Biopreservation and the Safety of Fish and Fish Products, the Case of Lactic Acid Bacteria: A Basic Perspective
Abstract
:1. Introduction
2. Food and Fish
3. Foodborne Diseases
4. Microbiology and Safety of Fish
5. Biopreservation
5.1. Lactic Acid Bacteria (LAB)
Microorganism | Produced Bacteriocin | Fermentation Metabolism |
---|---|---|
Lactococcus lactis | Nisin | Homofermentative |
Pediococcus acidilactici | Pediocin | Homofermentative |
Lactobacillus sakei | Sakacin | Heterofermentative |
Enterococcus faecium | Enterocin | Homofermentative |
Leuconostoc mesenteroides | Mesenterocin | Heterofermentative |
Lactobacillus casei | Caseicin | Heterofermentative |
Lactobacillus helveticus | Helveticin | Heterofermentative |
Bacteriocins
5.2. Silage
5.3. Fermentation in Food and Fish
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortés Sánchez, A.D.J.; Díaz Ramírez, M.; Salgado Cruz, M.D.L.P. Bioconservation, food and fish. Agro Product. 2018, 11, 11–16. [Google Scholar] [CrossRef]
- Huertas Moreno, A.P. Contextualización del concepto de inocuidad en el concepto de seguridad alimentaria y nutricional. Aliment. Hoy 2020, 27, 27–50. [Google Scholar]
- Bergaglio, J.P.; Bergaglio, O.E. Contaminación de alimentos por Escherichia coli y la inocuidad alimentaria como eje fundamental. INNOVA UNTREF. Rev. Argent. De Cienc. Y Tecnol. 2020, 5, 1–17. [Google Scholar]
- Arispe, I.; Tapia, M.S. Innocuity and quality: Essential requirements for consumer health protection. Agroalimentaria 2007, 12, 105–118. [Google Scholar]
- De la Fuente Salcido, N.M.; Corona, J.E.B. Inocuidad y bioconservación de alimentos. Acta Univ. 2010, 20, 43–52. [Google Scholar] [CrossRef]
- García-Casal, M.N. The alimentation of the future: New technologies and their importance for the nutrition of populations. An. Venez. De Nutr. 2007, 20, 108–114. [Google Scholar]
- FAO. El Estado Mundial de la Pesca y la Acuicultura 2020. La Sostenibilidad en Acción. Roma; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Olea, A.; Díaz, J.; Fuentes, R.; Vaquero, A.; García, M. Foodborne disease outbreaks surveillance in Chile. Rev. Chil. De Infectología 2012, 29, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Alerte, V.; Cortés, A.S.; Díaz, T.J.; Vollaire, Z.J.; Espinoza, M.M.E.; Solari, G.V.; Cerda, L.J.; Torres, H.M. Foodborne disease outbreaks around the urban Chilean areas from 2005 to 2010. Rev. Chil. De Infectología 2012, 29, 26–31. [Google Scholar] [CrossRef] [PubMed]
- López Aday, D.; Rivero Álvarez, E.; Martínez Torres, A.; Alegret Rodríguez, M. Foodborne diseases in Villa Clara. Rev. Cuba. De Hig. Y Epidemiol. 2013, 51, 203–213. [Google Scholar]
- Espinosa, L.; Varela, C.; Martínez, E.V.; Cano, R. Brotes de enfermedades transmitidas por alimentos. España, 2008–2011 (excluye brotes hídricos). Bol. Epidemiol. Nac. 2014, 22, 130–145. [Google Scholar]
- Palomino-Camargo, C.; González-Muñoz, Y.; Pérez-Sira, E.; Aguilar, V.H. Delphi methodology in food safety management and foodborne disease prevention. Rev. Peru. De Med. Exp. Y Salud Pública 2018, 35, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Cánovas, G.V.; Bermúdez-Aguirre, D. Nonthermal Processing of Food. Sci. Agropecu. 2010, 1, 81–93. [Google Scholar]
- Soleno, R. Non thermal technologies in the processing and conservation of vegetable foods. A review. Rev. Colomb. Investig. Agroindustriales 2015, 2, 73–83. [Google Scholar] [CrossRef]
- Grande Burgos, M.J.; Pérez Pulido, R.; Cobo Molinos, A.; Lucas, R.; Gálvez, A. Bioconservación de alimentos lácteos. An. Real Acad. De Cienc. Vet. De Andal. Orient. 2017, 30, 193–206. [Google Scholar]
- Izquierdo Hernández, A.; Armenteros Borrell, M.; Lancés Cotilla, L.; Martín González, I. Alimentación saludable. Rev. Cuba. De Enfermería 2004, 20, 1. [Google Scholar]
- Martínez Zazo, A.B.; Pedrón, G.C. Conceptos Básicos en Alimentación. Advanced Medical Nutrition. Madrid, España. 2016. Available online: https://www.seghnp.org/sites/default/files/2017-06/conceptos-alimentacion.pdf (accessed on 20 May 2024).
- Calañas Continente, A.J.; Bellido, D. Bases científicas de una alimentación saludable. Rev. De Med. De La Univ. De Navar. 2006, 50, 7–14. [Google Scholar] [CrossRef]
- Alcocer Flores, L. Los beneficios del consumo de pescado. Hosp. ESDAI 2015, 28, 7–23. [Google Scholar]
- Socarrás Suárez, M.M.; Bolet Astoviza, M. Healthy feeding and nutrition in cardiovascular diseases. Rev. Cuba. De Investig. Biomédicas 2010, 29, 353–363. [Google Scholar]
- de Paiva Soares, K.M.; Gonçalves, A.A. Qualidade e segurança do pescado. Rev. Do Inst. Adolfo Lutz 2012, 71, 1–10. [Google Scholar] [CrossRef]
- FAO. El Pescado Fresco: Su Calidad y Cambios de su Calidad. FAO documento técnico de pesca 348. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Editado por H.H. Huss. Laboratorio Tecnológico. Ministerio de Pesca. Dinamarca. Food and Agriculture Organization of the United Nations (FAO): Rome, Italy. 1998. Available online: http://www.fao.org/docrep/V7180S/v7180s00.htm#Contents (accessed on 10 May 2024).
