Partial Replacement of Fish Meal with Protein Hydrolysates in the Diet of Penaeus vannamei (Boone, 1934) during the Nursery Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diet Formulation
2.2. Water Quality Monitoring
2.3. Zootechnical Performance and Animal Welfare Assessment
2.4. Centesimal Chemical Composition of Feeds and Shrimp
2.5. Enzymatic Activity Assessment
2.6. Total Hemocyte Count
2.7. Statistical Analysis
3. Results
3.1. Zootechnical Performance and Animal Welfare Assessment
3.2. Centesimal Chemical Composition of Feeds and Shrimp
3.3. Enzymatic Activity Assessment
3.4. Total Hemocyte Count
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- World Bank. Fish to 2030: Prospects for Fisheries and Aquaculture; World Bank: Washington, DC, USA, 2013; p. 102. [Google Scholar]
- Leduc, A.; Zatylny-Gaudin, C.; Robert, M.; Corre, E.; Corguille, L.; Castel, H.; Lefevre-Scelles, A.; Fournier, V.; Gisbert, E.; Andree, K.B.; et al. Dietary aquaculture by-product hydrolysates: Impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fish meal diets. BMC Genom. 2018, 19, 396. [Google Scholar] [CrossRef]
- Vieira, C.C.F.; Pinto, R.C.C.; Diógenes, A.F.; Nunes, A.J.P. Apparent digestibility of protein and essential aminoacids from commonly used feed ingredients in Brazil for juvenile shrimp Litopenaeus vannamei. Rev. Bras. Zootec. 2022, 51, e20210177. [Google Scholar] [CrossRef]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef]
- Gamboa-Delgado, J.; Molina-Poveda, C.; Cahu, C. Digestive enzyme activity and food ingesta in juvenile shrimp Litopenaeus vannamei (Boone, 1931) as a function of body weight. Aquac. Res. 2003, 34, 1403–1411. [Google Scholar] [CrossRef]
- Lorenz, E.K.; Barone, R.S.C.; Yamamoto, F.Y.; Cyrino, J.E.P. Dietary protein hydrolysates from animal by-products: Digestibility and enzymatic activity for dourado Salminus brasiliensis. J. Aquat. Food Prod. 2018, 27, 236–246. [Google Scholar] [CrossRef]
- Shao, J.; Zhao, W.; Liu, X.; Wang, L. Growth performance, digestive enzymes, and TOR signaling pathway of Litopenaeus vannamei are not significantly affected by dietary protein hydrolysates in practical conditions. Front. Physiol. 2018, 9, 998. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.; Rezende, P.C.; Corrêa, N.M.; Rocha, J.S.; Martins, M.A.; Andrade, T.C.; Fracalossi, D.M.; Vieira, F.N. Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquac. Rep. 2020, 17, e100344. [Google Scholar] [CrossRef]
- Soares, M.; Gonçalves, P.; Schleder, D.D.; Delgadillo-Diaz, M.; Gullian-Klanian, M.; Vieira, F.N. Protein hydrolysate of poultry by-product and swine liver in the diet of pacific white shrimp. Bol. Inst. Pesca 2021, 47, e657. [Google Scholar] [CrossRef]
- Córdova-Murueta, J.H.; García-Carreño, F.L. Nutritive value of squid and hydrolyzed protein supplement in shrimp feed. Aquaculture 2002, 210, 371–384. [Google Scholar] [CrossRef]
- Machado, C.A.; Carvalho, L.S.S. Maltodextrina na alimentação animal. Rev. Port. Cienc. Vet. 2015, 110, 593–594. [Google Scholar]
