policy 2021, 124, 104338. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA—A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- He, Q.; Du, J. The impact of urban land misallocation on inclusive green growth efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2021, 29, 3575–3586. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.H. A global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Vassdal, T.; Sørensen Holst, H.M. Technical progress and regress in Norwegian salmon farming: A Malmquist index approach. Mar. Resour. Econ. 2011, 26, 329–341. [Google Scholar] [CrossRef]
- Ji, J.; Liu, L.; Xu, Y.; Zhang, N. Spatio-Temporal disparities of mariculture area production efficiency considering undesirable output: A case study of China’s east coast. Water 2022, 14, 324. [Google Scholar] [CrossRef]
- Chen, Y.; Song, G.; Zhao, W.; Chen, J. Estimating pollutant loadings from mariculture in China. Mar. Environ. Sci. 2016, 35, 1–6. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, X.; Robinson, S. Structural change and economic growth in China. Rev. Dev. Econ. 2003, 7, 360–377. [Google Scholar] [CrossRef]
- Dagum, C. A new approach to the decomposition of the Gini income inequality ratio. Empir. Econ. 1997, 22, 515–531. [Google Scholar] [CrossRef]
- Ji, J.; Wang, D. Regional differences, dynamic evolution, and driving factors of tourism development in Chinese coastal cities. Ocean Coast. Manag. 2022, 226, 106262. [Google Scholar] [CrossRef]
- Lerman, R.I.; Yitzhaki, S. Improving the accuracy of estimates of Gini Coefficients. J. Econ. 1989, 42, 43–47. [Google Scholar] [CrossRef]
- Yu, C.; Wenxin, L.; Khan, S.U.; Yu, C.; Jun, Z.; Yue, D.; Zhao, M. Regional Differential Decomposition and Convergence of Rural Green Development Efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 22364–22379. [Google Scholar] [CrossRef]
- Mohammadi, H.; Ram, R. Cross-country convergence in energy and electricity consumption, 1971–2007. Energy Econ. 2012, 34, 1882–1887. [Google Scholar] [CrossRef]
- Zhuang, W.; Wang, Y.; Lu, C.C.; Chen, X. The green total factor productivity and convergence in China. Energy Sci. Eng. 2022, 10, 2794–2807. [Google Scholar] [CrossRef]
- Zhu, L.; Shi, R.; Mi, L.; Liu, P.; Wang, G. Spatial Distribution and Convergence of Agricultural Green Total Factor Productivity in China. Int. J. Environ. Res. Public Health 2022, 19, 8786. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-i-Martin, X. Convergence. J. Political Econ. 1992, 100, 223–251. [Google Scholar] [CrossRef]
- Hu, J. Green productivity growth and convergence in Chinese agriculture. J. Environ. Plann. Manag. 2023, 2, 1–30. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, J.; Li, L.; Gu, X. Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces. Energy Econ. 2020, 86, 104702. [Google Scholar] [CrossRef]
- Jiang, L.; Folmer, H.; Ji, M.; Zhou, P. Revisiting cross-province energy intensity convergence in China: A spatial panel analysis. Energy Policy 2018, 121, 252–263. [Google Scholar] [CrossRef]
- Lin, X.; Zheng, L.; Li, W. Measurement of the contributions of science and technology to the marine fisheries industry in the coastal regions of China. Mar. Policy 2019, 108, 103647. [Google Scholar] [CrossRef]
- Cao, L.; Chen, Y.; Dong, S.; Hanson, A.; Huang, B.; Leadbitter, D.; Little, D.C.; Pikitch, E.K.; Qiu, Y.S.; de Mitcheson, Y.S.; et al. Opportunity for marine fisheries reform in China. Proc. Natl. Acad. Sci. USA 2017, 114, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Liu, R.; Lin, Z. “Crisis” or “opportunity”? COVID-19 pandemic’s impact on environmentally sound invention efficiency in China. Front. Public Health 2022, 10, 1102680. [Google Scholar] [CrossRef] [PubMed]
Provinces | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tianjin | 1.003 | 0.999 | 1.059 | 1.019 | 1.133 | 1.007 | 1.048 | 1.023 | 0.913 | 1.020 | 0.967 | 0.930 |