- Fuertes Vicente, H.G.; Paredes López, F.; Saavedra Gálvez, D.I. Buenas prácticas de manufactura y preservación a bordo: Pescado inocuo. Big Bang Faustiniano 2018, 3, 41–45. [Google Scholar]
- de Matos, Q.A.; Patez, Z.S.; Lima, C.M.G.; Pagnossa, J.P.; da Silva Miranda, A.; Gonçalves, C.T.; Santana, R.F. Microbiological quality of raw fish based food products/Qualidade microbiológica de produto alimentícío à base de peixe cru. Braz. J. Dev. 2020, 6, 5162–5171. [Google Scholar] [CrossRef]
- Speranza, B.; Racioppo, A.; Bevilacqua, A.; Buzzo, V.; Marigliano, P.; Mocerino, E.; Sinigaglia, M. Innovative preservation methods improving the quality and safety of fish products: Beneficial effects and limits. Foods 2021, 10, 2854. [Google Scholar] [CrossRef] [PubMed]
- Prado-Toledo, I.Y.; Ramos-Santoyo, K.N.; Guzmán-Robles, M.L.; Cortés-Sánchez, A.D.J. Microbiological Analysis of Tilapia Fillet Stored Under Refrigerated Conditions. OnLine J. Biol. Sci. 2022, 22, 126–138. [Google Scholar] [CrossRef]
- Soto Varela, Z.; Pérez Lavalle, L.; Estrada Alvarado, D. Bacteria causing of foodborne diseases: An overview at Colombia. Rev. Salud Uninorte 2016, 32, 105–122. [Google Scholar] [CrossRef]
- Zúñiga Carrasco, I.R.; Caro Lozano, J. Foodborne diseases: A timely view for health personnel. Enfermedades Infecc. Y Microbiol. 2017, 37, 95–104. [Google Scholar]
- Faour-Klingbeil, D.; Todd Ewen, C.D. Prevention and control of foodborne diseases in Middle-East North African countries: Review of national control systems. Int. J. Environ. Res. Public Health 2020, 17, 70. [Google Scholar] [CrossRef] [PubMed]
- Flores, T.G.; Herrera, R.A.R. Enfermedades transmitidas por alimentos y PCR: Prevención y diagnóstico. Salud Pública De México 2005, 47, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Torrens, H.; Barreto Argilagos, G.; Sedrés Cabrera, M.; Bertot Valdés, J.; Martínez Sáez, S.; Guevara Viera, G. Foodborne diseases, a health problem inherited and increased in the new millennium. REDVET. Rev. Electrónica De Vet. 2015, 16, 1–27. [Google Scholar]
- Friesema, I.H.M.; Slegers-Fitz-James, I.A.; Wit, B.; Franz, E. Surveillance and characteristics of food-borne outbreaks in the Netherlands, 2006 to 2019. Euro Surveill. 2022, 27, 2100071. [Google Scholar] [CrossRef]
- Novotny, L.; Dvorska, L.; Lorencova, A.; Beran, V.; Pavlik, I. Fish: A potential source of bacterial pathogens for human beings. Veterinární Med. 2004, 49, 343–358. [Google Scholar] [CrossRef]
- Roberts, T.A.; Cordier, J.-L.; Gram, L.; Tompkin, R.B.; Pitt, J.I.; Gorris, L.G.M.; Swanson, K.M.J. Fish and fish products. In Micro-Organisms in Foods 6; Springer: Boston, MA, USA, 2005. [Google Scholar] [CrossRef]
- Fuentes, M.; Valladares, J.; Grass, G.; Pico, Y. Microbiota de interés para la salud pública de Oreochromis spp. (Tilapia roja) cultivada en jaulas flotantes en agua dulce. Rev. Cuba. De Investig. Pesq. 2011, 28, 74–80. [Google Scholar]
- Cortes Sánchez, A.D.J. Food, fish and diseases transmitted to the consumer. J. Adv. Lab. Res. Biol. 2020, 11, 16–23. [Google Scholar]
- Robertson, L.J.; Lalle, M.; Paulsen, P. Why we need a European focus on foodborne parasites. Exp. Parasitol. 2020, 214, 107900. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Sánchez, A.D.J.; Espinosa-Chaurand, L.D.; Díaz-Ramírez, M.; Torres-Ochoa, E. Plesiomonas: A review on food safety, fish-borne diseases, and tilapia. Sci. World J. 2021, 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, S.; Prabhu, K.; Selvan, G.P.; Ramasamy, P. Review on heavy metal contaminants in freshwater fish in South India: Current situation and future perspective. Env. Sci. Pollut. Res. 2023, 30, 119594–119611. [Google Scholar] [CrossRef] [PubMed]
- Kočar, D.; Köse, S.; Tufan, B.; Ščavničar, A.; Pompe, M. Determination of biogenic amines in fresh fish and processed fish products using IC-MS/MS. Foods 2021, 10, 1746. [Google Scholar] [CrossRef] [PubMed]
- Sylvain, F.É.; Holland, A.; Bouslama, S.; Audet-Gilbert, É.; Lavoie, C.; Val, A.L.; Derome, N. Fish skin and gut microbiomes show contrasting signatures of host species and habitat. Appl. Environ. Microbiol. 2020, 86, e00789-20. [Google Scholar] [CrossRef] [PubMed]
- Romero-Jarero, J.M.; Negrete-Redondo, M.D.P. Presencia de bacterias Gram positivas en músculo de pescado con importancia comercial en la zona del Caribe mexicano. Rev. Mex. De Biodivers. 2011, 82, 599–606. [Google Scholar] [CrossRef]
- Rathod, N.B.; Nirmal, N.P.; Pagarkar, A.; Özogul, F.; Rocha, J.M. Antimicrobial impacts of microbial metabolites on the preservation of fish and fishery products: A review with current knowledge. Microorganisms 2022, 10, 773. [Google Scholar] [CrossRef]
- Rodríguez Gómez, J.M. Consecuencias higiénicas de la alteración de los alimentos. Monogr. De La Real Acad. Nac. De Farm. 2010, 2, 19–66. [Google Scholar]
- Huss, H.H. Aseguramiento de la Calidad de los Productos Pesqueros. FAO Documento Técnico de Pesca; No. 334; Food and Agriculture Organization of the United Nations—FAO: Rome, Italy, 1997; 174p, Available online: https://www.fao.org/4/t1768s/T1768S00.htm (accessed on 15 April 2024).
