Dietary Supplementation with Nano-Curcumin Improves the Meat Quality and Nutrition Value of Largemouth Bass (Micropterus salmoides) Fed with a High-Carbohydrate Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Experimental Fish and Feeding Management
2.3. Sample Collection and Analysis
2.3.1. Flesh Quality Analysis
2.3.2. Determine the Chemical Composition of the Body and Muscles
2.3.3. Muscle Amino Acid (AA) and Fatty Acid (FA) Content
2.3.4. Muscle Histology
2.3.5. Enzyme Assays
2.3.6. Real-Time Quantitative PCR Analysis
2.4. Statistical Analysis
3. Results
3.1. Flesh Color and pH Changes
3.2. Whole Fish Body and Muscle Composition Analysis
3.3. Muscle Amino Acid Composition Analysis
3.4. Muscle Fatty Acid Composition Analysis
3.5. Water-Holding Capacity (WHC) of Muscle
3.6. Texture Profile Analysis (TPA) and Shear Force Tests of Muscle
3.7. Muscle Cellularity and Histology Analysis
3.8. Analysis of Antioxidant Enzymes in the Muscle
3.9. Real-Time Quantitative PCR Analysis in Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, D.; Yao, H.; Li, Y.H.; Xu, Y.J.; Ma, X.F.; Wang, H.P. Global diversity and genetic landscape of natural populations and hatchery stocks of largemouth bass (Micropterus salmoides) across American and Asian regions. Sci. Rep. 2019, 9, 16697. [Google Scholar] [CrossRef]
- Zhao, T.; Wu, K.; Hogstrand, C.; Xu, Y.H.; Chen, G.H.; Wei, C.C.; Luo, Z. Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARγ pathways. Cell. Mol. Life Sci. 2020, 77, 1987–2003. [Google Scholar] [CrossRef]
- Bao, S.T.; Liu, X.C.; Huang, X.P.; Guan, J.F.; Xie, D.Z.; Li, S.A.; Xu, C. Magnesium supplementation in high carbohydrate diets: Implications on growth, muscle fiber development and flesh quality of Megalobrama amblycephala. Aquac. Rep. 2022, 23, 101039. [Google Scholar] [CrossRef]
- Wu, H.X.; Li, W.J.; Shan, C.J.; Zhang, Z.Y.; Lv, H.B.; Qiao, F.; Du, Z.; Zhang, M. Oligosaccharides improve the flesh quality and nutrition value of Nile tilapia fed with high carbohydrate diet. Food Chem. Mol. Sci. 2021, 3, 100040. [Google Scholar] [CrossRef]
- Amoah, A.; Coyle, S.D.; Webster, C.D.; Durborow, R.M.; Bright, L.A.; Tidwell, J.H. Effects of graded levels of carbohydrate on growth and survival of largemouth bass. J. World Aquacult. Soc. 2008, 39, 397–405. [Google Scholar] [CrossRef]
- Lin, S.M.; Shi, C.M.; Mu, M.M.; Chen, Y.J.; Luo, L. Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides. Fish Shellfish. Immunol. 2018, 78, 121–126. [Google Scholar] [CrossRef]