- Justus, A.; Benassi, M.T.; Ida, E.I.; Kurozawa, L.E. Physical and chemical stability of microencapsulated okara protein hydrolysate by spray drying. Braz. J. Food Technol. 2020, 23, e2019135. [Google Scholar] [CrossRef]
- Mahdy, M.A.; Jamal, M.T.; Al-Harb, M.; Al-Mur, B.A.; Haque, M.F. Use of yeasts in aquaculture nutrition and immunostimulation: A review. J. Appl. Biol. Biotechnol. 2022, 10, 59–65. [Google Scholar] [CrossRef]
- Hayashi, C.; Boscolo, W.R.; Soares, C.M.; Boscolo, V.R.; Galdioli, E.M. Uso de diferentes graus de moagem dos ingredientes em dietas para a tilápia-do-Nilo (Oreochromis niloticus L.) na fase de crescimento. Acta Sci. Anim. Sci. 1999, 21, 733–737. [Google Scholar]
- Meurer, F.; Hayashi, C.; Boscolo, W.R. Digestibilidade aparente de alguns alimentos protéicos pela tilápia do Nilo (Oreochromis niloticus). Rev. Bras. Zootec. 2003, 32, 1801–1809. [Google Scholar] [CrossRef]
- American Public Health Association—APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Boyd, C.E. Water Quality in Warmwater Fish Ponds (No. 639.3 B6923w Ej. 1 009523); Auburn University: Auburn, AL, USA, 1979. [Google Scholar]
- Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. Farming Marine Shrimp in Recirculating Freshwater Systems; Harbor Branch Oceanographic Institution: Ft. Pierce, FL, USA, 1999. [Google Scholar]
- Cheng, W.; Liu, C.H.; Kuo, C.M. Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn, Macrobrachium rosenbergii (de Man). Aquaculture 2003, 220, 843–856. [Google Scholar] [CrossRef]
- Bett, C.; Vinatea, L. Combined effect of body weight, temperature and salinity on shrimp Litopenaeus vannamei oxygen consumption rate. Braz. J. Oceanogr. 2009, 57, 305–314. [Google Scholar] [CrossRef]
- Kuhn, D.D.; Smith, S.A.; Boardman, G.D.; Angier, M.W.; Marsh, L.; Flick, G.J., Jr. Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: Impacts on survival, growth, antennae length, and pathology. Aquaculture 2010, 309, 109–114. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemist—AOAC. Official Methods of Analysis of AOAC International, 16th ed.; AOAC Inc.: Arlington, VA, USA, 1995. [Google Scholar]
- Retcheski, M.C.; Maximowski, L.V.; Escorsin, K.J.S.; Kurosaki, J.K.A.R.; Romão, S.; Bitencourt, T.B.; Parra, J.E.G.; Cazarolli, L.H. Yarrowia lipolytica biomass—A potential additive to boost metabolic and physiological responses of Nile tilapia. Fish Physiol. Biochem. 2023, 49, 655–670. [Google Scholar] [CrossRef]
- Hummel, B.C. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can. J. Biochem. Physiol. 1959, 37, 1393–1399. [Google Scholar] [CrossRef]
- Niiyama, T.; Toyohara, H. Widespread distribution of cellulase and hemicellulase activities among aquatic invertebrates. Fish. Sci. 2011, 77, 649–655. [Google Scholar] [CrossRef]
