Biochemical Composition of Eggs, Larvae and Tissues of Macrobrachium tenellum Females Fed Diets with Different Lipid and Protein Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shrimp and Experimental Design
2.2. Experimental Diets
2.3. Proximal Composition of Experimental Diets
2.4. Sampling Protocol
2.5. Estimation of Total Proteins (TP), Total Carbohydrates (TC) and Total Lipids (TL) of the Samples
2.6. Statistical Analysis
3. Results
3.1. Experimental Conditions
3.2. Biochemical Composition of Eggs
3.3. Biochemical Composition of Larvae
3.4. Biochemical Composition of the Gonad
3.5. Biochemical Composition of the Hepatopancreas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritar, A.J.; Dunstan, G.A.; Crear, B.J.; Brown, M.R. Biochemical composition during growth and starvation of early larval stages of cultured spiny lobster (Jasus edwardsii) phyllosoma. Comp. Biochem. Physiol. Part A Mol. Integr. 2003, 136, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Lavens, P.; Sorgeloos, P. Variation in egg and larval quality in various fish and crustacean species. In Larvi ‘91; Lavens, P., Sorgeloos, P., Jaspers, E., Ollevier, F., Eds.; European Aquaculture Society Special Publication: Gent, Belgium, 1991; Volume 15, pp. 221–222. [Google Scholar]
- Cahu, C.L.; Cuzon, G.; Quazuguel, P. Effect of highly unsaturated fatty acids, α-tocopherol and ascorbic acid in broodstock diet on egg composition and development of Penaeus indicus. Comp. Biochem. Physiol Part A Physiol. 1995, 112, 417–424. [Google Scholar] [CrossRef]
- Anger, K. The Biology of Decapod Crustacean Larvae; A.A. Balkema Publishers: Lisse, The Netherlands; Helgoland, Germany, 2001; pp. 1–420. [Google Scholar]
- Palacios, E.; Ibarra, A.M.; Ramirez, J.L.; Portillo, G.; Racotta, I.S. Biochemical composition of eggs and nauplii in white Pacific shrimp, Penaeus vannamei (Boone), in relation to the physiological condition of spawners in a commercial hatchery. Aquac. Res. 1998, 29, 183–189. [Google Scholar] [CrossRef]
- Mai, K.; Xue, M.; He, G.; Xie, S.Q.; Kaushik, S.J. Chapter 4. Protein and amino acids. In Fish Nutrition, 4th ed.; Hardy, R.W., Kaushik, S.J., Eds.; Academic Press: London Wall, London, 2022; pp. 181–302. [Google Scholar]
- González-Ferriol, M.; Betancourt-Aguiar, J.L.; Ramos-Trujillo, L. Endocrinology of reproduction in Decapod Crustaceans (crustacea:decapoda): Scientific advances and future perspectives. Invest. Mar. 2018, 38, 1–8. [Google Scholar]
- Teshima, I.; Koshio, S.; Ishikawa, M.; Alam, S.; Hernandez-Hernandez, L.H. Protein requirements of the fresh-water prawn Macrobrachium rosenbergii evaluated by the factorial method. J. World Aquac. Soc. 2006, 37, 145–153. [Google Scholar] [CrossRef]
- Olsen, Y. Lipids and essential fatty acids in aquatic food webs: What can freshwater ecologists learn from mariculture? In Lipids in Freshwater Ecosystems; Arts, M.T., Wainman, B.C., Eds.; Springer: New York, NY, USA, 1998; pp. 161–202. [Google Scholar]
- Cavalli, R.O.; Lavens, P.; Sorgeloos, P. Performance of Macrobrachium rosenbergii broodstock fed diets with different fatty acid composition. Aquaculture 1999, 179, 387–402. [Google Scholar] [CrossRef]
- Kangpanich, C.; Pratoomyot, J.; Siranonthana, N.; Senanan, W. Effects of arachidonic acid supplementation in maturation diet on female reproductive performance and larval quality of giant river prawn (Macrobrachium rosenbergii). PeerJ. 2016, 4, e2735. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Mandujano, M.; Ponce-Palafox, J.T. Efecto de diferentes niveles dietéticos de proteína y lípidos en el crecimiento de reproductores del langostino de agua dulce (Macrobrachium carcinus). Rev. MVZ Córdoba 2014, 19, 3921–3929. [Google Scholar] [CrossRef]