- Zhange, Y.; Xie, S.; Wei, H.; Zheng, L.; Liu, Z.; Fang, H.; Xie, J.; Liao, S.; Tian, L.; Liu, Y.; et al. High dietary starch impaired growth performance, liver histology and hepatic glucose metabolism of juvenile largemouth bass, Micropterus salmoides. Aquac. Nutr. 2020, 26, 1083–1095. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W.; Han, Z.; Zeng, X.A. Texture and Structure Measurements and Analyses for Evaluation of Fish and Fillet Freshness Quality: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 52–61. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Jiang, G.Z.; Abasubong, K.P.; Wang, C.C.; Zhang, L.; Dai, Y.J.; Zheng, X.C.; Cao, X.F.; He, C.; Wang, X.; et al. High lipid and high carbohydrate diets affect muscle growth of blunt snout bream (Megalobrama amblycephala) through different signaling pathways. Aquaculture 2022, 548, 737495. [Google Scholar] [CrossRef]
- Zhou, C.; Ge, X.; Niu, J.; Lin, H.; Huang, Z.; Tan, X. Effect of dietary carbohydrate levels on growth performance, body composition, intestinal and hepatic enzyme activities, and growth hormone gene expression of juvenile golden pompano, Trachinotus ovatus. Aquaculture 2015, 437, 390–397. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B.; Dardevet, D.; Astruc, T. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348. [Google Scholar] [CrossRef] [PubMed]
- Vazeille, E.; Slimani, L.; Claustre, A.; Magne, H.; Labas, R.; Béchet, D.; Taillandier, D.; Attaix, D. Curcumin treatment prevents increased proteasome and apoptosome activities in rat skeletal muscle during reloading and improves subsequent recovery. J. Nutr. Biochem. 2012, 23, 245–251. [Google Scholar] [CrossRef]
- Gorza, L.; Germinario, E.; Vitadello, M.; Guerra, I.; De Majo, F.; Gasparella, F.; Caliceti, P.; Vitiello, L.; Danieli-Betto, D. Curcumin Administration Improves Force of mdx Dystrophic Diaphragm by Acting on Fiber-Type Composition, Myosin Nitrotyrosination and SERCA1 Protein Levels. Antioxidants 2023, 12, 1181. [Google Scholar] [CrossRef]
- Li, X.; Wu, L.; Duan, L.; Wang, W.; Zhao, P.; Wu, M.; Song, W.; Huang, F. Effects of Dietary Curcumin on Growth and Flesh Quality in Juvenile Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus). Aquac. Res. 2023, 2023, 6013669. [Google Scholar] [CrossRef]
- Jiang, J.Y.; Wen, H.; Jiang, M.; Tian, J.; Dong, L.X.; Shi, Z.C.; Zhou, T.; Lu, X.; Liang, H.W. Dietary Curcumin Supplementation Could Improve Muscle Quality, Antioxidant Enzyme Activities and the Gut Microbiota Structure of Pelodiscus sinensis. Animals 2023, 13, 2626. [Google Scholar] [CrossRef]
- Pirani, F.; Moradi, S.; Ashouri, S.; Johari, S.A.; Ghaderi, E.; Kim, H.P.; Yu, L. Dietary supplementation with curcumin nanomicelles, curcumin, and turmeric affects growth performance and silver nanoparticle toxicity in Cyprinus carpio. Environ. Sci. Pollut. Res. 2021, 28, 64706–64718. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Calina, D.; Docea, A.O.; Koirala, N.; Aryal, S.; Lombardo, D.; Pasqua, L.; Taheri, Y.; Castillo, C.M.S.; Martorell, M.; et al. Curcumin’s Nanomedicine Formulations for Therapeutic Application in Neurological Diseases. J. Clin. Med. 2020, 9, 430. [Google Scholar] [CrossRef]
