Molecular Characterization of a Male-Specific SoxE Gene in the Swimming Crab, Portunus trituberculatus, and Transcriptional Interaction with Insulin-like Androgenic Gland Hormone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Extraction of Total RNA and cDNA Synthesis
2.3. Molecular Cloning and Characterization
2.4. siRNA Synthesis
2.5. Preparation of AG Homogenate and Recombinant IAG
2.6. In Vitro Experiments
2.7. Gene Expression Analysis
3. Results
3.1. Molecular Characterization of PtSoxE
3.2. Spatial and Temporal Patterns of PtSoxE Expression
3.3. Effects of PtSoxE siRNA on Gene Expression in AG and Testis
3.4. Effects of AG Homogenate and rIAG on PtSoxE Expression in Testis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kamachi, Y.; Kondoh, H. Sox proteins: Regulators of cell fate specification and differentiation. Development 2013, 140, 4129–4144. [Google Scholar] [CrossRef] [PubMed]
- Gubbay, J.; Collignon, J.; Koopman, P.; Capel, B.; Economou, A.; Münsterberg, A.; Vivian, N.; Goodfellow, P.; Lovell-Badge, R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990, 346, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.H.; Berta, P.; Palmer, M.S.; Hawkins, J.R.; Griffiths, B.L.; Smith, M.J.; Foster, J.W.; Frischauf, A.-M.; Lovell-Badge, R.; Goodfellow, P.N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990, 346, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Paese, C.L.B.; Leite, D.J.; Schönauer, A.; McGregor, A.P.; Russell, S. Duplication and expression of Sox genes in spiders. BMC Evol. Biol. 2018, 18, 205. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Wang, M.; Zhang, W.; Pan, J.; Qin, Q.; Zhong, L.; Shao, J.; Sun, M.; Jiang, H.; et al. Genome-wide identification, phylogeny and expressional profile of the Sox gene family in channel catfish (Ictalurus punctatus). Comp. Biochem. Physiol. Part D Genom. Proteom. 2018, 28, 17–26. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, B.; Du, H. A review on Sox genes in fish. Rev. Aquac. 2021, 13, 1986–2003. [Google Scholar] [CrossRef]
- Mei, J.; Gui, J.F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci. China Life Sci. 2015, 58, 124–136. [Google Scholar] [CrossRef]
- Gonen, N.; Futtner, C.R.; Wood, S.; Garcia-Moreno, S.A.; Salamone, I.M.; Samson, S.C.; Sekido, R.; Poulat, F.; Maatouk, D.M.; Lovell-Badge, R. Sex reversal following deletion of a single distal enhancer of Sox9. Science 2018, 360, 1469–1473. [Google Scholar] [CrossRef]
- Takehana, Y.; Matsuda, M.; Myosho, T.; Suster, M.L.; Kawakami, K.; Shin, I.T.; Kohara, Y.; Kuroki, Y.; Toyoda, A.; Fujiyama, A.; et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat. Commun. 2014, 5, 4157. [Google Scholar] [CrossRef]
- Schartl, M.; Schories, S.; Wakamatsu, Y.; Nagao, Y.; Hashimoto, H.; Bertin, C.; Mourot, B.; Schmidt, C.; Wilhelm, D.; Centanin, L.; et al. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol. 2018, 16, 16. [Google Scholar] [CrossRef]