Hebe | 1.213 | 0.955 | 1.050 | 1.002 | 1.920 | 1.036 | 0.838 | 1.387 | 0.920 | 1.325 | 0.697 | 1.185 |
Liaoning | 0.977 | 1.002 | 0.998 | 1.086 | 1.514 | 0.975 | 0.868 | 1.303 | 0.943 | 1.127 | 0.742 | 1.012 |
Jiangsu | 0.918 | 1.031 | 1.064 | 1.035 | 1.338 | 0.916 | 0.867 | 1.310 | 0.970 | 1.023 | 0.914 | 0.900 |
Zhejiang | 1.087 | 1.029 | 1.019 | 1.005 | 1.018 | 1.035 | 1.002 | 1.001 | 1.034 | 0.995 | 0.990 | 0.972 |
Fujian | 1.048 | 1.110 | 1.071 | 1.075 | 1.117 | 1.107 | 1.021 | 1.050 | 0.897 | 1.089 | 0.996 | 0.989 |
Shandong | 1.028 | 0.999 | 1.055 | 1.018 | 1.115 | 1.040 | 1.003 | 1.058 | 0.946 | 1.045 | 0.948 | 1.073 |
Guangdong | 1.039 | 1.059 | 1.062 | 0.996 | 1.026 | 1.061 | 1.004 | 1.032 | 1.033 | 1.024 | 1.004 | 0.991 |
Guangxi | 1.079 | 1.004 | 1.136 | 0.982 | 1.083 | 1.056 | 1.082 | 1.019 | 1.012 | 1.056 | 1.027 | 0.886 |
Hainan | 1.048 | 1.120 | 1.031 | 1.010 | 1.050 | 0.992 | 1.013 | 1.005 | 1.009 | 1.008 | 0.987 | 0.974 |
Provinces | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tianjin | 1.000 | 1.003 | 1.002 | 1.061 | 1.081 | 1.225 | 1.233 | 1.292 | 1.321 | 1.206 | 1.230 | 1.188 | 1.106 |
Hebei | 1.000 | 1.213 | 1.158 | 1.216 | 1.218 | 2.340 | 2.424 | 2.032 | 2.818 | 2.593 | 3.435 | 2.396 | 2.840 |
Liaoning | 1.000 | 0.977 | 0.980 | 0.978 | 1.061 | 1.607 | 1.567 | 1.360 | 1.772 | 1.671 | 1.883 | 1.397 | 1.413 |
Jiangsu | 1.000 | 0.918 | 0.947 | 1.008 | 1.043 | 1.395 | 1.279 | 1.108 | 1.452 | 1.408 | 1.441 | 1.317 | 1.185 |
Zhejiang | 1.000 | 1.087 | 1.118 | 1.139 | 1.145 | 1.165 | 1.206 | 1.208 | 1.209 | 1.251 | 1.244 | 1.231 | 1.197 |
Fujian | 1.000 | 1.048 | 1.163 | 1.247 | 1.341 | 1.497 | 1.657 | 1.691 | 1.776 | 1.593 | 1.735 | 1.728 | 1.708 |
Shandong | 1.000 | 1.028 | 1.027 | 1.084 | 1.103 | 1.230 | 1.280 | 1.284 | 1.358 | 1.285 | 1.343 | 1.273 | 1.366 |
Guangdong | 1.000 | 1.039 | 1.101 | 1.168 | 1.164 | 1.195 | 1.267 | 1.273 | 1.314 | 1.356 | 1.389 | 1.395 | 1.383 |
Guangxi | 1.000 | 1.079 | 1.083 | 1.230 | 1.208 | 1.308 | 1.381 | 1.495 | 1.524 | 1.542 | 1.628 | 1.671 | 1.480 |
Hainan | 1.000 | 1.048 | 1.174 | 1.210 | 1.222 | 1.284 | 1.274 | 1.291 | 1.297 | 1.308 | 1.319 | 1.302 | 1.267 |
Regional | Coefficient | t-Statistic | p-Value | Convergence Rate | Convergence or Divergence |
---|---|---|---|---|---|
Overall | −0.3304 | −4.44 | 0.000 | 0.0334 | convergence |
Bohai | −0.3750 | −3.02 | 0.003 | 0.0392 | convergence |
Yangtze River Delta | −0.4221 | −3.03 | 0.002 | 0.0457 | convergence |
Pearl River Delta | −0.4254 | −2.39 | 0.017 | 0.0462 | convergence |
Regional | Coefficient | t-Statistic | p-Value | Convergence Rate | Convergence or Divergence |
---|---|---|---|---|---|
Overall | −0.6805 | −10.22 | 0.000 | 0.0951 | convergence |
Bohai | −0.6721 | −6.28 | 0.008 | 0.0929 | convergence |
Yangtze River Delta | −0.7003 | −12.70 | 0.006 | 0.1004 | convergence |
Pearl River Delta | −0.6742 | −14.05 | 0.005 | 0.0935 | convergence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Zhao, N.; Zhou, J.; Wang, C.; Zhang, X. Spatiotemporal Variations and Convergence Characteristics of Green Technological Progress in China’s Mariculture. Fishes 2023, 8, 338. https://doi.org/10.3390/fishes8070338
Ji J, Zhao N, Zhou J, Wang C, Zhang X. Spatiotemporal Variations and Convergence Characteristics of Green Technological Progress in China’s Mariculture. Fishes. 2023; 8(7):338. https://doi.org/10.3390/fishes8070338
Chicago/Turabian StyleJi, Jianyue, Nana Zhao, Jinglin Zhou, Chengjia Wang, and Xia Zhang. 2023. "Spatiotemporal Variations and Convergence Characteristics of Green Technological Progress in China’s Mariculture" Fishes 8, no. 7: 338. https://doi.org/10.3390/fishes8070338
APA StyleJi, J., Zhao, N., Zhou, J., Wang, C., & Zhang, X. (2023). Spatiotemporal Variations and Convergence Characteristics of Green Technological Progress in China’s Mariculture. Fishes, 8(7), 338. https://doi.org/10.3390/fishes8070338