- Wu, X.; Castillo, S.; Rosales, M.; Burns, A.; Mendoza, M.; Gatlin, D.M. Relative use of dietary carbohydrate, non-essential amino acids, and lipids for energy by hybrid striped bass, Morone chrysops ♀ × M. saxatilis ♂. Aquaculture 2015, 435, 116–119. [Google Scholar] [CrossRef]
- Zhao, W.; Jin, M.; Zhu, T.; Xie, S.; Yang, Y.; Li, X.; Zhou, Q. Dietary starch level regulates the growth and glycolipid metabolism through the insulin-PI3K-AKT signaling pathway of juvenile mud crab (Scylla paramamosain). Aquac. Rep. 2024, 36, 102124. [Google Scholar] [CrossRef]
- Lu, H.; Wang, H.; Luo, Y.K. Changes in Protein Oxidation, Water-Holding Capacity, and Texture of Bighead Carp (Aristichthys Nobilis) Fillets under Chilled and Partial Frozen Storage. J. Aquat. Food Prod. Technol. 2017, 26, 566–577. [Google Scholar] [CrossRef]
- Du, X.; Chang, P.; Tian, J.; Kong, B.; Sun, F.; Xia, X. Effect of ice structuring protein on the quality, thermal stability and oxidation of mirror carp (Cyprinus carpio L.) induced by freeze-thaw cycles. LWT 2020, 124, 109140. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Li, M.; Huang, J.; Zu, X.; Liao, T.; Xiong, G.P. Effects of temporary rearing with organic selenium on the muscle flavor and texture properties of largemouth bass (Micropterus salmonides). Food Chem. 2022, 397, 133747. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Yang, R.; Xiao, R.; Ni, W.; Liu, L.; Zhao, J.; Ye, Z. Effect of swimming training on the flesh quality in Chinese Perch (Siniperca chuatsi) and its relationship with muscle metabolism. Aquaculture 2023, 577, 739926. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, S.; Dong, X.; Chi, S.; Yang, Q.; Liu, H.; Tan, B.; Xie, S. Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Fish Shellfish Immunol. 2022, 120, 497–506. [Google Scholar] [CrossRef]
- Kari, Z.A.; Kabir, M.A.; Dawood, M.A.O.; Razab, M.K.A.A.; Ariff, N.S.N.A.; Sarkar, T.; Pati, S.; Edinur, H.; Mat, K.; Ismail, T.; et al. Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture 2022, 546, 737418. [Google Scholar] [CrossRef]
- Wang, B.K.; Liu, W.B.; Xu, C.; Cao, X.F.; Zhong, X.Q.; Shi, H.J.; Li, X.F. Dietary carbohydrate levels and lipid sources modulate the growth performance, fatty acid profiles and intermediary metabolism of blunt snout bream Megalobrama amblycephala in an interactive pattern. Aquaculture 2017, 481, 140–153. [Google Scholar] [CrossRef]
- Zhou, C.; Ge, X.; Liu, B.; Xie, J.; Chen, R.; Miao, L.; Ren, M. Comparative study on the effect of high dietary carbohydrate on the growth performance, body composition, serum physiological responses and hepatic antioxidant abilities in Wuchang bream (Megalobrama amblycephala) and black carp (Mylopharyngodon piceus Richardson, 1846). Aquac. Res. 2017, 48, 1020–1030. [Google Scholar] [CrossRef]