- Canning, C.A.; Lovell-Badge, R. Sry and sex determination: How lazy can it be? Trends Genet. 2002, 18, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Koopman, P. Sex determination: A tale of two Sox genes. Trends Genet. 2005, 21, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Polanco, J.C.; Wilhelm, D.; Davidson, T.L.; Knight, D.; Koopman, P. Sox10 gain-of-function causes XX sex reversal in mice: Implications for human 22q-linked disorders of sex development. Hum. Mol. Genet. 2010, 19, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Adolfi, M.C.; Carreira, A.C.O.; Jesus, L.W.O.; Bogerd, J.; Funes, R.M.; Schartl, M.; Sogayar, M.C.; Borella, M.I. Molecular cloning and expression analysis of dmrt1 and Sox9 during gonad development and male reproductive cycle in the lambari fish, Astyanax altiparanae. Reprod. Biol. Endocrinol. 2015, 13, 2. [Google Scholar] [CrossRef]
- Johnsen, H.; Tveiten, H.; Torgersen, J.S.; Andersen, Ø. Divergent and sex-dimorphic expression of the paralogs of the Sox9-Amh-Cyp19a1 regulatory cascade in developing and adult atlantic cod (Gadus morhua L.). Mol. Reprod. Dev. 2013, 80, 358–370. [Google Scholar] [CrossRef]
- Zheng, J.; Jia, Y.; Liu, S.; Chi, M.; Cheng, S.; Gu, Z. Molecular characterization and expression profiles of transcription factor Sox gene family in Culter alburnus. Gene Expr. Patterns 2020, 36, 119112. [Google Scholar] [CrossRef]
- Luo, Y.S.; Hu, W.; Liu, X.C.; Lin, H.R.; Zhu, Z.Y. Molecular cloning and mRNA expression pattern of Sox9 during sex reversal in orange-spotted grouper (Epinephelus coioides). Aquaculture 2010, 306, 322–328. [Google Scholar] [CrossRef]
- Xia, X.; Chen, J.; Zhang, L.; Du, Q.; Sun, J.; Chang, Z. Molecular cloning and mRNA expression pattern of Sox10 in Paramisgurnus dabryanus. Mol. Biol. Rep. 2013, 40, 3123–3134. [Google Scholar] [CrossRef]
- Ventura, T.; Sagi, A. The insulin-like androgenic gland hormone in crustaceans: From a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol. Adv. 2012, 30, 1543–1550. [Google Scholar] [CrossRef]
- Li, F.J.; Jiang, F.W.; Bai, H.K.; Fu, H.T.; Jin, S.B.; Sun, S.M.; Qiao, H.; Zhang, W.Y. Genomic cloning, expression, and single nucleotide polymorphism association analysis of the insulin-like androgenic gland hormone gene in the oriental river prawn (Macrobrachium nipponense). Genet. Mol. Res. 2015, 14, 5910–5921. [Google Scholar] [CrossRef]
- Ma, K.Y.; Li, J.L.; Qiu, G.F. Identification of putative regulatory region of insulin-like androgenic gland hormone gene (IAG) in the prawn Macrobrachium nipponense and proteins that interact with IAG by using yeast two-hybrid system. Gen. Comp. Endocrinol. 2016, 229, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Jin, S.; Fu, H.; Qiao, H.; Zhang, W.; Jiang, S.; Gong, Y.; Xiong, Y.; Wu, Y. Functional analysis of a SoxE gene in the oriental freshwater prawn, Macrobrachium nipponense by molecular cloning, expression pattern analysis, and in situ hybridization (de Haan, 1849). 3 Biotech 2019, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Zhang, Z.; Jia, X.; Zou, Z.; Liang, K.; Wang, Y. Transcriptional Regulation of Vih by Oct4 and Sox9 in Scylla paramamosain. Front. Endocrinol. 2020, 11, 650. [Google Scholar] [CrossRef]