- Hernández-Abad, G.Y.; Hernández-Hernández, L.H.; Fernández-Araiza, M.A. Effects of different dietary lipid concentrations on the egg production and egg quality produced by Macrobrachium acanthurus females. Lat. Am. J. Aquat. Res. 2018, 46, 518–524. [Google Scholar] [CrossRef]
- Mantoan, P.; Ballester, E.; Ramaglia, A.C.; Augusto, A. Diet containing 35% crude protein improves energy balance, growth, and feed conversion in the Amazon river prawn, Macrobrachium amazonicum. Aquac. Rep. 2021, 21, 100962. [Google Scholar] [CrossRef]
- García-Ulloa, M.; Rodríguez, H.; Ogura, T. Egglet quality of two species of prawns (Palemonidae) of the genus Macrobrachium (M. rosenbergii, De Man 1879, and M. tenellum, Smith, 1871) varying broodstock diet: Morphometric indices. AIA 2004, 8, 1–8. [Google Scholar]
- Espinosa-Chaurand, L.; Vargas-Ceballos, M.; Guzmán-Arroyo, M.; Nolasco-Soria, H.; Carrillo-Farnés, O.; Chong-Carrillo, O.; Vega-Villasante, F. Biology and cultivation of Macrobrachium tenellum: State of the art. Hydrobiology 2011, 21, 99–117. [Google Scholar]
- García-Guerrero, M.U.; Becerril-Morales, F.; Vega-Villasante, F.; Espinosa-Chaurand, L.D. Prawns of the genus Macrobrachium with economic and fisheries importance in Latin America: Current knowledge, ecological role and conservation. Am. Lat. Am. J. Aquat. Res. 2013, 41, 651–675. [Google Scholar]
- De los Santos-Romero, R.; Vega-Villasante, F.; Cortes-Jacinto, E.; García-Guerrero, M. The culture potential and management problems of freshwater prawns (Macrobrachium americanum and Macrobrachium tenellum) in their native areas: The case for Mexico. Lat. Am. J. Aquat. Res. 2021, 49, 376–390. [Google Scholar] [CrossRef]
- Vega-Villasante, F.; García-Guerrero, M.U.; Cortés-Jacinto, E.; Yamasaki-Granados, S.; Montoya-Martínez, C.E.; Vargas-Ceballos, M.A.; Chong-Carrillo, O.; Guzmán-Arroyo, M.; Carrillo-Farnés, O.V.; Nolasco-Soria, H.G. Chapter 13. Freshwater shrimp of the genus Macrobrachium: Biology, ecology and exploitation. In Temas Sobre Investigaciones Costeras, 1st ed.; Cifuentes-Lemus, J.L., Cupul-Magaña, F.G., Eds.; Universidad de Guadalajara: Guadalajara, Mexico, 2014; pp. 273–315. [Google Scholar]
- Nguyen, T.M.T.; Chen, T.Y.; Shiau, C.Y.; Cheng, Y.T.; Chang, Y.W. Study on biochemical divergences of the meat and egg of freshwater prawns (Macrobrachium rosenbergii). Food Sci. Nutr. 2019, 7, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.F.; Shih, T.W. Reproductive cycle of ovarian development and vitellogen in profiles in the freshwater prawns, Macrobrachium rosenbergii. Invertebr. Reprod. Dev. 1995, 27, 11–20. [Google Scholar] [CrossRef]
- Revathi, P.; Iyapparaj, P.; Munuswamy, N.; Krishnan, M. Vitellogenesis during the ovarian development in freshwater female prawn Macrobrachium rosenbergii (De Man). Int. J. Aquat. Sci. 2012, 3, 13–27. [Google Scholar]
- Peña-Almaraz, O.A.; Vega-Villasante, F.; Espinosa-Magaña, A.F.; Guerrero-Galván, S.R.; Vargas-Ceballos, M.A. Effect of protein and lipid variation in diets for Macrobrachium tenellum, with respect to reproductive indicators. Ecosis Rec. Agropec. 2023, 10, e3512. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- NOM-062-ZOO-1999. Mexican Official Standard: Technical Specifications for the Production, Care and Use of Laboratory Animals. 2001. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 8 May 2021).