- Fang, Z.; Gong, Y.; Han, Z.; Xie, R.; Li, W.; Zhang, H.; Chen, N.; Li, S. Dietary sodium diacetate inclusion relieved hepatic glycogen deposition, oxidative stress, and intestinal microbial imbalance of largemouth bass (Micropterus salmoides) fed high dietary carbohydrate. Aquaculture 2024, 580, 740307. [Google Scholar] [CrossRef]
- Erikson, U.; Misimi, E. Atlantic salmon skin and fillet color changes effected by perimortem handling stress, rigor mortis, and ice storage. J. Food Sci. 2008, 73, C50–C59. [Google Scholar] [CrossRef]
- Yu, H.; Liang, H.; Ge, X.; Zhu, J.; Wang, Y.; Ren, M.; Chen, X. Dietary chlorella (Chlorella vulgaris) supplementation effectively improves body color, alleviates muscle inflammation and inhibits apoptosis in largemouth bass (Micropterus salmoides). Fish Shellfish Immunol. 2022, 127, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How Muscle Structure and Composition Influence Meat and Flesh Quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Liu, X.; Huang, W.; Li, G.; Zhang, Y.; Xu, D.; Wang, G. Effects of dietary carbohydrate levels on growth, metabolic enzyme activities and oxidative status of hybrid snakehead (Channa maculata ♀ × Channa argus ♂). Aquaculture 2023, 563, 738960. [Google Scholar] [CrossRef]
- Shao, W.; Yu, Z.; Chiang, Y.; Yang, Y.; Chai, T.; Foltz, W.; Lu, H.; Fantus, I.; Jin, T. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS ONE 2012, 7, e28784. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Xiang, X.; Li, X.; Mai, K.; Ai, Q. Effects of dietary curcumin on growth, antioxidant capacity, fatty acid composition and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet. Br. J. Nutr. 2021, 126, 345–354. [Google Scholar] [CrossRef]
- Lee, D.Y.; Chun, Y.S.; Kim, J.K.; Lee, J.O.; Ku, S.K.; Shim, S.M. Curcumin Attenuates Sarcopenia in Chronic Forced Exercise Executed Aged Mice by Regulating Muscle Degradation and Protein Synthesis with Antioxidant and Anti-inflammatory Effects. J. Agric. Food Chem. 2021, 69, 6214–6228. [Google Scholar] [CrossRef] [PubMed]
- Gatlin Iii, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, A.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Kaneko, G.; Xie, J.; Wang, G.; Yu, D.; Li, Z.; Ma, L.; Qi, D.; Tian, J.; et al. Quantitative phosphoproteomic analysis of soft and firm grass carp muscle. Food Chem. 2020, 303, 125367. [Google Scholar] [CrossRef]
- Yu, E.M.; Zhang, H.F.; Li, Z.F.; Wang, G.J.; Wu, H.K.; Xie, J.; Yu, D.; Xia, Y.; Zhang, K.; Gong, W. Proteomic signature of muscle fibre hyperplasia in response to faba bean intake in grass carp. Sci. Rep. 2017, 7, 45950. [Google Scholar] [CrossRef]
- Wright, L.I.; Scanga, J.A.; Belk, K.E.; Engle, T.E.; Tatum, J.D.; Person, R.C.; McKenna, D.R.; Griffin, D.B.; McKeith, F.K.; Savell, J.W.; et al. Benchmarking value in the pork supply chain: Characterization of US pork in the retail marketplace. Meat Sci. 2005, 71, 451–463. [Google Scholar] [CrossRef]
