Handlebar Width Choices Must Be Considered for Female Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment
2.3. Protocols
2.4. Data Analysis
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, B. A narrative review of bike fitting issues affecting female road cyclists: Implications for injury and performance. J. Sci. Med. Sport 2017, 20, e70–e71. [Google Scholar] [CrossRef]
- Silberman, M.R.; Webner, D.; Collina, S.; Shiple, B.J. Road bicycle fit. Clin. J. Sport Med. 2005, 15, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Nieves, J.W.; Formica, C.; Ruffing, J.; Zion, M.; Garrett, P.; Lindsay, R.; Cosman, F. Males have larger skeletal size and bone mass than females, despite comparable body size. J. Bone Miner. Res. 2005, 20, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.L.; Patel, J.; Hettrich, C.M. Sports-related shoulder injuries among female athletes. Curr. Rev. Musculoskelet. Med. 2022, 15, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Holliday, W.; Theo, R.; Fisher, J.; Swart, J. Cycling: Joint kinematics and muscle activity during differing intensities. Sports Biomech. 2023, 22, 660–674. [Google Scholar] [CrossRef]
- Bini, R.; Daly, L.; Kingsley, M. Changes in body position on the bike during seated sprint cycling: Applications to bike fitting. Eur. J. Sport Sci. 2020, 20, 35–42. [Google Scholar] [CrossRef]
- Priego Quesada, J.I.; Kerr, Z.Y.; Bertucci, W.M.; Carpes, F.P. The association of bike fitting with injury, comfort, and pain during cycling: An international retrospective survey. Eur. J. Sport Sci. 2019, 19, 842–849. [Google Scholar] [CrossRef]
- Swart, J.; Holliday, W. Cycling Biomechanics Optimization—The (R) Evolution of Bicycle Fitting. Curr. Sports Med. Rep. 2019, 18, 490–496. [Google Scholar] [CrossRef]
- Bini, R.R.; Encarnación-Martínez, A.; Priego-Quesada, J.I.; Carpes, F.P. Details our eyes cannot see: Challenges for the analysis of body position during bicycle fitting. Sports Biomech. 2023, 22, 485–493. [Google Scholar] [CrossRef]
- Scoz, R.D.; de Oliveira, P.R.; Pelegrina, C.C.; Hespanhol, L.; Melo-Silva, C.A.; de Júdice, A.F.T.; Mendes, J.J.B.; Ferreira, L.M.A.; Amorim, C.F. Effectiveness of a 3D bikefitting method in riding pain, fatigue, and comfort: A randomized controlled clinical trial. Sports Biomech. 2022, 1–14. [Google Scholar] [CrossRef]
- Lin, Z.-J.; Wang, H.-H.; Chen, C.-H. The Effect of Bicycle Saddle Widths on Saddle Pressure in Female Cyclists. J. Sports Sci. Med. 2023, 22, 425. [Google Scholar] [CrossRef] [PubMed]
- Avşar, D.K.; Aygıt, A.C.; Benlier, E.; Top, H.; Taşkınalp, O. Anthropometric breast measurement: A study of 385 Turkish female students. Aesthetic Surg. J. 2010, 30, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Millour, G.; Velásquez, A.T.; Domingue, F. A literature overview of modern biomechanical-based technologies for bike-fitting professionals and coaches. Int. J. Sports Sci. Coach. 2023, 18, 292–303. [Google Scholar] [CrossRef]
- Clément, J.; Toliopoulos, P.; Hagemeister, N.; Desmeules, F.; Fuentes, A.; Vendittoli, P.-A. Healthy 3D knee kinematics during gait: Differences between women and men, and correlation with x-ray alignment. Gait Posture 2018, 64, 198–204. [Google Scholar] [CrossRef]
- Boling, M.; Padua, D.; Marshall, S.; Guskiewicz, K.; Pyne, S.; Beutler, A. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand. J. Med. Sci. Sports 2010, 20, 725–730. [Google Scholar] [CrossRef]
- Bury, K.; Leavy, J.E.; O’Connor, A.; Jancey, J. Prevalence, prevention and treatment of saddle sores among female competitive cyclists: A scoping review protocol. Methods Protoc. 2020, 3, 4. [Google Scholar] [CrossRef]
- Briggs, M.S.; Obermire, T. Clinical Considerations of Bike Fitting for the Triathlete. In Endurance Sports Medicine; Springer: Berlin/Heidelberg, Germany, 2016; pp. 215–227. [Google Scholar]
- Burke, E.R. Proper fit of the bicycle. Clin. Sports Med. 1994, 13, 1–14. [Google Scholar] [CrossRef]
- Chen, C.-H.; Wu, Y.-K.; Chan, M.-S.; Shih, Y.; Shiang, T.-Y. The force output of handle and pedal in different bicycle-riding postures. Res. Sports Med. 2016, 24, 54–66. [Google Scholar] [CrossRef]
- Cyr, A.; Ascher, J. Clinical Applications of Bike Fitting. In Endurance Sports Medicine: A Clinical Guide; Springer: Berlin/Heidelberg, Germany, 2023; pp. 285–300. [Google Scholar]
- Robidoux, C.G. A Practical Approach to the Evaluation of a Cyclist with Overuse Injury. In Cycling, An Issue of Physical Medicine and Rehabilitation Clinics of North America; Elsevier: Amsterdam, The Netherlands, 2021; Volume 33, pp. 15–29. [Google Scholar] [CrossRef]