- Wehrtmann, I.S. Distribution and reproduction of Ambidexter panamense and Palaemonetes schmittii in Pacific Costa Rica (Crustacea, Decapoda). Rev. Biol. Trop. 1990, 38, 327–329. [Google Scholar]
- Bradford, M. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Trevelyan, W.; Harrison, K. Studies on yeast metabolism. Biochem J. 1950, 50, 298–303. [Google Scholar] [CrossRef]
- Lu, Y.; Ludsin, S.A.; Fanslow, D.L.; Pothoven, S.A. Comparison of three microquantity techniques for measuring total lipids in fish. Can. J. Fish. Aquat. Sci. 2008, 65, 2233–2241. [Google Scholar] [CrossRef]
- Balasubramanian, C.P.; Suseelan, C. Biochemical composition of the deep water crab Charybdis smithii. Indian J. Fish. 2001, 48, 333–335. [Google Scholar]
- Zafar, M.; Siddiqui, M.Z.H.; Hoque, M.A. Biochemical composition in Scylla serrata (Forskal) of Chakaria, Sundarban area, Bangladesh. Pak. J. Biol. Sci. 2004, 7, 2182–2186. [Google Scholar]
- Manivannan, K.; Sudhakar, M.; Murugesan, R.; Soundarapandian, P. Effect of feed on the biochemical composition of commercially important mud crab Scylla tranquebarica (Fabricius 1798). Int. J. Anim. Vet. Adv. 2010, 2, 16–20. [Google Scholar]
- Li, Y.; Fan, B.; Huang, Y.; Wu, D.; Zhang, M.; Zhao, Y. Effects of dietary vitamin E on reproductive performance and antioxidant capacity of Macrobrachium nipponense female shrimp. Aquac. Nutr. 2018, 24, 1698–1708. [Google Scholar] [CrossRef]
- Prasad, P.N.; Neelakantan, B. Proximate and essential amino acid composition in edible crab Scylla serrata. Comp. Physiol. Ecol. 1989, 14, 34–37. [Google Scholar]
- Han, T.; Wang, J.; Hu, S.; Li, X.; Jiang, Y.; Wang, C. Effects of different dietary lipid sources on growth performance and tissue fatty acid composition of juvenile swimming crab Portunus trituberculatus. Chin. J. Oceanol. 2015, 33, 957–965. [Google Scholar] [CrossRef]
- Cavalli, R.O.; Menschaert, G.; Lavens, P.; Sorgeloos, P. Maturation performance, offspring quality and lipid composition of Macrobrachium rosenbergii females fed increasing levels of dietary phospholipids. Aquac. Int. 2000, 8, 41–58. [Google Scholar] [CrossRef]
- Mairesse, G.; Thomas, M.; Gardeur, J.N.; Brun-Bellut, J. Effects of geographic source, rearing system, and season on the nutritional quality of wild and farmed Perca fluviatilis. Lipids 2006, 41, 221–229. [Google Scholar] [CrossRef]
- Brito, R.; Chimal, M.; Gaxiola, G. Effect of different diets on growth and digestive enzyme activity in Litopenaeus vannamei (Boone, 1931) early postlarvae. Aquac. Res. 2001, 32, 257–266. [Google Scholar] [CrossRef]