- Zhao, H.F.; Feng, L.; Jiang, W.D.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.; Tang, L.; Tang, W.; et al. Flesh Shear Force, Cooking Loss, Muscle Antioxidant Status and Relative Expression of Signaling Molecules (Nrf2, Keap1, TOR, and CK2) and Their Target Genes in Young Grass Carp (Ctenopharyngodon idella) Muscle Fed with Graded Levels of Choline. PLoS ONE 2015, 10, e0142915. [Google Scholar] [CrossRef]
- Reina, R.; del Pulgar, J.S.; López-Buesa, P.; García, C. Amino acid and nucleotide contents and sensory traits of dry-cured products from pigs with different genotypes. Meat Sci. 2014, 96, 230–236. [Google Scholar] [CrossRef]
- Jiang, W.D.; Wen, H.L.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kang, S.; Tang, L.; Tang, W.; Zhang, Y.A.; et al. Enhanced muscle nutrient content and flesh quality, resulting from tryptophan, is associated with anti-oxidative damage referred to the Nrf2 and TOR signalling factors in young grass carp (Ctenopharyngodon idella): Avoid tryptophan deficiency or excess. Food Chem. 2016, 199, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Lee, J.R.; Kim, M.K.; Jo, C.; Lee, K.H.; You, I.; Jung, S. Quality Improvement of Pork Loin by Dry Aging. Korean J. Food Sci. Anim. Resour. 2016, 36, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Jiang, W.D.; Wu, P.; Liu, Y.; Zeng, Y.Y.; Jiang, J.; Kuang, S.; Tang, L.; Tang, W.N.; Wang, S.; et al. Soybean isoflavones improve the health benefits, flavour quality indicators and physical properties of grass carp (Ctenopharygodon idella). PLoS ONE 2019, 14, e0209570. [Google Scholar] [CrossRef] [PubMed]
- Osorio, M.T.; Zumalacárregui, J.M.; Cabeza, E.A.; Figueira, A.; Mateo, J. Effect of rearing system on some meat quality traits and volatile compounds of suckling lamb meat. Small Rumin. Res. 2008, 78, 1–12. [Google Scholar] [CrossRef]
- Turchini, G.M.; Mentasti, T.; Caprino, F.; Panseri, S.; Moretti, V.M.; Valfrè, F. Effects of dietary lipid sources on flavour volatile compounds of brown trout (Salmo Trutta L.). Fill. J. Appl. Ichthyol. 2004, 20, 71–75. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Pearson, T.A.; Wan, Y.; Hargrove, R.L.; Moriarty, K.; Fishell, V.; Etherton, T. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 1999, 70, 1009–1015. [Google Scholar] [CrossRef]
- Shi, G.; Gao, T.; Li, X.; Shi, L.; Chen, S.; Ding, A.; Li, X.; Qiao, Y.; Liao, L.; Xiong, G.; et al. Integrating transcriptomic and metabolomic analysis to understand muscle qualities of red swamp crayfish (Procambarus clarkii) under transport stress. Food Res. Int. 2023, 164, 112361. [Google Scholar] [CrossRef]
- Memarzia, A.; Khazdair, M.R.; Behrouz, S.; Gholamnezhad, Z.; Jafarnezhad, M.; Saadat, S.; Boskabady, M. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. BioFactors 2021, 47, 311–350. [Google Scholar] [CrossRef]