- Ashley, P.J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Vieira, F.D.N.; Jatobá, A.; Mouriño, J.L.P.; Buglione Neto, C.C.; Silva, J.S.D.; Seiffert, W.Q.; Vinatea, L.A. Use of probiotic-supplemented diet on a Pacific white shrimp farm. Rev. Bras. Zootec. 2016, 45, 203–207. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatical Analysis, 5th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Quinto, B.P.T.; Albuquerque, J.V.; Bezerra, R.S.; Peixoto, S.; Soares, R. Replacement of fishmeal by two types of fish protein hydrolysate in feed for post larval shrimp Litopenaeus vannamei. Aquac. Nutr. 2017, 24, 768–776. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, Y.; Liu, Y.; Tian, L.; Lin, H.; Chen, X.; Yang, H.; Liang, G. Effects of graded replacement of fish meal by fish protein hydrolysate on growth performance of early post-larval Pacific white shrimp (Litopenaeus vannamei, Boone). J. Appl. Anim. Res. 2014, 42, 6–15. [Google Scholar] [CrossRef]
- Eap, D.; Correa, S.; Ngo-Vu, H.; Derby, C.D. Chemosensory basis of feeding behavior in pacific white shrimp, Litopenaeus vannamei. Biol. Bull. 2020, 239, 115–131. [Google Scholar] [CrossRef]
- New, M.; Valenti, W.; Tidwell, J.; D´Abramo, L.; Kutty, M. Freshwater Prawns: Biology and Farming, 1st ed.; Wiley-Blakwell: Hoboken, NJ, USA, 2010; p. 544. [Google Scholar]
- Freitas, I.S.; Nunes, C.A.R.; Sales, A.L.L.B. Nutrição e alimentação de camarões do gênero Macrobrachium (Bate, 1868) (Crustacea: Decapoda: Palaemonidae). Rev. Ser. Sust. 2022, 4, 17–28. [Google Scholar]
- Castro, P.F.; Freitas, A.C.V., Jr.; Santana, W.M.; Costa, H.M.S.; Carvalho, L.B., Jr.; Bezerra, R.S. Comparative study of amylases from the midgut gland of three species of penaeid shrimp. J. Crustac. Biol. 2012, 32, 607–613. [Google Scholar] [CrossRef]
- Seixas Filho, J.T. Revisão sobre enzimas digestivas nos peixes Teleostei e seus métodos de determinação. Rev. Augustus 2003, 8, 30–45. [Google Scholar]
- Ceccaldi, H.J. Anatomy and physiology if the digestive system. In Crustacean Nutrition Advances in World Aquaculture; D’Abramo, L.R., Conklin, D.E., Akiyama, D.M., Eds.; The World Aquaculture Society: Sorrento, LA, USA, 1997; Volume 6, pp. 261–291. [Google Scholar]
- Dall, W. Feeding, digestion and assimilation in penaeidae. In Proceedings of the Aquaculture Nutrition Workshop, Salamander Bay, Australia, 15–17 April 1991; pp. 57–63. [Google Scholar]
- Chávez-Calvillo, G.; Perez-Rueda, E.; Lizama, G.; Zúñiga Aguilar, J.J.; Gaxiola, G.; Cuzon, G.; Arena-Ortiz, L. Differential gene expression in Litopenaeus vannamei shrimp in response to diet changes. Aquaculture 2010, 300, 137–141. [Google Scholar] [CrossRef]
- Rivera-Pérez, C.; Toro, M.A.N.; García-Carreño, F. Digestive lipase activity through development and after fasting and re-feeding in the whiteleg shrimp Penaeus vannamei. Aquaculture 2010, 300, 163–168. [Google Scholar] [CrossRef]
- Prayitno, S.B.; Ardie, B.R.; Novriadi, R.; Herawati, V.E.; Windarto, S. Effect of bioactive protein ingredients (motivtm) on total hemocyte and survival rate of vannamei shrimp, Litopenaeus vannamei. Indones. Aquac. J. 2022, 17, 23–28. [Google Scholar] [CrossRef]
- González-Félix, M.L.; Perez-Velazquez, M.; Ezquerra-Brauer, J.M.; Bringas-Alvarado, L.; Sánchez-Sánchez, A.; Torres-Arreola, W. Evaluation of jumbo squid (Dosidicus gigas) byproduct hydrolysates obtained by acid-enzymatic hydrolysis and by autohydrolysis in practical diets for Pacific white shrimp (Litopenaeus vannamei). Food Sci. Technol. 2014, 34, 552–558. [Google Scholar] [CrossRef]