- Castillo-Jiménez, A.M.; Montalvo-Rodríguez, C.; Ramírez-Toro, C.; Bolívar-Escobar, G. Control Microbiological Deterioration of Tilapia Fillets by the Application of Lactic Acid Bacteria. Orinoquia 2017, 21, 30–37. [Google Scholar] [CrossRef]
- Talledo Solórzano, V.; Chavarria Minaya, L.; Zambrano González, S.; Cuenca Nevárez, G. Effect of the use of lactic acid bacteria on the inhibition of microbiological deterioration of red tilapia fillets (Oreochromis sp.). J. Sci. Res. 2020, 5, 363–383. [Google Scholar] [CrossRef]
- Cortés Sánchez, A.D.J.; Diaz-Ramírez, M.; Torres-Ochoa, E.; Espinosa-Chaurand, L.D.; Rayas-Amor, A.A.; Cruz-Monterrosa, R.G.; Aguilar-Toala, J.E.; Salgado-Cruz, M.D.L.P. Processing, Quality and Elemental Safety of Fish. Appl. Sci. 2024, 14, 2903. [Google Scholar] [CrossRef]
- Salazar, S.; Uribe, E.; Aguilar, C.; Klotz, B. Bioconservación de pescado fresco empacado al vacío mediante la utilización de extractos antimicrobianos de bacterias ácido lácticas. Aliment. Hoy 2011, 20, 8–22. [Google Scholar]
- Gutiérrez Fernández, D.; Fernández Llamas, L.; Rodríguez González, A.; García Suárez, P. Bacteriophages and endolysins in the food industry. Arbor 2020, 196, a544. [Google Scholar] [CrossRef]
- Ramos-Vivas, J.; Elexpuru-Zabaleta, M.; Samano, M.L.; Barrera, A.P.; Forbes-Hernández, T.Y.; Giampieri, F.; Battino, M. Phages and enzybiotics in food biopreservation. Molecules 2021, 26, 5138. [Google Scholar] [CrossRef]
- Grande Burgos, M.J.; Lucas, R.; López Aguayo, M.C.; Perez Pulido, R.; Gálvez, A. Bioconservación de alimentos cárnicos. An. De La Real Acad. De Cienc. Vet. De Andal. Orient. 2011, 24, 111–123. [Google Scholar]
- Punil, R.; Sandoval, G.A. Análisis bioinformático de la endolisina LysB4: Un agente antimicrobiano utilizado en el biocontrol de Bacillus cereus en alimentos. Rev. Científica Ágora 2016, 3, 375–380. [Google Scholar] [CrossRef]
- Kazi, M.; Annapure, U.S. Bacteriophage biocontrol of foodborne pathogens. J. Food Sci. Technol. 2016, 53, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P. Recent approaches in food bio-preservation-a review. Open Vet. J. 2018, 8, 104–111. [Google Scholar] [CrossRef]
- Alegre Vilas, I.; Abadias i Sero, M.; Colás Medà, P.; Collazo Cordero, C.; Viñas Almenar, I. biopreservation against foodborne pathogens on minimally processed fruits and vegetables. Arbor 2020, 196, 1–11. [Google Scholar]
- Aguirre-Garcia, Y.L.; Nery-Flores, S.D.; Campos-Muzquiz, L.G.; Flores-Gallegos, A.C.; Palomo-Ligas, L.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R. Lactic Acid Fermentation in the Food Industry and Bio-Preservation of Food. Fermentation 2024, 10, 168. [Google Scholar] [CrossRef]
- Bautista, A.G.; Barrado, A.G. Bacteriocinas como bioconservador alimentario: Características generales y aplicación en alimentos. Pubsaúde 2023, 12, a366. [Google Scholar] [CrossRef]
- Parra Huertas, R.A. Bacterias ácido lácticas: Papel funcional en los alimentos. Biotecnol. En El Sect. Agropecu. Y Agroindustrial 2010, 8, 93–105. [Google Scholar]
- Londoño, N.A.; Taborda, M.T.; López, C.A.; Acosta, L.V. Bacteriocinas producidas por bacterias ácido lácticas y su aplicación en la industria de alimentos. Alimentos Hoy 2015, 23, 186–205. [Google Scholar]
- Freire, T.T.; Tolentino, A.L.; Ferreira, B.K.O.; dos Santos, T.M. Lactic acid bacteria its characteristics and importance: Review. Res. Soc. Dev. 2021, 10, e513101119964. [Google Scholar] [CrossRef]
- Velázquez-López, A.; Covatzin-Jirón, D.; Toledo-Meza, M.D.; Vela-Gutiérrez, G. Fermented drink elaborated with lactic acid bacteria isolated from chiapaneco traditional pozol. CienciaUAT 2018, 13, 165–178. [Google Scholar] [CrossRef]
- Velasco Briceño, D.A. Bioconservantes en Productos Cárnicos: Implicaciones Frente a los Principales Referentes Regulatorios en Listeria Monocytogenes. Master’s Thesis, Facultad de Ingeniería, Universidad de La Sabana, Cundinamarca, Colombia, 2018. Available online: https://intellectum.unisabana.edu.co/bitstream/handle/10818/33440/Tesis%20Maestria%20-%20Denis%20Alejandra%20Velasco%20B.pdf?sequence=1&isAllowed=y (accessed on 10 June 2024).