- Meng, B.; Li, J.; Cao, H. Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Curr. Pharm. Des. 2013, 19, 2101–2113. [Google Scholar] [PubMed]
- Wu, Y.; Zhao, M.; Xia, Y.; Sun, W.; Xiong, G.; Shi, L.; Tiao, Y.; Wu, W.; Ding, A.; Chen, L.; et al. Deterioration of muscle quality caused by ammonia exposure in rainbow trout (Oncorhynchus mykiss). Food Biosci. 2023, 53, 102609. [Google Scholar] [CrossRef]
- Azm, F.R.A.; Kong, F.; Tan, Q.; Zhu, Y.; Yu, H.; Yao, J.; Luo, Z. Effects of replacement of dietary rapeseed meal by distiller’s dried grains with solubles (DDGS) on growth performance, muscle texture, health and expression of muscle-related genes in grass carp (Ctenopharyngodon idellus). Aquaculture 2021, 533, 736169. [Google Scholar] [CrossRef]
- Xiao, K.; Wang, X.; Dai, Y.J.; Huang, Y.Y.; Wang, M.M.; Guo, H.X.; Liu, W.; Li, X.; Abasubong, K.; Jiang, G.; et al. Hypoxia mediates Hif-1α to affect myofiber development and Vc regulates the influence by activating Shh-Gli pathway in channel catfish (Ictalurus punctatus). Aquaculture 2023, 562, 738849. [Google Scholar] [CrossRef]
- Sáez-Arteaga, A.; Wu, Y.; Silva-Marrero, J.I.; Rashidpour, A.; Almajano, M.P.; Fernández, F.; Baanante, I.; Metón, I. Gene markers of dietary macronutrient composition and growth in the skeletal muscle of gilthead sea bream (Sparus aurata). Aquaculture 2022, 555, 738221. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Investig. 2002, 109, 595–601. [Google Scholar] [CrossRef] [PubMed]
Item | LC | HC | HCN |
---|---|---|---|
Moisture (%) | 7.36 | 7.42 | 7.33 |
Crude protein (%) | 42.01 | 42.56 | 43.57 |
Crude lipid (%) | 10.41 | 10.11 | 10.10 |
Crude ash (%) | 14.71 | 14.64 | 14.53 |
Name | Primer Sequences |
---|---|
β-actin | F: AAAGGGAAATCGTGCGTGAC R: AAGGAAGGCTGGAAGAGGG |
myf5 | F: CTTTGAGACGTTGCACCTCG R: TCCACCGCTCTCGTAACAG |
myf6 | F: GGCCAGTCATGAGTACCACT R: TCACAATGGATGACAGACGC |
myod | F: TCTGAAAAGTGACCGGAGCT R: TAGATCACGTTCGGGTCCTG |
MSTN | F: ACCTTGGAGTGAATGTAGAC R: GAGTGGAGTGGAGTGGAT |
Item | LC | HC | HCN |
---|---|---|---|
Whole fish body composition | |||
Crude lipid (%) | 30.78 ± 0.57 b | 30.44 ± 0.09 b | 28.39 ± 0.55 a |
Crude ash (%) | 13.23 ± 0.18 | 13.77 ± 0.21 | 13.20 ± 0.47 |
Crude protein (%) | 37.70 ± 3.37 | 38.19 ± 0.38 | 41.80 ± 0.85 |
Muscle composition | |||
Crude lipid (%) | 13.47 ± 0.22 ab | 14.02 ± 0.16 b | 12.94 ± 0.20 a |
Crude ash (%) | 6.48 ± 0.07 | 6.48 ± 0.05 | 6.44 ± 0.05 |
Crude protein (%) | 68.30 ± 3.10 | 69.41 ± 2.26 | 70.03 ± 1.55 |
Item | LC | HC | HCN |
---|---|---|---|
Taurine | 0.25 ± 0.00 a | 0.29 ± 0.00 b | 0.20 ± 0.00 c |
Threonine | 3.61 ± 0.02 | 3.62 ± 0.02 | 3.63 ± 0.00 |
Alanine | 4.94 ± 0.03 | 4.93 ± 0.03 | 4.98 ± 0.00 |
Valine | 3.64 ± 0.03 a | 3.72 ± 0.02 b | 3.74 ± 0.02 b |
Methionine | 2.34 ± 0.02 | 2.37 ± 0.02 | 2.39 ± 0.00 |