- Méndez-Martínez, Y.; Yamasaki-Granados, S.; García-Guerrero, M.U.; Martínez-Córdova, L.R.; Rivas-Vega, M.E.; Arcos-Ortega, F.G.; Cortés-Jacinto, E. Effect of dietary protein content on growth rate, survival and body composition of juvenile Cauque river prawn, Macrobrachium americanum (Bate 1868). Aquac. Res. 2016, 48, 741–751. [Google Scholar] [CrossRef]
- Dos Santos, L.D.; Cagol, L.; Heldt, A.; Campagnolo, R.; Ballester, E.L.C. Níveis crescentes de proteína bruta em dietas práticas para camarão-da-amazônia. Bol. Inst. Fish. 2017, 433, 417–425. [Google Scholar]
- Tian, H.M.; Wang, Q.; Zhao, Y.L.; Luo, W.; Fan, Y.J. Digestive enzyme activities and amino acids composition during embryonic development of Eriocheir sinensis (Chinese). J. Fish. Sci. China 2003, 10, 402–408. [Google Scholar]
- García-Guerrero, M.; Racotta, I.; Villareal, H. Variation in lipid, protein, and carbohydrate content during the embryonic development of the crayfish Cherax quadricarinatus (Decapoda: Parastacidae). J. Crust. Biol. 2003, 23, 1–6. [Google Scholar] [CrossRef]
- Figueiredo, J.; Penha-Lopes, G.; Narciso, J.A.L.; Lin, J. Fecundity, brood loss and egg development through embryogenesis of Armases cinereum (Decapoda: Grapsidae). Mar. Biol. 2008, 154, 287–294. [Google Scholar] [CrossRef]
- Li, S.; Cheng, Y.; Zhou, B.; Hines, A.H. Changes in biochemical composition of newly spawned eggs, prehatching embryos and newly hatched larvae of the blue crab (Callinectes sapidus). J. Shellfish Res. 2012, 31, 941–946. [Google Scholar] [CrossRef]
- Soundarapandian, P.; Ravichandran, S.; Varadharajan, D. Biochemical composition of edible crab, Podophthalmus vigil (Fabricius). J. Mar. Sci. Res. Dev. 2013, 3, 119. [Google Scholar]
- Yao, J.J.; Zhao, Y.L.; Wang, Q.; Zhou, Z.L.; Hu, X.C.; Duan, X.W.; An, C.G. Biochemical compositions and digestive enzyme activities during the embryonic development of prawn, Macrobrachium rosenbergii. Aquaculture 2006, 253, 573–582. [Google Scholar] [CrossRef]
- Luo, W.; Zhou, Z.L.; Zhao, Y.L.; Yang, Z.B.; Zhang, M.F. Analysis on the contents of protein and amino acids in Cherax quadricarinatus during different embryonic development stages. J. East China Norm. Univ. 2004, 1, 88–92. [Google Scholar]
- Samuel, N.J.; Soundarapandian, P. Embryonic development of commercially important portunid crab Portunus sanguinolentus (Herbst). J. Anim. Vet. Adv. 2009, 1, 32–38. [Google Scholar]
- Habashy, M.M.; Sharshar, M.K.; Hassan, M.S. Morphological and histological studies on the embryonic development of the freshwater prawn, Macrobrachium rosenbergii (Crustacea, Decapoda). JOBAZ 2012, 65, 157–165. [Google Scholar] [CrossRef]
- Soundarapandian, P.; Dinakaran, G.K.; Varadharajan, D.; Dinakaran, G.K. Biochemical composition during the embryonic development and freshly hatched zoea of Macrobrachium idella idella (Hilgendorf, 1898). Adv. Tech. Biol. Med. 2013, 1, 111–115. [Google Scholar]