Ingredients (g kg−1) | Treatments | |||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | |
Soybean meal | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 | 350.0 |
Wheat flour | 129.9 | 136.8 | 136.7 | 135.2 | 125.8 | 124.0 |
Wheat bran | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 |
Poultry viscera flour | 150.0 | 146.2 | 137.8 | 150.0 | 160.3 | 162.7 |
Fish meal | 247.6 | 165.0 | 165.0 | 165.0 | 165.0 | 165.0 |
Chicken protein hydrolysate (CPH) | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 |
CPH + maltodextrin | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 |
CPH + yeast | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 |
Feather hydrolysate BRF® | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 |
Aquabite® | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 |
Antifungal | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Antioxidant | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Limestone | 0.0 | 4.4 | 4.0 | 5.1 | 4.0 | 4.0 |
Binder | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Methionine | 2.1 | 2.4 | 2.9 | 2.0 | 2.3 | 2.4 |
Dicalcium phosphate | 0.0 | 10.7 | 12.8 | 11.2 | 9.3 | 9.0 |
Lysine | 11.1 | 0.4 | 3.2 | 0.0 | 1.3 | 1.2 |
Soy lecithin | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
Fish oil | 29.2 | 32.7 | 36.0 | 30.2 | 30.8 | 30.6 |
Vitamin and mineral supplement 1 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 |
Common salt | 5.7 | 7.2 | 7.3 | 7.1 | 7.0 | 6.9 |
Total | 1000.00 | 1000.00 | 1000.00 | 1000.00 | 1000.00 | 1000.00 |
Bromatological composition 2 | ||||||
Dry matter (%) | 93.61 | 94.06 | 93.76 | 93.82 | 93.61 | 92.39 |
Crude protein (%) | 43.02 | 42.70 | 42.53 | 42.83 | 42.73 | 42.27 |
Ethereal extract (%) | 7.24 | 8.04 | 6.75 | 7.74 | 7.80 | 7.06 |
Mineral matter (%) | 11.49 | 11.31 | 10.90 | 11.18 | 10.86 | 10.77 |
Crude energy (kcal kg−1) | 4400.00 | 4420.00 | 4370.00 | 4410.00 | 4330.00 | 4390.00 |
Treatment * | Final Weight (g) | Total Length (cm) | Antenna Length (cm) | Final Biomass (g) | Biomass Gain (g) | Survival (%) | Feed Conversion | Specific Growth Rate |
---|---|---|---|---|---|---|---|---|
T1 | 1.48 ± 0.75 | 4.10 ± 1.09 | 6.93 ± 1.77 | 41.32 ± 3.13 | 35.32 ± 3.13 | 91.00 ± 2.00 | 0.93 ± 0.06 | 9.27 ± 0.46 |
T2 | 1.46 ± 0.80 | 3.86 ± 1.12 | 6.74 ± 2.03 | 39.38 ± 2.20 | 33.38 ± 2.20 | 89.00 ± 6.00 | 0.98 ± 0.05 | 9.50 ± 0.30 |
T3 | 1.45 ± 0.67 | 3.92 ± 0.92 | 6.68 ± 2.11 | 46.90 ± 17.33 | 40.90 ± 17.33 | 93.00 ± 7.00 | 0.89 ± 0.27 | 9.50 ± 0.32 |
T4 | 1.39 ± 0.67 | 4.03 ± 1.01 | 7.11 ± 2.04 | 40.94 ± 6.25 | 34.94 ± 6.25 | 90.00 ± 6.00 | 0.95 ± 0.14 | 9.66 ± 0.49 |
T5 | 1.64 ± 0.72 | 4.18 ± 0.94 | 7.18 ± 1.90 | 44.70 ± 3.03 | 38.70 ± 3.03 | 91.00 ± 7.00 | 0.86 ± 0.06 | 10.02 ± 0.29 |
T6 | 1.49 ± 0.76 | 4.02 ± 1.06 | 6.77 ± 1.07 | 39.88 ± 5.94 | 33.88 ± 5.94 | 90.00 ± 5.00 | 0.98 ± 0.14 | 9.53 ± 0.62 |
Treatment * | Dry Matter (%) | Crude Protein (%) | Ethereal Extract (%) | Ash (%) | Crude Energy (kcal kg−1) |