Isoleucine | 3.26 ± 0.03 a | 3.34 ± 0.02 b | 3.38 ± 0.02 b |
Leucine | 6.15 ± 0.05 | 6.22 ± 0.04 | 6.27 ± 0.00 |
Phenylalanine | 3.26 ± 0.03 | 3.26 ± 0.01 | 3.30 ± 0.01 |
Histidine | 1.96 ± 0.01 a | 2.01 ± 0.01 b | 1.99 ± 0.00 ab |
Lysine | 7.35 ± 0.05 | 7.43 ± 0.06 | 7.46 ± 0.00 |
Arginine | 4.53 ± 0.02 a | 4.53 ± 0.01 a | 4.60 ± 0.00 b |
Aspartic | 8.30 ± 0.06 | 8.38 ± 0.06 | 8.39 ± 0.01 |
Serine | 3.39 ± 0.02 | 3.42 ± 0.02 | 3.41 ± 0.00 |
Glutamate | 12.05 ± 0.08 | 12.10 ± 0.06 | 12.20 ± 0.00 |
Glycine | 4.35 ± 0.04 a | 4.35 ± 0.01 a | 4.26 ± 0.00 b |
Cystine | 0.85 ± 0.00 a | 0.86 ± 0.00 b | 0.86 ± 0.00 b |
Tyrosine | 2.67 ± 0.01 a | 2.67 ± 0.00 a | 2.69 ± 0.00 b |
Proline | 3.04 ± 0.01 ab | 3.05 ± 0.01 a | 3.02 ± 0.00 b |
Total amino acids | 75.94 ± 0.50 | 76.55 ± 0.40 | 76.78 ± 0.03 |
Item | LC | HC | HCN |
---|---|---|---|
SFA | |||
C12:0 | 0.01 ± 0.00 | 0.02 ± 0.01 | 0.04 ± 0.01 |
C13:0 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
C14:0 | 2.01 ± 0.06 | 1.85 ± 0.15 | 2.04 ± 0.04 |
C15:0 | 0.33 ± 0.01 | 0.32 ± 0.03 | 0.33 ± 0.06 |
C16:0 | 19.32 ± 0.01 | 19.13 ± 0.07 | 19.20 ± 0.10 |
C17:0 | 0.29 ± 0.00 a | 0.31 ± 0.01 b | 0.30 ± 0.00 ab |
C18:0 | 4.93 ± 0.18 | 5.43 ± 0.34 | 5.12 ± 00 |
C20:0 | 0.27 ± 0.01 | 0.28 ± 0.00 | 0.28 ± 0.01 |
C21:0 | 0.03 ± 0.01 | 0.03 ± 0.00 | 0.03 ± 0.01 |
C22:0 | 0.17 ± 0.01 | 0.14 ± 0.01 | 0.16 ± 0.01 |
C23:0 | 1.42 ± 0.1 | 1.57 ± 0.1 | 1.48 ± 0.01 |
C24:0 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.01 |
SFA | 28.95 ± 0.20 | 29.20 ± 0.26 | 29.10 ± 0.10 |
MUFA | |||
C14:1n5 | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.00 |
C16:1n7 | 5.49 ± 0.09 b | 4.78 ± 0.31 a | 5.23 ± 0.74 ab |
C17:1n7 | 0.26 ± 0.00 | 0.25 ± 0.01 | 0.25 ± 0.01 |
C18:1n9t | 0.26 ± 0.02 | 0.26 ± 0.03 | 0.24 ± 0.01 |
C18:1n9c | 24.63 ± 0.52 | 23.17 ± 0.76 | 23.93 ± 0.13 |
C20:1n9 | 2.02 ± 0.01 | 1.99 ± 0.02 | 2.04 ± 0.033 |
C22:1n9 | 0.16 ± 0.01 | 0.17 ± 0.00 | 0.15 ± 0.01 |
C24:1n9 | 0.56 ± 0.05 | 0.57 ± 0.04 | 0.60 ± 0.03 |
MUFA | 33.40 ± 0.57 | 31.23 ± 1.03 | 32.48 ± 0.17 |
n-6PUFA | |||
C18:2n6c | 17.03 ± 0.25 | 17.05 ± 0.52 | 17.49 ± 0.09 |
C18:3n6 | 0.21 ± 0.01 | 0.21 ± 0.01 | 0.22 ± 0.02 |
C20:2n6 | 0.40 ± 0.02 a | 0.47 ± 0.03 b | 0.48 ± 0.01 b |
C20:3n6 | 0.49 ± 0.02 | 0.52 ± 0.01 | 0.48 ± 0.01 |
C20:4n6 | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.01 |
C22:2n6 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.03 ± 0.02 |
n-6PUFA | 18.18 ± 0.22 | 18.29 ± 0.49 | 18.72 ± 0.03 |
n-3PUFA | |||
C18:3n3 | 1.10 ± 0.034 | 1.07 ± 0.05 | 1.10 ± 0.00 |
C20:3n3 | 0.15 ± 0.01 | 0.11 ± 0.01 | 0.14 ± 0.01 |
C20:5n3 | 2.09 ± 0.06 | 2.19 ± 0.12 | 2.12 ± 0.03 |
C22:6n3 | 16.12 ± 0.59 | 17.89 ± 1.19 | 16.32 ± 0.27 |
n-3PUFA | 19.46 ± 0.60 | 21.26 ± 1.26 | 19.68 ± 0.31 |
PUFA | 37.63 ± 0.40 a | 39.55 ± 0.78 b | 38.40 ± 0.28 ab |
Item | LC | HC | HCN |
---|---|---|---|
