X-ray Detectors for Kaonic Atoms Research at DAΦNE
Abstract
:1. Introduction
2. Kaonic Atom Measurements at DAΦNE Employing CCDs
2.1. Charge-Coupled Devices (CCDs)
2.2. The DEAR Kaonic Hydrogen Measurement at DAΦNE
3. Kaonic Atom Measurements at DAΦNE Employing SDDs
3.1. Silicon Drift Detectors (SDDs)
3.2. The SIDDHARTA Kaonic Hydrogen Measurement at DAΦNE
4. Future Measurements on DAΦNE: Kaonic Deuterium
- A large area X-ray detector with good energy and timing resolution and stable working conditions. To meet the stringent requirements, new monolithic SDDs arrays have been developed. A difference with respect to the previously used SDDs is the change in the pre-amplifier system from a JFET structure on an SDD chip to a CMOS integrated charge-sensing amplifier (CUBE) [19]. For each SDD cell, this CUBE amplifier is placed on the ceramic carrier as close as possible to the anode of the SDD. The anode is electrically connected to the CUBE with a bonding wire. This makes the SDDs’ performance almost independent of the applied bias voltages and increases their stability, even when exposed to high charged particle rates. A better drift time of 300 ns can be achieved with the newly developed SDDs compared to the previous ones (∼800 ns) by changing the active cell area from 100 mm to 64 mm and by further cooling to 100 K. A new readout ASIC, named SFERA, has been developed to read out the SDDs of the SIDDHARTA-2 experiment [20]. The characteristic parameters of the SDDs used for SIDDHARTA-2 are reported in Table 1.
- Dedicated veto systems, to improve the signal-to-background ratio by at least one order of magnitude as compared to the kaonic hydrogen measurement performed by SIDDHARTA. Two special veto systems are foreseen for SIDDHARTA-2, consisting of an outer barrel of scintillator counters read by photomultipliers (PMs) and called Veto-1, and an inner ring of plastic scintillation tiles (SciTiles) read by silicon photomultipliers (SiPMs) placed as close as possible behind the SDDs for charged particle tracking, called Veto-2.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davies, J.D.; Pyle, G.J.; Squier, G.T.A. Observation of kaonic hydrogen atom X-rays. Phys. Lett. B 1979, 83, 55. [Google Scholar] [CrossRef]
- Izycki, M.; Backenstoss, G.; Blum, L.T.P.; Guigas, R.; Hassler, N.; Koch, H.; Poth, H.; Fransson, K.; Nilsson, A.; Pavlopoulos, P.; et al. Results of the search for K-series X-rays from kaonic hydrogen. Z. Phys. A 1980, 297, 11. [Google Scholar] [CrossRef]
- Bird, P.M.; Clough, A.S.; Parke, K.; Pyle, G.; Squier, G.; Bair, S.; Batty, C.; Kilvington, A.; Russell, F.; Sharman, P. Kaonic Hydrogen atom X-rays. Nucl. Phys. A 1983, 404, 482. [Google Scholar] [CrossRef]
- Beer, G.; Bragadireanu, A.M.; Cargnelli, M.; Curceanu-Petrascu, C.; Egger, J.P.; Fuhrmann, H.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Itahashi, K.; et al. Measurement of the kaonic hydrogen X-ray spectrum. Phys. Rev. Lett. 2005, 94, 212302. [Google Scholar] [CrossRef] [PubMed]
- Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A.; Cargnelli, M.; Corradi, G.; Curceanu, C.; d’Uffizi, A.; Fiorini, C.; Frizzi, T.; et al. A new measurement of kaonic hydrogen X-rays. Phys. Lett. B 2011, 704, 113. [Google Scholar] [CrossRef]
- Iwasaki, M.; Hayano, R.S.; Ito, T.M.; Nakamura, S.N.; Terada, T.P.; Gill, D.R.; Lee, L.; Olin, A.; Salomon, M.; Yen, S.; et al. Observation of kaonic hydrogen Kα X-rays. Phys. Rev. Lett. 1997, 78, 3067. [Google Scholar] [CrossRef]
- Varidel, D.; Bourquin, J.; Bovet, D.; Fiorucci, G.; Schenker, D. CCDs as low-energy X-ray detectors: II. Technical spects. Nucl. Instrum. Meth. A 1990, 292, 147. [Google Scholar] [CrossRef]
- Fiorucci, G.; Bourquin, J.P.; Bovet, D.; Bovet, E.; Egger, J.P.; Heche, C.; Nussbaum, C.; Schenker, D.; Varidel, D.; Vuilleumier, J.M. CCDs as low-energy X-ray detectors: I. General description. Nucl. Instrum. Meth. A 1990, 292, 141. [Google Scholar] [CrossRef]