- Figueiredo, J.; Narciso, L. Egg volume, energy content and fatty acid profile of Maja brachydactyla (Crustacea: Brachyura: Majidae) during embryogenesis. J. Mar. Biol. Assoc. UK 2008, 88, 1401–1405. [Google Scholar] [CrossRef]
- Khoei, J.K.; Bastami, A.A.; Esmailian, M. The biochemical composition of the eggs blue swimming crab, Portunus pelagicus (Linnaeus, 1758) in the Persian gulf coasts, Iran. Middle East J. Sci. Res. 2012, 12, 915–920. [Google Scholar]
- Villafuerte Mojica, A.; Hernández-Hernández, L.H.; Fernández Araiza, M.A.; Ángeles-López, O. Contribution to the knowledge of the nutritional requirements of the native shrimp (Macrobrachium acanthurus). Hydrobiology 2016, 26, 15–22. [Google Scholar]
- Biesiot, P.M.; Perry, H.M. Biochemical composition of the deep-sea red crab Chaceon quinquedens (Geryonidae): Organic reserves of developing embryos and adults. Mar. Biol. 1995, 124, 407–416. [Google Scholar] [CrossRef]
- Hasek, B.E.; Felder, D.L. Biochemical composition of ovary, embryo, and hepatopancreas in the grapsoid crabs Armases cinereum and Sesarma nr. reticulatum (Crustacea, Decapoda). Comp. Biochem. Physiol. Part B 2005, 140, 55–463. [Google Scholar] [CrossRef] [PubMed]
- Roustaian, P.; Kamarudin, M. Biochemical changes in freshwater prawn Macrobrachium rosenbergii (de Man) during larval development. J. World Aquac. Soc. 2001, 31, 53–59. [Google Scholar] [CrossRef]
- Phleger, C.F.; Nelson, M.M.; Mooney, B.D.; Nichols, P.D.; Ritar, A.J.; Smith, G.G.; Hart, P.R.; Jeffs, A.G. Lipids and nutrition of the southern rock lobster, Jasus edwardsii, from hatch to puerulus. Mar. Freshw. Res. 2001, 52, 1475–1486. [Google Scholar] [CrossRef]
- Smith, E.G.; Ritar, A.J.; Carter, C.G.; Dunstan, G.A.; Brown, M.R. Photothermal manipulation of reproduction in broodstock and larval characteristics in newly-hatched phyllosoma of the spiny lobster, Jasus edwardsii. Aquaculture 2003, 220, 299–311. [Google Scholar] [CrossRef]
- Hayd, L.A.; Anger, K.; Urzúa, A. Growth, elemental and proximate biochemical composition of larval Amazon River prawn, Macrobrachium amazonicum, reared under different salinity conditions. Am. Lat. Am. J. Aquat. Res. 2017, 45, 983–991. [Google Scholar] [CrossRef]
- Rotllant, G.; Charmantier-Daures, M.; Charmantier, G.; Anger, K.; Sarda, F. Effects of diet on Nephrops norvegicus (L.) larval and postlarval development, growth and elemental composition. J. Shellfish Res. 2001, 20, 347–352. [Google Scholar]
- García-Guerrero, M.; Hendrickx, M.E. External description of the embryonic development of the prawn, Macrobrachium americanum Bate, 1868 (Decapoda, Palaemonidae) based on the staging method. Crustaceana 2009, 82, 1413–1422. [Google Scholar] [CrossRef]