Refrigeration loss (%) | 2.44 ± 0.10 b | 2.26 ± 0.10 ab | 2.07 ± 0.11 a |
Steaming loss (%) | 26.54 ± 0.73 | 24.88 ± 0.42 | 24.55 ± 0.75 |
Drip loss (%) | 3.29 ± 0.29 | 2.85 ± 0.14 | 2.80 ± 0.26 |
Item | LC | HC | HCN |
---|---|---|---|
TPA | |||
Springiness | 0.42 ± 0.01 | 0.44 ± 0.01 | 0.43 ± 0.02 |
Cohesiveness | 0.50 ± 0.03 | 0.53 ± 0.03 | 0.49 ± 0.02 |
Gumminess | 1123.86 ± 59.84 a | 1420.53 ± 77.52 b | 1230.19 ± 27.56 ab |
Resilience | 0.37 ± 0.02 | 0.38 ± 0.02 | 0.37 ± 0.02 |
Shear force | |||
Anterior dorsal muscle | |||
Chewiness (g/sec) | 252.50 ± 9.99 b | 233.98 ± 12.49 ab | 211.25 ± 6.63 a |
Firmness (g/sec) | 252.56 ± 9.99 b | 234.03 ± 12.49 ab | 211.30 ± 6.29 a |
Hardness (g/sec) | 224.35 ± 13.86 b | 202.08 ± 14.53 ab | 165.99 ± 6.90 a |
Abdominal | |||
Chewiness (g/sec) | 299.83 ± 9.32 b | 291.08 ± 18.94 b | 191.03 ± 12.28 a |
Firmness (g/sec) | 299.88 ± 9.32 b | 291.14 ± 18.94 b | 191.08 ± 12.28 a |
Hardness (g/sec) | 259.88 ± 13.89 b | 244.69 ± 20.43 b | 165.70 ± 23.63 a |
Posterior dorsal muscle | |||
Chewiness (g/sec) | 359.64 ± 14.76 b | 320.28 ± 28.21 b | 241.50 ± 15.34 a |
Firmness (g/sec) | 359.69 ± 14.76 b | 320.34 ± 28.21 b | 241.55 ± 15.34 a |
Hardness (g/sec) | 336.01 ± 19.53 b | 297.25 ± 16.76 b | 183.46 ± 14.99 a |
Item | LC | HC | HCN |
---|---|---|---|
HD (μm) | 29.46 ± 0.03 a | 42.51 ± 2.34 b | 36.94 ± 0.24 c |
LD (μm) | 53.82 ± 3.60 a | 72.90 ± 6.94 b | 60.62 ± 0.92 ab |
CSA (μm2) | 1765.70 ± 155.90 a | 2930.51 ± 376.64 b | 2249.26 ± 60.27 ab |
MD (NO./mm2) | 496 ± 25.97 b | 340.67 ± 30.89 a | 407 ± 11.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, J.; Zhang, K.; Bao, X.; Xie, S.; Lin, Z.; Chen, X.; Yu, Y. Dietary Supplementation with Nano-Curcumin Improves the Meat Quality and Nutrition Value of Largemouth Bass (Micropterus salmoides) Fed with a High-Carbohydrate Diet. Fishes 2024, 9, 344. https://doi.org/10.3390/fishes9090344
Wang Y, Chen J, Zhang K, Bao X, Xie S, Lin Z, Chen X, Yu Y. Dietary Supplementation with Nano-Curcumin Improves the Meat Quality and Nutrition Value of Largemouth Bass (Micropterus salmoides) Fed with a High-Carbohydrate Diet. Fishes. 2024; 9(9):344. https://doi.org/10.3390/fishes9090344
Chicago/Turabian StyleWang, Yamin, Jing Chen, Kaipeng Zhang, Xiaoxue Bao, Shan Xie, Zhenye Lin, Xiaotong Chen, and Yingying Yu. 2024. "Dietary Supplementation with Nano-Curcumin Improves the Meat Quality and Nutrition Value of Largemouth Bass (Micropterus salmoides) Fed with a High-Carbohydrate Diet" Fishes 9, no. 9: 344. https://doi.org/10.3390/fishes9090344
APA StyleWang, Y., Chen, J., Zhang, K., Bao, X., Xie, S., Lin, Z., Chen, X., & Yu, Y. (2024). Dietary Supplementation with Nano-Curcumin Improves the Meat Quality and Nutrition Value of Largemouth Bass (Micropterus salmoides) Fed with a High-Carbohydrate Diet. Fishes, 9(9), 344. https://doi.org/10.3390/fishes9090344