- Tabasco, R.; de Palencia, P.F.; Fontecha, J.; Peláez, C.; Requena, T. Competition mechanisms of lactic acid bacteria and bifidobacteria: Fermentative metabolism and colonization. LWT-Food Sci. Technol. 2014, 55, 680–684. [Google Scholar] [CrossRef]
- Ramírez Ramírez, J.; Loya-Olguín, J.; Ulloa, J.; Rosas-Ulloa, P.; Gutiérrez-Leyva, R.; Silva-Carrillo, Y. Use of fish waste and pineapple peel to produce biological silage. Abanico Vet. 2020, 10, e116. [Google Scholar] [CrossRef]
- Quesada, A.; Reginatto, G.A.; Ruiz Español, A.; Colantonio, L.D.; Burrone, M.S. Antimicrobial resistance of Salmonella spp. isolated animal food for human consumption. Rev. Peru. De Med. Exp. Y Salud Pública 2016, 33, 32–44. [Google Scholar] [CrossRef]
- Puig Peña, Y.; Leyva Castillo, V.; Aportela López, N.; Camejo Jardines, A.; Tejedor Areas, R. Antimicrobial resistance in bacteria isolated in fish and shellfish. Rev. Habanera De Cienc. Médicas 2019, 18, 500–512. [Google Scholar]
- Giono Cerezo, S.; Santos-Preciado, J.I.; Rayo Morfín-Otero, M.D.; Torres-López, F.J.; Alcántar-Curiel, M.D. Antimicrobial resistance. Its importance and efforts to control it. Gac. Médica De México 2020, 156, 172–180. [Google Scholar] [CrossRef] [PubMed]
- González Salas, R.; Vidal del Río, M.M.; Pimienta Concepción, I. Uso intensivo de antibióticos profilácticos en la acuicultura: Un problema creciente para la salud humana y animal. Univ. Y Soc. 2021, 13, 204–210. [Google Scholar]
- Müller, E.; Radler, F. Caseicin, a bacteriocin from Lactobacillus casei. Folia Microbiol. 1993, 38, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; Sugrue, I.; Tobin, C.; Hill, C.; Stanton, C.; Ross, R.P. The Lactobacillus casei group: History and health related applications. Front. Microbiol. 2018, 9, 2107. [Google Scholar] [CrossRef]
- Catagña Rodriguez, R.P. Revisión Bibliográfica Sobre Las Bacteriocinas y su Aplicación Como Bioconservante Dentro de la Industria Alimentaria. Bachelor’s Thesis, Universidad Nacional de Chimborazo, Riobamba, Ecuador, 2021. Available online: http://dspace.unach.edu.ec/bitstream/51000/8643/1/8.%20Tesis%20final.pdf (accessed on 1 June 2024).
- Negash, A.W.; Tsehai, B.A. Current applications of bacteriocin. Int. J. Microbiol. 2020, 3, 4374891. [Google Scholar] [CrossRef] [PubMed]
- Heredia Castro, P.Y.; Hérnández Mendoza, A.; González-Córdova, A.F.; Vallejo Cordoba, B. Bacteriocinas de bacterias ácido lácticas: Mecanismos de acción y actividad antimicrobiana contra patógenos en quesos. Interciencia 2017, 42, 340–346. [Google Scholar]
- Caicedo Rodríguez, Y.M. Efecto Antimicrobiano de Bacteriocinas Producidas por Bacterias Ácido. Bachelor’s Thesis, Universidad de Cuenca, Cuenca, Ecuador, 2022. Available online: https://core.ac.uk/reader/534130060 (accessed on 3 June 2024).