- Rosa, R.; Nunes, M.L. Biochemical changes during the reproductive cycle of the deep-sea decapod Nephrops norvegicus on the south coast of Portugal. Mar. Biol. 2002, 141, 1001–1009. [Google Scholar]
- Baklouti, S.; Derbali, A.; Dhieb, K.; Jarboui, O. Reproductive biology of the Mediterranean green crab, Carcinus aestuarii Nardo, 1847 (Crustacea: Portunidae), in the Gulf of Gabes (Tunisia, Central Mediterranean). Cah. Biol. Mar. 2013, 54, 411–417. [Google Scholar]
- Shao, L.; Wang, C.; He, J.; Wu, X.; Cheng, Y. Hepatopancreas and gonad quality of Chinese mitten crabs fattened with natural and formulated diets. J. Food Qual. 2013, 36, 217–227. [Google Scholar] [CrossRef]
- Abdu, U.; Yehezkel, G.; Sagi, A. Oocyte development and polypeptide dynamics during ovarian maturation in the redclaw crayfish Cherax quadricarinatus. Invertebr. Reprod. Dev. 2000, 37, 75–83. [Google Scholar] [CrossRef]
- Cortes-Jacinto, E.; Villarreal-Colmenares, H.; Civera-Cerecedo, R.; Naranjo-Paramo, J. Effect of dietary protein level on the growth and survival of pre-adult freshwater crayfish Cherax quadricarinatus (von Martens) in monosex culture. Aquac. Res. 2004, 35, 71–79. [Google Scholar] [CrossRef]
- Rodríguez-González, H.; Hernández-Llama, A.; Villareal, H.; Saucedo, P.E.; García-Ulloa, M.; Rodríguez-Jaramillo, C. Gonadal development and biochemical composition of female crayfish Cherax quadricarinatus (Decapoda: Parastacidae) in relation to the Gonadosomatic Index at first maturation. Aquaculture 2006, 254, 637–645. [Google Scholar] [CrossRef]
- Rosa, R.; Nunes, M.L. Changes in organ indices and lipid dynamics during the reproductive cycle of Aristeus antennatus, Parapenaeus longirostris, and Nephrops norvegicus (Decapoda) from the Portuguese south coast. Crustaceana 2003, 75, 1095–1105. [Google Scholar]
- Castillo-Díaz, F.; Tropea, C.; Stumpf, L.; López Greco, L.S. Effect of food restriction on female reproductive performance in the redclaw crayfish Cherax quadricarinatus (Parastacidae, Decapoda). Aquac. Res. 2017, 48, 4228–4237. [Google Scholar] [CrossRef]
Ingredients | Experimental Diets | |||||||
---|---|---|---|---|---|---|---|---|
L4P30 | L4P35 | L4P40 | L4P45 | L12P30 | L12P35 | L12P40 | L12P45 | |
Fish meal 1 | 35.63 | 43.19 | 50.75 | 58.37 | 35.63 | 43.19 | 50.74 | 58.31 |
Corn flour | 5.50 | 5.50 | 5.50 | 5.50 | 5.50 | 5.50 | 5.50 | 5.50 |
Fish oil 1 | 1.26 | 0.68 | 0.10 | 0.00 | 9.26 | 8.68 | 8.10 | 7.52 |
Corn starch | 47.87 | 40.89 | 33.92 | 26.46 | 39.87 | 32.89 | 25.92 | 18.94 |
Gelatin | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