- Wang, M.; Xu, R.; Tu, S.; Yu, Q.; Xie, X.; Zhu, D. Putative Role of CFSH in the eyestalk-AG-testicular endocrine axis of the swimming crab Portunus trituberculatus. Animals 2023, 13, 690. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, X.; Wang, M.; Zheng, H.; Zheng, L.; Zhu, D. Molecular characterization and expression analysis of the inverbrate Dmrt1 homologs in the swimming crab, Portunus trituberculatus (Miers, 1876) (Decapoda, Portunidae). Crustaceana 2020, 93, 851–866. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, H.; Lo, T.S.; Chu, K.H. Inhibitory effects of the androgenic gland on ovarian development in the mud crab Scylla paramamosain. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 140, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bowles, J.; Schepers, G.; Koopman, P. Phylogeny of the Sox family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 2000, 227, 239–255. [Google Scholar] [CrossRef]
- Wan, H.; Liao, J.; Zhang, Z.; Zeng, X.; Liang, K.; Wang, Y. Molecular cloning, characterization, and expression analysis of a sex-biased transcriptional factor Sox9 gene of mud crab Scylla paramamosain. Gene 2021, 774, 145423. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wang, Y.M.; Xu, H.J.; Li, J.W.; Luo, J.Y.; Wang, M.-R.; Ma, W.-M. The characterization and knockdown of a male gonad-specific insulin-like receptor gene in the white shrimp Penaeus vannamei. Aquac. Rep. 2022, 27, 101345. [Google Scholar] [CrossRef]
- Herran, B.; Bertaux, J.; Grève, P. Divergent evolution and clade-specific duplications of the Insulin-like Receptor in malacostracan crustaceans. Gen. Comp. Endocrinol. 2018, 268, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Li, Y.; Zhou, M.; Wang, W. siRNA knockdown of MrIR induces sex reversal in Macrobrachium rosenbergii. Aquaculture 2020, 523, 735172. [Google Scholar] [CrossRef]
- Su, Q.; Zhu, D.F.; Yang, J.F.; Qi, Y. Microstructure and ultrastructure of androgenic gland in wwimming crab Portunus trituberculatus. Fish. Sci. 2010, 29, 193–197. (In Chinese) [Google Scholar] [CrossRef]
- Wang, M.E.; Zheng, H.; Xie, X.; Xu, R.; Zhu, D. Molecular identification and putative role of insulin growth factor binding protein-related protein (IGFBP-rp) in the swimming crab Portunus trituberculatus. Gene 2022, 833, 146551. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.C.; Yang, W.X. Acroframosome-Dependent KIFC1 facilitates acrosome formation during spermatogenesis in the caridean shrimp Exopalaemon modestus. PLoS ONE 2013, 8, e76065. [Google Scholar] [CrossRef]
- He, X.Y.; Fang, X.; Luo, B.Y.; Qiu, G.F. Identification and characterization of a new germline-specific marker vasa gene and its promoter in the giant freshwater prawn Macrobrachium rosenbergii. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2022, 259, 110716. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, P.; Xiong, Y.; Chen, T.; Jiang, S.; Qiao, H.; Gong, Y.; Wu, Y.; Jin, S.; Fu, H. RNA Interference analysis of the functions of cyclin B in male reproductive development of the oriental river prawn (Macrobrachium nipponense). Genes 2022, 13, 2079. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, W.; Xiong, Y.; Chen, T.; Jiang, S.; Qiao, H.; Gong, Y.; Wu, Y.; Jin, S.; Fu, H. RNA interference analysis of the potential functions of cyclin-dependent kinase 2 in sexual reproduction of male oriental river prawns (Macrobrachium nipponense). Aquac. Int. 2023, in press. [Google Scholar] [CrossRef]