- Dosta, M.D.C.M.; Barrera, T.C.; Perrino, F.J.F.; Reyes, L.M. Revisión bibliográfica: Bacteriocinas producidas por bacterias probióticas. ContactoS 2009, 73, 63–72. [Google Scholar]
- Mondragón Preciado, G.; Escalante Minakata, P.; Osuna Castro, J.A.; Ibarra Junquera, V.; Morlett Chávez, J.A.; Aguilar González, C.N.; Rodríguez Herrera, R. Bacteriocinas: Características y aplicación en alimentos. Investig. Y Cienc. 2013, 21, 64–70. [Google Scholar]
- Cañaveral Sánchez, I.; Chalarca Vélez, J.R.; Gaviria Arias, D. Bacteriocins: Basic and applied vision. Alimentos Cienc. Ing. 2020, 27, 7–33. [Google Scholar] [CrossRef]
- Gómez Sala, B.; Herranz, C.; Díaz Freitas, B.; Hernández, P.E.; Sala, A.; Cintas, L.M. Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin. Int. J. Food Microbiol. 2016, 223, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Angiolillo, L.; Conte, A.; Del Nobile, M.A. A new method to bio-preserve sea bass fillets. Int. J. Food Microbiol. 2018, 271, 60–66. [Google Scholar] [CrossRef]
- Behnam, S.; Anvari, M.; Rezaei, M.; Soltanian, S.; Safari, R. Effect of nisin as a biopreservative agent on quality and shelf life of vacuum packaged rainbow trout (Oncorhynchus mykiss) stored at 4 C. J. Food Sci. Technol. 2015, 52, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Aymerich, T.; Rodríguez, M.; Garriga, M.; Bover-Cid, S. Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes on vacuum-packed cold-smoked salmon stored at 8 °C. Food Microbiol. 2019, 83, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Suárez, H.; Francisco, A.D.; Beirão, L.H. Influence of bacteriocins produced by Lactobacillus plantarum LPBM10 on shelf life of cachama hybrid fillets Piaractus rachypomus x Colossoma macropomum vacuum packaged. Vitae 2008, 15, 32–40. [Google Scholar]
- Corbalán, N.; Quiroga, M.; Masias, E.; Peralta, D.; Velázquez, J.B.; Acuña, L.; Vincent, P. Antimicrobial activity of MccJ25 (G12Y) against gram-negative foodborne pathogens in vitro and in food models. Int. J. Food Microbiol. 2021, 352, 109267. [Google Scholar] [CrossRef] [PubMed]
- Ucar, Y.; Özogul, Y.; Özogul, F.; Durmuş, M.; Köşker, A.R. Effect of nisin on the shelf life of sea bass (Dicentrarchus labrax L.) fillets stored at chilled temperature (4 ± 2 C). Aquac. Int. 2020, 28, 851–863. [Google Scholar] [CrossRef]
- Kaktcham, P.M.; Tchamani Piame, L.; Sandjong Sileu, G.M.; Foko Kouam, E.M.; Temgoua, J.B.; Zambou Ngoufack, F.; de Lourdes Pérez-Chabela, M. Bacteriocinogenic Lactococcus lactis subsp. lactis 3MT isolated from freshwater Nile Tilapia: Isolation, safety traits, bacteriocin characterisation, and application for biopreservation in fish pâté. Arch. Microbiol. 2019, 201, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Spanopoulos Hernandez, M.; Ponce Palafox, J.T.; Barba Quintero, G.; Ruelas Inzunza, J.R.; Tiznado Contreras, M.R.; Hernández González, C.; Shirai, K. Production of biological silage from fish waste, the smoked yellowfin tuna (Thunnus albacares) and fillet of tilapia (Oreochromis sp), for feeding aquaculture species. Rev. Mex. Ing. Quim. 2010, 9, 167–178. [Google Scholar]
- Toledo Pérez, J.; Llanes Iglesias, J. Estudio comparativo de los residuos de pescado ensilados por vías bioquímica y biológica. Rev. AquaTIC 2016, 25, 28–33. [Google Scholar]
- Fernández Herrero, A.L.; Tabera, A.; Agüeria, D.; Manca, E. Obtaining, characterization microbiological and physic-chemical of anchovy biological silage (Engraulis anchovy). REDVET. Rev. Electrónica De Vet. 2013, 14, 1–15. [Google Scholar]
- Ozyurt, C.E.; Boga, E.K.; Ozkutuk, A.S.; Ucar, Y.; Durmus, M.; Ozyurt, G. Bioconversion of discard fish (Equulites klunzingeri and Carassius gibelio) fermented with natural lactic acid bacteria; the chemical and microbiological quality of ensilage. Waste Biomass Valorization 2020, 11, 1435–1442. [Google Scholar] [CrossRef]
- Fernández Herrero, A.; Fernández Compás, A.; Salomone, A.; Vittone, M. Use of comercial inoculant for the production of fish silage. Preliminary study preliminary. REDVET. Rev. Electrónica De Vet. 2017, 18, 1–8. [Google Scholar]
- Terrones España, S.; Reyes Avalos, W. Effect of diets with biological silage of mollusk residues on the growth of shrimp Cryphiops caementarius and tilapia Oreochromis niloticus in intensive co-culture. Sci. Agropecu. 2018, 9, 167–176. [Google Scholar] [CrossRef]
- Guapacha, V.; Jairo, J.; Guapacha, H.; Enrique, J. Ensilaje de residuos de pescado. Universidad Nacional Abierta y a Distancia UNAD. Escuela de Ciencias Básicas, Tecnología e Ingeniería. Programa de Tecnología en alimentos Dosquebradas. Colombia. 2021. Available online: https://repository.unad.edu.co/handle/10596/41405 (accessed on 10 June 2024).
- Barriga Sánchez, M.; Churacutipa, M.; Salas, A. Elaboration of biological silage from raw rainbow trout (Oncorhynchus mykiss (Walbaum, 1792)) wastes in Puno, Peru. Ecol. Appl. 2019, 18, 37–44. [Google Scholar] [CrossRef]
- Álvarez Patina, R. Producción de Ensilados a Partir de Residuos de la Industria Pesquera del Puerto de Ilo y su Evaluación en la Alimentación de Pollos de Engorde. Universidad Nacional de Moquegua. Escuela Profesional de Ingeniería Pesquera Ingeniero Pesquero. Moquegua—Perú 2021. 2021. Available online: https://repositorio.unam.edu.pe/bitstream/handle/UNAM/299/D095_47005670_T-1658355033.pdf?sequence=1 (accessed on 29 May 2024).