Vitamins and minerals premix (Rovimix) 2 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Vitamin C 2 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Sodium benzoate | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 |
Choline chloride 2 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
α-Tocopherol | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Composition Proximal (%) | Experimental Diets | |||||||
---|---|---|---|---|---|---|---|---|
L4P30 | L4P35 | L4P40 | L4P45 | L12P30 | L12P35 | L12P40 | L12P45 | |
Lipids | 3.87 | 3.93 | 4.04 | 3.78 | 11.83 | 12.77 | 12.54 | 12.75 |
Proteins | 30.23 | 35.02 | 39.98 | 44.91 | 30.21 | 35.63 | 41.09 | 45.55 |
Ashes | 10.56 | 13.03 | 13.36 | 15.46 | 10.58 | 12.29 | 14.03 | 15.68 |
NFE * | 55.34 | 48.02 | 42.62 | 35.85 | 47.38 | 39.31 | 32.34 | 26.02 |
Diets | Temperature (°C) | Dissolved Oxygen (mg/L) | pH (Units) |
---|---|---|---|
L4P30 | 28.0 ± 0.6 | 5.93 ± 0.6 | 7.4 ± 0.2 |
L4P35 | 28.1 ± 0.8 | 5.76 ± 0.7 | 7.3 ± 0.2 |
L4P40 | 28.1 ± 0.9 | 5.71 ± 0.8 | 7.4 ± 0.2 |
L4P45 | 28.3 ± 0.9 | 5.82 ± 0.6 | 7.5 ± 0.1 |
L12P30 | 28.2 ± 0.8 | 5.62 ± 0.6 | 7.4 ± 0.2 |
L12P35 | 27.9 ± 0.8 | 5.73 ± 0.6 | 7.5 ± 0.2 |
L12P40 | 27.9 ± 0.7 | 5.57 ± 0.6 | 7.4 ± 0.2 |
L12P45 | 28.5 ± 0.8 | 5.68 ± 0.7 | 7.2 ± 0.2 |
Diet | Total Protein (µg/egg) | Total Carbohydrates (µg/egg) | Total Lipids (µg/egg) |
---|---|---|---|
L4P30 | 11.32 ± 1.30 a | 1.60 ± 0.20 a | 5.33 ± 0.31 ab |
L4P35 | 11.86 ± 1.25 ab | 1.97 ± 0.38 ab | 5.89 ± 0.27 a |
L4P40 | 13.18 ± 1.26 abc | 2.70 ± 0.03 b | 4.83 ± 0.27 b |
L4P45 | 14.35 ± 0.99 bc | 2.11 ± 0.29 ab | 3.73 ± 0.13 d |
L12P30 | 11.26 ± 0.61 a | 1.93 ± 0.14 ab | 4.59 ± 0.38 b |
L12P35 | 11.56 ± 0.74 ab | 2.23 ± 0.45 ab | 3.61 ± 0.11 d |
L12P40 | 17.72 ± 3.29 c | 2.09 ± 0.98 ab | 6.94 ± 0.16 c |
L12P45 | 15.53 ± 0.77 cd | 2.43 ± 0.41 b | 5.68 ± 0.36 ab |
Two-way ANOVA (p-value) | |||
Protein | <0.001 | 0.009 | <0.001 |
Lipid | <0.001 | 0.561 | 0.029 |
Protein × lipid | 0.002 | 0.037 | <0.001 |
Diet | Total Protein (µg/mg) | Total Carbohydrates (µg/mg) | Total Lipids (µg/mg) |
---|---|---|---|
L4P30 | 515.12 ± 69.26 | 44.57 ± 0.88 c | 72.57 ± 6.92 abc |
L4P35 | 661.40 ± 61.45 | 49.71 ± 1.43 c | 73.87 ± 6.37 bc |
L4P40 | 543.02 ± 63.51 | 22.81 ± 1.34 a | 87.86 ± 6.73 c |
L4P45 | 637.09 ± 76.85 | 33.20 ± 0.93 b | 65.37 ± 4.77 ab |
L12P30 | 565.75 ± 195.86 | 64.96 ± 0.68 d | 55.17 ± 5.59 a |
L12P35 | 544.98 ± 20.93 | 32.31 ± 5.89 b | 71.37 ± 8.06 abc |
L12P40 | 656.51 ± 43.20 | 36.46 ± 2.85 b | 64.78 ± 4.68 ab |
L12P45 | 651.97 ± 38.82 | 47.59 ± 8.76 c | 64.51 ± 7.44 ab |
Two-way ANOVA (p-value) | |||
Protein | 0.047 | <0.001 | <0.001 |
Lipid | 0.537 | <0.001 | 0.010 |
Protein × lipid | 0.019 | <0.001 | 0.020 |