---|---|---|---|---|---|
T1 | 21.48 ± 0.85 | 15.85 ± 0.15 | 1.34 ± 1.03 | 3.04 ± 0.20 | 1060 ± 12.34 |
T2 | 21.84 ± 0.94 | 16.07 ± 0.27 | 1.45 ± 1.02 | 2.90 ± 0.17 | 1110 ± 20.34 |
T3 | 22.15 ± 1.02 | 16.35 ± 0.23 | 1.87 ± 1.29 | 2.84 ± 0.12 | 1120 ± 22.54 |
T4 | 21.81 ± 0.45 | 15.92 ± 0.17 | 1.65 ± 0.10 | 2.85 ± 0.13 | 1110 ± 18.25 |
T5 | 21.47 ± 0.54 | 15.84 ± 0.19 | 1.33 ± 0.26 | 2.85 ± 0.10 | 1100 ± 13.21 |
T6 | 21.45 ± 0.48 | 15.60 ± 0.23 | 1.18 ± 0.34 | 2.98 ± 0.18 | 1070 ± 10.23 |
Treatment * | Amylase (U/L/mg Protein) | Cellulase (nmol/min/mg Protein) | Lipase (U/L/mg Protein) | Maltase (µmol/min/mg Protein) | Sucrase (µmol/min/mg Protein) | Trypsin (µmol/min/mg Protein) |
---|---|---|---|---|---|---|
T1 | 13.71 ± 6.73 | 0.16 ± 0.06 | 33.73 ± 5.72 | 4.75 ± 1.52 | 1.08 ± 0.29 | 0.11 ± 0.10 |
T2 | 16.14 ± 5.85 | 0.15 ± 0.04 | 29.42 ± 6.31 | 3.72 ± 0.90 | 0.82 ± 0.13 | 0.10 ± 0.02 |
T3 | 21.25 ± 2.84 | 0.16 ± 0.06 | 38.07 ± 9.77 | 4.99 ± 2.90 | 1.00 ± 0.23 | 0.13 ± 0.13 |
T4 | 17.14 ± 5.51 | 0.14 ± 0.03 | 33.30 ± 8.47 | 2.99 ± 0.73 | 0.86 ± 0.25 | 0.10 ± 0.11 |
T5 | 16.81 ± 8.34 | 0.19 ± 0.08 | 41.09 ± 21.69 | 3.84 ± 1.77 | 0.95 ± 0.33 | 0.07 ± 0.05 |
T6 | 8.78 ± 9.64 | 0.19 ± 0.08 | 34.20 ± 18.21 | 3.38 ± 1.23 | 1.39 ± 0.85 | 0.05 ± 0.06 |
Treatment * | Total Hemolytic Cells |
---|---|
T1 | 7 × 106 ± 5 × 105 |
T2 | 5 × 106 ± 3 × 105 |
T3 | 5 × 106 ± 4 × 105 |
T4 | 5 × 106 ± 3 × 105 |
T5 | 8 × 106 ± 4 × 105 |
T6 | 7 × 106 ± 4 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrini, C.; Nascimento Ferreira, C.H.d.; Kracizy, R.O.; Ferreira, R.L.; Costa, L.; Mauerwerk, M.T.; Retcheski, M.C.; Cazarolli, L.H.; Boscolo, W.R.; Cupertino Ballester, E.L. Partial Replacement of Fish Meal with Protein Hydrolysates in the Diet of Penaeus vannamei (Boone, 1934) during the Nursery Phase. Fishes 2024, 9, 75. https://doi.org/10.3390/fishes9020075
Negrini C, Nascimento Ferreira CHd, Kracizy RO, Ferreira RL, Costa L, Mauerwerk MT, Retcheski MC, Cazarolli LH, Boscolo WR, Cupertino Ballester EL. Partial Replacement of Fish Meal with Protein Hydrolysates in the Diet of Penaeus vannamei (Boone, 1934) during the Nursery Phase. Fishes. 2024; 9(2):75. https://doi.org/10.3390/fishes9020075
Chicago/Turabian StyleNegrini, Celma, Caio Henrique do Nascimento Ferreira, Rafael Ortiz Kracizy, Rosane Lopes Ferreira, Luana Costa, Marlise Teresinha Mauerwerk, Milena Cia Retcheski, Luisa Helena Cazarolli, Wilson Rogério Boscolo, and Eduardo Luis Cupertino Ballester. 2024. "Partial Replacement of Fish Meal with Protein Hydrolysates in the Diet of Penaeus vannamei (Boone, 1934) during the Nursery Phase" Fishes 9, no. 2: 75. https://doi.org/10.3390/fishes9020075
APA StyleNegrini, C., Nascimento Ferreira, C. H. d., Kracizy, R. O., Ferreira, R. L., Costa, L., Mauerwerk, M. T., Retcheski, M. C., Cazarolli, L. H., Boscolo, W. R., & Cupertino Ballester, E. L. (2024). Partial Replacement of Fish Meal with Protein Hydrolysates in the Diet of Penaeus vannamei (Boone, 1934) during the Nursery Phase. Fishes, 9(2), 75. https://doi.org/10.3390/fishes9020075