- De La Cruz Calderón, G.; Perales Dávila, N.; Gamboa Alarcón, P.W. The use of aquaculture by-products in the production of biological and chemical silage: A review. Rev. Cienc. Nor@Ndina 2022, 5, 74–92. [Google Scholar] [CrossRef]
- Castillo García, W.E.; Sánchez Suárez, H.A.; Ochoa Mogollón, G.M. Evaluation of fish residues and shrimp head silages fermented with Lactobacillus fermentus isolated from pig. Rev. De Investig. Vet. Del Perú 2019, 30, 1456–1469. [Google Scholar] [CrossRef]
- Bringas Alvarado, L.; Zamorano-Ochoa, A.; Rojo-Rodríguez, J.B.; González-Félix, M.L.; Pérez-Velázquez, M.; Cárdenas-López, J.L.; Navarro-García, G. Evaluation of a fermented silage from tilapia by-products and its utilization as a feed ingredient for catfish. Biotecnia 2018, 20, 85–94. [Google Scholar]
- Hernández, C.; Olvera-Novoa, M.A.; Voltolina, D.; Hardy, R.W.; González-Rodriguez, B.; Dominguez-Jimenez, P.; Valverde-Romero, M.; Agramon-Romero, S. Use of tuna industry waste in diets for Nile tilapia, Oreochromis niloticus, fingerlings: Effect on digestibility and growth performance. Lat. Am. J. Aquat. Res. 2013, 41, 468–478. [Google Scholar] [CrossRef]
- Santana, T.M.; Dantas, F.D.M.; Monteiro Dos Santos, D.K.; Kojima, J.T.; Pastrana, Y.M.; De Jesus, R.S.; Gonçalves, L.U. Fish viscera silage: Production, characterization, and digestibility of nutrients and energy for tambaqui juveniles. Fishes 2023, 8, 111. [Google Scholar] [CrossRef]
- Shabani, A.; Boldaji, F.; Dastar, B.; Ghoorchi, T.; Zerehdaran, S.; Ashayerizadeh, A. Evaluation of increasing concentrations of fish waste silage in diets on growth performance, gastrointestinal microbial population, and intestinal morphology of broiler chickens. Anim. Feed Sci. Technol. 2021, 275, 114874. [Google Scholar] [CrossRef]
- Peña García, P.; Querevalú Ortiz, J.; Ochoa Mogollón, G.; Sánchez Suárez, H. Biological silage of shrimp waste fermented with lactic acid bacteria: Use as a biofertilizer in pasture crops and as feed for backyard pigs. Sci. Agropecu. 2020, 11, 459–471. [Google Scholar] [CrossRef]
- Raeesi, R.; Shabanpour, B.; Pourashouri, P. Use of fish waste to silage preparation and its application in animal nutrition. Online J. Anim. Feed Res. 2023, 13, 79–88. [Google Scholar] [CrossRef]
- Signorini Porchietto, M.L. Productos fermentados. In Tecnología de Productos de Origen Acuático; Guerrero Legarreta, I., Rosmini, R.M., Armenta, E.R., Eds.; Limusa: México, 2009; pp. 303–332. [Google Scholar]
- Zang, J.; Xu, Y.; Xia, W.; Regenstein, J.M. Quality, functionality, and microbiology of fermented fish: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1228–1242. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zang, J.; Regenstein, J.M.; Xia, W. Technological roles of microorganisms in fish fermentation: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1000–1012. [Google Scholar] [CrossRef] [PubMed]
- Marti-Quijal, F.J.; Remize, F.; Meca, G.; Ferrer, E.; Ruiz, M.J.; Barba, F.J. Fermentation in fish and by-products processing: An overview of current research and future prospects. Curr. Opin. Food Sci. 2020, 31, 9–16. [Google Scholar] [CrossRef]
- Skåra, T.; Axelsson, L.; Stefánsson, G.; Ekstrand, B.; Hagen, H. Fermented and ripened fish products in the northern European countries. J. Ethn. Foods 2015, 2, 18–24. [Google Scholar] [CrossRef]
- Ruddle, K.; Ishige, N. On the Origins, Diffusion and Cultural Context of Fermented Fish Products in Southeast Asia. In Globalization, Food and Social Identities in the Asia Pacific Region; Farrer, J., Ed.; Sophia University Institute of Comparative Culture: Tokyo, Japan, 2010; pp. 1–17. Available online: https://staff.agu.edu.vn/htnha/files/2013/06/On-the-oorigin-fiffusion-and-cultural-context-of-fermented-fish-products-in-Southeast-Asia.pdf (accessed on 2 June 2024).
- El Sheikha, A.F.; Ray, R.; Montet, D.; Panda, S.; Worawattanamateekul, W. African fermented fish products in scope of risks. Int. Food Res. J. 2014, 21, 425. [Google Scholar]
- Ayeloja, A.A.; Jimoh, W.A. Fermented Fish Products in Sub-Saharan Africa. In African Fermented Food Products-New Trends; Springer International Publishing: Cham, Switzerland, 2022; pp. 251–263. [Google Scholar] [CrossRef]
- Narzary, Y.; Das, S.; Goyal, A.K.; Lam, S.S.; Sarma, H.; Sharma, D. Fermented fish products in South and Southeast Asian cuisine: Indigenous technology processes, nutrient composition, and cultural significance. J. Ethn. Foods 2021, 8, 1–19. [Google Scholar] [CrossRef]
- Varapongsittikul, T. Pla Ra: Thai Fermented Fish. Thailand Foundation. 2023. Available online: https://www.thailandfoundation.or.th/culture_heritage/pla-ra-thai-fermented-fish/ (accessed on 3 June 2024).
- Vo, T.T.T.; Park, J.H. Characteristics of potential gamma-aminobutyric acid-producing bacteria isolated from Korean and Vietnamese fermented fish products. J. Microbiol. Biotechnol. 2019, 29, 209–221. [Google Scholar] [CrossRef]
- Mah, J.H.; Han, H.K.; Oh, Y.J.; Kim, M.G.; Hwang, H.J. Biogenic amines in Jeotkals, Korean salted and fermented fish products. Food Chem. 2002, 79, 239–243. [Google Scholar] [CrossRef]
- National Research Council (US) Panel on the Applications of Biotechnology to Traditional Fermented Foods. Applications of Biotechnology to Fermented Foods: Report of an Ad Hoc Panel of the Board on Science and Technology for International Development; Fermented Fish Products in the Philippines; National Academies Press: Washington, DC, USA, 1992; Volume 19. Available online: https://www.ncbi.nlm.nih.gov/books/NBK234688/ (accessed on 29 May 2024).