Diet | Total Protein (µg/mg) | Total Carbohydrates (µg/mg) | Total Lipids (µg/mg) |
---|---|---|---|
L4P30 | 456.93 ± 53.34 ab | 28.57 ± 5.84 de | 232.35 ± 8.88 cd |
L4P35 | 413.19 ± 35.55 a | 9.53 ± 0.49 ab | 227.65 ± 7.12 bcd |
L4P40 | 569.75 ± 45.73 b | 7.41 ± 1.31 a | 213.65 ± 4.95 abc |
L4P45 | 497.49 ± 40.33 ab | 21.61 ± 8.31 cd | 215.03 ± 5.51 abc |
L12P30 | 460.03 ± 52.04 ab | 31.40 ± 1.94d | 245.00 ± 6.85 d |
L12P35 | 571.68 ± 96.41 b | 21.23 ± 3.03 c | 205.55 ± 15.81 ab |
L12P40 | 568.17 ± 90.98 b | 12.05 ± 0.53 ab | 198.46 ± 10.12 a |
L12P45 | 477.21 ± 55.22 ab | 14.61 ± 1.09 bc | 201.82 ± 8.94 a |
Two-way ANOVA (p-value) | |||
Protein | <0.001 | <0.001 | <0.001 |
Lipid | 0.060 | 0.010 | 0.022 |
Protein × lipid | 0.004 | <0.001 | 0.023 |
Diet | Total Protein (µg/mg) | Total Carbohydrates (µg/mg) | Total Lipids (µg/mg) |
---|---|---|---|
L4P30 | 422.06 ± 28.82 b | 69.51 ± 12.05 d | 255.16 ± 7.26 c |
L4P35 | 451.70 ± 42.42 b | 76.00 ± 2.10 de | 213.45 ± 9.36 b |
L4P40 | 512.00 ± 10.95 c | 56.23 ± 4.16 c | 210.60 ± 15.14 b |
L4P45 | 619.15 ± 41.92 d | 84.39 ± 1.26 e | 142.11 ± 9.28 a |
L12P30 | 275.90 ± 23.12 a | 16.37 ± 4.84 a | 456.86 ± 8.77 e |
L12P35 | 288.03 ± 17.40 a | 56.86 ± 6.67 c | 477.10 ± 9.41 ef |
L12P40 | 257.96 ± 22.19 a | 51.20 ± 1.10 c | 506.92 ± 10.88 f |
L12P45 | 286.40 ± 29.02 a | 38.88 ± 1.14 b | 397.99 ± 14.39 d |
Two-way ANOVA (p-value) | |||
Protein | <0.001 | <0.001 | <0.001 |
Lipid | <0.001 | <0.001 | <0.001 |
Protein × lipid | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Almaraz, O.A.; Vargas-Ceballos, M.A.; Cortés-Jacinto, E.; Vega-Villasante, F. Biochemical Composition of Eggs, Larvae and Tissues of Macrobrachium tenellum Females Fed Diets with Different Lipid and Protein Levels. Fishes 2024, 9, 145. https://doi.org/10.3390/fishes9040145
Peña-Almaraz OA, Vargas-Ceballos MA, Cortés-Jacinto E, Vega-Villasante F. Biochemical Composition of Eggs, Larvae and Tissues of Macrobrachium tenellum Females Fed Diets with Different Lipid and Protein Levels. Fishes. 2024; 9(4):145. https://doi.org/10.3390/fishes9040145
Chicago/Turabian StylePeña-Almaraz, Omar Alejandro, Manuel Alejandro Vargas-Ceballos, Edilmar Cortés-Jacinto, and Fernando Vega-Villasante. 2024. "Biochemical Composition of Eggs, Larvae and Tissues of Macrobrachium tenellum Females Fed Diets with Different Lipid and Protein Levels" Fishes 9, no. 4: 145. https://doi.org/10.3390/fishes9040145
APA StylePeña-Almaraz, O. A., Vargas-Ceballos, M. A., Cortés-Jacinto, E., & Vega-Villasante, F. (2024). Biochemical Composition of Eggs, Larvae and Tissues of Macrobrachium tenellum Females Fed Diets with Different Lipid and Protein Levels. Fishes, 9(4), 145. https://doi.org/10.3390/fishes9040145