Name | Sequence (5′-3′) | PCR Objective | Tm (°C), GC (%), ΔG (kcal/mol) |
---|---|---|---|
PtSoxE-F1 | ATGGAAACTGTGAAAAAGGAACG | cDNA Clone | 60.3, 39.1, −42.6 |
PtSoxE-R1 | TCAGTGCCACATGGTGGC | cDNA Clone | 58.3, 61.1 −35.9 |
PtSoxE-F2 | ATGGAAACTGTGAAAAAGGAACG | RT-PCR | 60.3, 39.1, −42.6 |
PtSoxE-R2 | GTCTTCCAGTATCTTGGTCACGG | RT-PCR | 60.4, 52.2, −41.5 |
PtSoxE-QF | TGACGGAGGACCAAAAGCG | qPCR | 61.6, 57.9, −39.9 |
PtSoxE-QR | TTGCCCACAGTCTTCACATTCTC | qPCR | 61.6, 47.8, −41.5 |
β-actin-F | CGAAACCTTCAACACTCCCG | RT-PCR qPCR | 60.4, 55, −40.1 |
β-actin-R | GGATAGCGTGAGGAAGGGCATA | RT-PCR qPCR | 63.2, 54.5, −43.8 |
PtIAG-QF | CGCTTCACGCTCTCCTAGT | qPCR | 55.4, 57.9, −36.8 |
PtIAG-QR | TCCTTCTTCCTATCCACTGAGT | qPCR | 54.9, 45.5, −38 |
PtIGFBP-rp-QF | TTACCACTATTGACGGCACCT | qPCR | 57.4, 47.6, −39.2 |
PtIGFBP-rp-QR | TCATTATCTGTACCCATCCTGTT | qPCR | 55.8, 39.1, −39.2 |
PtIR-QF | CTGATGCGTTTGTCGTATTT | qPCR | 53.8, 40, −36.7 |
PtIR-QR | GAAGCGTGGTGCCTATTT | qPCR | 53.2, 50, −35.7 |
PtAkt-QF | CTCAACCAGGAACGCTTCTTC | qPCR | 59.1, 52.4, −40 |
PtAkt-QR | TGTGTCCATCAGCATCCAGTAA | qPCR | 58.7, 45.5, −38.8 |
PtmTOR-QF | TCTCCTGGCTGTTGCTGTC | qPCR | 59.6, 55, −37.9 |
PtmTOR-QR | GCTTCTTGCTTGGTGTATCCTT | qPCR | 58.2, 45.5, −40.7 |
PtKIFC-1-QF | TCCAATCGCCATCTACCTCAG | qPCR | 60, 52.4, −40.1 |
PtKIFC-1-QR | CGTCTTCAGCATCTCCAGAATG | qPCR | 59.9, 50, −40.1 |
PtVasa-QF | GCTTGCCATCCAGATATTCCAT | qPCR | 60.7, 45.5, −42 |
PtVasa-QR | TGCTCCTTCATACGCCTCAA | qPCR | 59.1, 50, −39.1 |
PtCyclinB-QF | ATGTGCCACTACAAGGCGTCT | qPCR | 59.7, 52.4, −40 |
PtCyclinB-QR | ATCAGCGTGTCATTCCAATCC | qPCR | 59.6, 47.6, −39.6 |
PtCdc2-QF | CCGTCAAGCAGATGGACAGTG | qPCR | 61.2, 57.1, −39.6 |
PtCdc2-QR | CCAGGTCGTCAAAGTAAGGGTG | qPCR | 61.2, 54.5, −41.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Xu, D.; Wang, M.; Xie, X.; Zhu, D. Molecular Characterization of a Male-Specific SoxE Gene in the Swimming Crab, Portunus trituberculatus, and Transcriptional Interaction with Insulin-like Androgenic Gland Hormone. Fishes 2023, 8, 351. https://doi.org/10.3390/fishes8070351
Jiang Q, Xu D, Wang M, Xie X, Zhu D. Molecular Characterization of a Male-Specific SoxE Gene in the Swimming Crab, Portunus trituberculatus, and Transcriptional Interaction with Insulin-like Androgenic Gland Hormone. Fishes. 2023; 8(7):351. https://doi.org/10.3390/fishes8070351
Chicago/Turabian StyleJiang, Qinghua, Dongjie Xu, Mengen Wang, Xi Xie, and Dongfa Zhu. 2023. "Molecular Characterization of a Male-Specific SoxE Gene in the Swimming Crab, Portunus trituberculatus, and Transcriptional Interaction with Insulin-like Androgenic Gland Hormone" Fishes 8, no. 7: 351. https://doi.org/10.3390/fishes8070351
APA StyleJiang, Q., Xu, D., Wang, M., Xie, X., & Zhu, D. (2023). Molecular Characterization of a Male-Specific SoxE Gene in the Swimming Crab, Portunus trituberculatus, and Transcriptional Interaction with Insulin-like Androgenic Gland Hormone. Fishes, 8(7), 351. https://doi.org/10.3390/fishes8070351