- Belleggia, L.; Osimani, A. Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: A literature review. Food Res. Int. 2023, 172, 113112. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, P.; Xu, Y.; Xia, W.; Hua, Q.; Jiang, Q. Effect of storage conditions on microbiological characteristics, biogenic amines, and physicochemical quality of low-salt fermented fish. J. Food Prot. 2020, 83, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
Risk | Causal Agent | Example(s) |
---|---|---|
Biological | Bacteria | Mycobacterium spp., Streptococcus iniae, Photobacterium damselae, Vibrio sp., Salmonella spp., Shigella sp., Plesiomonas shigelloides, Edwardsiella tarda, and Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Clostridium sp., Legionella pneumophila, Bacillus cereus, Campylobacter jejuni, Aeromonas sp. Pseudomonas sp., and Yersinia sp. |
Parasites | Gnathostoma sp., Cryptosporidium spp., Giardia duodenalis, Toxoplasma gondii, Pseudoterranova sp., Anisakis sp., Phocanema spp., Angiostrongylus sp., Contracaecum sp., Diphyllobothrium sp., Phagicola sp., Clonorchis sp., Paragonimus sp., Heterophyes sp., and Cryptosporidium sp. | |
Virus | Adenovirus, norovirus, astrovirus, hepatitis A, hepatitis E, rotavirus, and enterovirus | |
Chemical | Biotoxins | Ciguatoxin, scaritoxin, maitotoxin, tetrodotoxin, palytoxin, okadaic acid, gempilotoxin, and mycotoxins |
Heavy Metals | Copper, chromium, arsenic, mercury, lead, cadmium, nickel, zinc, and manganese | |
Organic Compounds | Pesticides, microplastics, antibiotics, hormones, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers, and dioxins | |
Biogenic Amines | Spermidine, spermine, putrescine, cadaverine, and histamine | |
Physical | Objects from capture activities, handlers, infrastructure and processing, and warehouse equipment | Glass, metal, wood, bones, stones, jewelry elements, fishing line, plastic, and hooks |
Fish/Byproduct | Application Conditions | Analyzed Microorganisms | Biocontrol | Limitations | Source |
---|---|---|---|---|---|
Lubin fillets (Centropomus undecimalis) | Immersion in 2% sodium alginate coating containing L. reuteri at 24 and 48 h of fermentation and storage at 4 °C. | Aerobic, psychotropic, and enterobacterial microorganisms. | Reduction in the growth of aerobic, psychotropic, and enterobacteria compared to control fillets. Improves the color and texture of foods due to fermentation, maintaining a compact structure and reducing oxidation reactions. | NR | [80] |
Lubin fillets | Use of nisin by immersion at 0.8% for 10 min and stored for 8 days at 4 °C. | Aerobic mesophiles. Psychrotroph aerobes. Enterobacteriaceae. | Negative control (day 6): 6.66 log CFU/mL. Nisin (day 8): 6 log CFU/mL. Negative control (day 6): 8.58 log CFU/mL. Nisin (day 8): 7.54 log CFU/mL. Negative control (day 6): 5.26 log CFU/mL. Nisin (day 8): 5.46 log CFU/mL. Longer useful life reducing its oxidation and microbial growth. | Little effect on Enterobacteriaceae | [72] |
Gutted trout | Use of nisin by spraying at a final concentration of 100 μg/g; vacuum packaged and stored at 4 ± 0.5 °C/16 days. | Aerobic mesophiles. Aerobic psychotrophs. | Negative control (day 12): >6 log CFU/g Nisin (day 12): 4 log CFU/g Negative control (day 12): >6 log CFU/g Nisin (day 12): 4 log CFU/g Extension of shelf life by reducing its oxidation and microbial growth. | NR | [81] |
Cold smoked salmon | Use of L. sakei CTC494 inoculated (1% v/w) to a final concentration of 4.6 log CFU/g. Vacuum packed and stored at 8 °C/21 days. | L. monocytogenes. | Growth inhibition of L. monocytogenes for 21 days. | NR | [82] |
Cachama fillets (Piaractus brachypomus × Colossoma macropomum) | L. plantarum LPBM10 bacteriocin crude extract added to the surface of each fillet in 1 mL corresponding to 40 mg of extract, vacuum packed, and stored in refrigeration at 3 ± 0.5 °C/30 days. | Mesophiles. Psychotrophs. Total coliforms. Fecal coliforms. | In the study, counts of 5.2 log cycles were reached in fillets with bacteriocin extract and 6.4 log cycles for the control. The total coliforms obtained an initial count of 2.6 log cycles, which did not change during the study. The count of fecal coliforms, at the end of storage, decreased 1.5 log cycles in fillets treated with crude bacteriocin extract compared to the control. Useful life extension and they did not negatively influence the sensory characteristics of the product. | The activity of the biopreservative agent is a function of the food matrix and temperature used. | [83] |
Scomber scombrus meat for burger. | Microcin MccJ25(G12Y) addition and mixing with meat in a proportion of 63 μg/g and stored at 4 °C/10 days. | E. cloacae generating histamine and poisoning. | The initial load of ~105 CFU/g of E. cloacae microcin-treated samples decreased by approximately 2 log10 CFU/g on the first day, followed by a final reduction of ~1 log10 CFU/g. | Additional studies aimed at the application and use of higher concentrations of MccJ25 (G12Y) to accentuate its antimicrobial activity and evaluate combinations with other bacteriocins that amplify the antimicrobial spectrum. | [84] |