- Egger, J.P.; Chatellard, D.; Jeannet, E. Progress in soft X-ray detection: The case of exotic hydrogen. Part. World 1993, 3, 139. [Google Scholar]
- Quaglia, R.; Bombelli, L.; Busca, P.; Fiorini, C.; Occhipinti, M.; Giacomini, G.; Ficorella, F.; Picciotto, A.; Piemonte, C. Silicon Drift Detectors and CUBE Preamplifiers for High-Resolution X-ray Spectroscopy. IEEE Trans. Nucl. Sci. 2015, 62, 221. [Google Scholar] [CrossRef]
- Ishiwatari, T.; Beer, G.; Bragadireanu, A.; Cargnelli, M.; Curceanu, C.; Egger, J.; Fuhrmann, H.; Guaraldo, C.; Iliescu, M.; Itahashi, K.; et al. New analysis method for CCD X-ray data. Nucl. Instrum. Methods Phys. Res. A 2006, 556, 509. [Google Scholar] [CrossRef]
- Ishiwatari, T.; Beer, G.; Bragadireanu, A.; Cargnelli, M.; Curceanu, C.; Egger, J.; Fuhrmann, H.; Guaraldo, C.; Iliescu, M.; Itahashi, K.; et al. Kaonic nitrogen X-ray transition yields in a gaseous target. Phys. Lett. B 2004, 593, 48. [Google Scholar] [CrossRef]
- Gatti, E.; Rehak, P. Semiconductor drift chamber—An application of a novel charge transport scheme. Nucl. Instrum. Meth. 1984, 225, 608. [Google Scholar] [CrossRef]
- Lechner, P.; Eckbauer, S.; Hartmann, R.; Krisch, S.; Hauff, D.; Richter, R.; Soltau, H.; Struder, L.; Fiorini, C.; Gatti, E.; et al. Silicon drift detectors for high resolution room temperature X-ray spectroscopy. Nucl. Instrum. Meth. A 1996, 377, 346. [Google Scholar] [CrossRef]
- Gatti, E.; Rehak, P. Review of semiconductor drift detectors. Nucl. Instrum. Meth. A 2005, 541, 47. [Google Scholar] [CrossRef]
- Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A.; Cargnelli, M.; Corradi, G.; Curceanu, C.; d’Uffizi, A.; Fiorini, C.; Frizzi, T.; et al. First measurement of kaonic helium-3 X-rays. J. Phys. Lett. B 2011, 697, 199. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, C.; Corazza, G.F.; Giugno, G.D.; Ghigo, G.; Haissinski, J.; Marin, P.; Querzoli, R.; Touschek, B. Lifetime and beam size in a storage ring. Phys. Rev. Lett. 1963, 10, 407. [Google Scholar] [CrossRef]
- Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A.; Cargnelli, M.; Corradi, G.; Curceanu, C.; d’Uffizi, A.; Fiorini, C.; et al. Performance of silicon-drift detectors in kaonic atom X-ray measurements. Nucl. Instrum. Methods Phys. Res. A 2011, 628, 264. [Google Scholar] [CrossRef]
- Bombelli, L.; Fiorini, C.; Frizzi, T.; Alberti, R.; Longoni, A. “CUBE”, A low-noise CMOS preamplifier as alternative to JFET front-end for high-count rate spectroscopy. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011; p. 1972. [Google Scholar]
- Schembari, F.; Quaglia, R.; Bellotti, G.; Fiorini, C. SFERA: An integrated circuit for the readout of X and X-ray detectors. IEEE Trans. Nucl. Sci. 2016, 63, 1797–1807. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curceanu, C.; Amirkhani, A.; Baniahmad, A.; Bazzi, M.; Bellotti, G.; Berucci, C.; Bosnar, D.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; et al. X-ray Detectors for Kaonic Atoms Research at DAΦNE. Condens. Matter 2019, 4, 42. https://doi.org/10.3390/condmat4020042
Curceanu C, Amirkhani A, Baniahmad A, Bazzi M, Bellotti G, Berucci C, Bosnar D, Bragadireanu M, Cargnelli M, Clozza A, et al. X-ray Detectors for Kaonic Atoms Research at DAΦNE. Condensed Matter. 2019; 4(2):42. https://doi.org/10.3390/condmat4020042
Chicago/Turabian StyleCurceanu, Catalina, Aidin Amirkhani, Ata Baniahmad, Massimiliano Bazzi, Giovanni Bellotti, Carolina Berucci, Damir Bosnar, Mario Bragadireanu, Michael Cargnelli, Alberto Clozza, and et al. 2019. "X-ray Detectors for Kaonic Atoms Research at DAΦNE" Condensed Matter 4, no. 2: 42. https://doi.org/10.3390/condmat4020042
APA StyleCurceanu, C., Amirkhani, A., Baniahmad, A., Bazzi, M., Bellotti, G., Berucci, C., Bosnar, D., Bragadireanu, M., Cargnelli, M., Clozza, A., Del Grande, R., Fiorini, C., Ghio, F., Guaraldo, C., Iliescu, M., Iwasaki, M., Levi Sandri, P., Marton, J., Miliucci, M., ... Zmeskal, J. (2019). X-ray Detectors for Kaonic Atoms Research at DAΦNE. Condensed Matter, 4(2), 42. https://doi.org/10.3390/condmat4020042