Sea bass (Dicentrarchus labrax) fillets. | Immersion of fillets for 10 min in Lactococcus lactis nisin solution at different concentrations (0.2, 0.4, and 0.8% w/v) and storage at 4 ± 2 °C/12 days. | Total mesophilic viable, total psychrophilic viable, and total Enterobacteriaceae. | The aerobic mesophile counts achieved for the control on day 7 were >6.66 log CFU/g, and on day 8, they were 7.05–7.09 log CFU/g for the nisin-treated fillets. Total psychrophiles reached their maximum level of 8.58 log CFU/g on day 8 for the control while the lowest counts were in the fillets with 0.8% nisin treatment. The counts were in the range of 7.54–7.63 log CFU/g on day 8. Total Enterobacteriaceae counts were below 5 log CFU/g with nisin treatment except the control group, concluding that the application of nisin extends the shelf life of the fillets up to 2 days at 4 ± 2 °C. | NR | [85] |
Raw Material (Fish or Byproducts) | Microorganisms for Biopreservation | Application | Source |
---|---|---|---|
Head, spine, and tail of fish: 40%; fish viscera: 30%; fish skin 20%; crab remains 10% | Lactobacillus bulgaricus and Streptococcus thermophilus | Diets for fattening birds | [95] |
Head, fins, spine, and salmonid viscera | Lactobacillus bulgaricus | Fish feeding | [96] |
Waste from Bagre panamensis, Peprilus snyderi, Sphyraena ensis, Trachynotus ovatus, Argyrosomus regius, and Diplodus vulgaris | Lactobacillus sp. Or Lactobacillus B2 and pineapple peel | Ruminant feeding | [65] |
Prawn head and residue from the filleting of Selene peruvian | Lactobacillus fermentus | Pig feeding | [97] |
Fractions derived from the filleting of Oreochromis niloticus (head, skeleton, tail, viscera, and skin) | Lactobacillus ssp. | Diets for channel catfish | [98] |
Cooked products and tuna organs | Lactobacillus plantarum | Diets for tilapia (Oreochromis niloticus) | [99] |
Fish viscera (liver, stomach, intestine, swim bladder, kidney, spleen, and gonads) | Lactobacillus sp. | Diets for feeding juvenile Tambaqui (Colossoma macropomum) | [100] |
Fresh sardine waste (heads, viscera, scales, fins, bones, and skin) | Lactobacillus plantarum and Aspergillus oryzae | Diets for feeding broiler chickens | [101] |
Fresh prawn heads | Lactobacilus fermentum and Lactobacilus lactis | Biofertilizer in grass cultivation and as feed for pigs | [102] |
Discard fish (Equulites klunzingeri and Carassius gibelio) | Streptococcus spp., L. brevis, L. plantarum, P. acidilactici, and E. gallinarum | Source of animal nutrition protein | [90] |
Fermented Product | Country | Fish | Reference |
---|---|---|---|
Surströmming | Sweden | Freshly caught Baltic herring (Clupea harengus var. Membras) | [108] |
Ndagala | Burundi (Africa oriental) | Limnothrissa miodon or Stolothrissa tanganicae | [104,109,110] |
Adjonfa o Gyagawere | Cote d’Ivoire | Catfish, stingray, tiger fish, octopus, tuna, and mackerel, among others | [104,110] |
Feseekh | Egypt | Bouri fish (Mugil cephlus) | [110] |
Terkeen/mindesh | Sudan | Tilapia o Alestes sp. | [102,111] |
Pekasam | Malaysia | Freshwater fish and marine fish | [112] |
Pla ra/pla daek | Thailand | Gourami, snakehead, catfish, or small fishes | [113] |
Koami and Ounago | Japan | Shrimp (Mysis spp.) and small fish | [104,114] |
Jeotkals | Korea | Squid, anchovies, pollock, and shrimp, among others | [104,112,115] |
Bagoong and Patis | Philippines | Stolephorus sp., Sardinella fmbriata, and Decapterus sp., shrimp, slipmouth, freshwater porgy, oysters, clams, and other shellfish | [104,112,116] |
Shidal | India and Bangladesh | Puntius sp. (generally Puntius sophore) and Stipinna phasa | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés-Sánchez, A.D.J.; Jaramillo-Flores, M.E.; Díaz-Ramírez, M.; Espinosa-Chaurand, L.D.; Torres-Ochoa, E. Biopreservation and the Safety of Fish and Fish Products, the Case of Lactic Acid Bacteria: A Basic Perspective. Fishes 2024, 9, 303. https://doi.org/10.3390/fishes9080303
Cortés-Sánchez ADJ, Jaramillo-Flores ME, Díaz-Ramírez M, Espinosa-Chaurand LD, Torres-Ochoa E. Biopreservation and the Safety of Fish and Fish Products, the Case of Lactic Acid Bacteria: A Basic Perspective. Fishes. 2024; 9(8):303. https://doi.org/10.3390/fishes9080303
Chicago/Turabian StyleCortés-Sánchez, Alejandro De Jesús, María Eugenia Jaramillo-Flores, Mayra Díaz-Ramírez, Luis Daniel Espinosa-Chaurand, and Erika Torres-Ochoa. 2024. "Biopreservation and the Safety of Fish and Fish Products, the Case of Lactic Acid Bacteria: A Basic Perspective" Fishes 9, no. 8: 303. https://doi.org/10.3390/fishes9080303
APA StyleCortés-Sánchez, A. D. J., Jaramillo-Flores, M. E., Díaz-Ramírez, M., Espinosa-Chaurand, L. D., & Torres-Ochoa, E. (2024). Biopreservation and the Safety of Fish and Fish Products, the Case of Lactic Acid Bacteria: A Basic Perspective. Fishes, 9(8), 303. https://doi.org/10.3390/fishes9080303