- Buoite Stella, A.; Cargnel, A.; Raffini, A.; Mazzari, L.; Martini, M.; Ajčević, M.; Accardo, A.; Deodato, M.; Murena, L. Shoulder tensiomyography and isometric strength in swimmers before and after a fatiguing protocol. J. Athl. Train. 2024, 59, 738–744. [Google Scholar] [CrossRef]
- Côté, J.N. Adaptations to neck/shoulder fatigue and injuries. In Progress in Motor Control: Skill Learning, Performance, Health, and Injury; Levin, M.F., Ed.; Springer: New York, NY, USA, 2014; pp. 205–228. [Google Scholar]
- De Vey Mestdagh, K. Personal perspective: In search of an optimum cycling posture. Appl. Ergon. 1998, 29, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Turpin, N.A.; Costes, A.; Moretto, P.; Watier, B. Upper limb and trunk muscle activity patterns during seated and standing cycling. J. Sports Sci. 2017, 35, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Nichols, I.A.; Szivak, T.K. Effects of different hand widths on plyometric push-up performance. J. Strength Cond. Res. 2021, 35, S80–S83. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.J.; Moreno, M.R.; Risso, F.G.; Liu, T.M.; Stage, A.A.; Birmingham-Babauta, S.A.; Stokes, J.J.; Giuliano, D.V.; Lazar, A. Relationships between mechanical variables in the traditional and close-grip bench press. J. Hum. Kinet. 2017, 60, 19–28. [Google Scholar] [CrossRef]
- De Bernardo, N.; Barrios, C.; Vera, P.; Laíz, C.; Hadala, M. Incidence and risk for traumatic and overuse injuries in top-level road cyclists. J. Sports Sci. 2012, 30, 1047–1053. [Google Scholar] [CrossRef]
- Kotler, D.H.; Babu, A.N.; Robidoux, G. Prevention, evaluation, and rehabilitation of cycling-related injury. Curr. Sports Med. Rep. 2016, 15, 199–206. [Google Scholar] [CrossRef]
- Dorel, S.; Drouet, J.-M.; Couturier, A.; Champoux, Y.; Hug, F. Changes of pedaling technique and muscle coordination during an exhaustive exercise. Med. Sci. Sports Exerc. 2009, 41, 1277. [Google Scholar] [CrossRef]
- Brand, A.; Sepp, T.; Klöpfer-Krämer, I.; Müßig, J.A.; Kröger, I.; Wackerle, H.; Augat, P. Upper body posture and muscle activation in recreational cyclists: Immediate effects of variable cycling setups. Res. Q. Exerc. Sport 2020, 91, 298–308. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Duc, S.; Scholler, V.; Puel, F.; Millour, G.; Bertucci, W. Effects of ergonomic clip-on handles on upper-body vibration transmissibility and muscular activity during pedalling with vibrations. J. Sci. Cycl. 2021, 10, 49–62. [Google Scholar] [CrossRef]
- Park, S.; Caldwell, G.E. Muscular activity patterns in 1-legged vs. 2-legged pedaling. J. Sport Health Sci. 2021, 10, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Miyamori, T.; Fujino, Y.; Nozu, S.; Kajiwara, Y. Reliability and validity of muscle activity analysis using wearable electromyographs. J. Phys. Ther. Sci. 2024, 36, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Millour, G.; Duc, S.; Puel, F.; Bertucci, W. Comparison of two static methods of saddle height adjustment for cyclists of different morphologies. Sports Biomech. 2021, 20, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.D.; Jardine, T. The effects of cycling cleat position on subsequent running performance in a simulated duathlon. J. Sci. Cycl. 2012, 1, 15–20. [Google Scholar]
- Holliday, W.; Fisher, J.; Theo, R.; Swart, J. Static versus dynamic kinematics in cyclists: A comparison of goniometer, inclinometer and 3D motion capture. Eur. J. Sport Sci. 2017, 17, 1129–1142. [Google Scholar] [CrossRef]
- Roh, C.-G. Physical exercise goals of the elderly through the analysis of kinetic and kinematic variables of quick walking—Results of the koreans elderly using a motion analysis system. Appl. Sci. 2020, 11, 225. [Google Scholar] [CrossRef]
- Yum, H.; Kim, H.; Lee, T.; Park, M.S.; Lee, S.Y. Cycling Kinematics in Healthy Adults for Musculoskeletal Rehabilitation Guidance. BMC Musculoskelet. Disord. 2021, 22, 1044. [Google Scholar] [CrossRef]
- Kissow, J.; Jacobsen, K.J.; Gunnarsson, T.P.; Jessen, S.; Hostrup, M. Effects of follicular and luteal phase-based menstrual cycle resistance training on muscle strength and mass. Sports Med. 2022, 52, 2813–2819. [Google Scholar] [CrossRef]
- Ronca, F.; Blodgett, J.; Bruinvels, G.; Lowery, M.; Raviraj, M.; Sandhar, G.; Symeonides, N.; Jones, C.; Loosemore, M.; Burgess, P. Attentional, anticipatory and spatial cognition fluctuate throughout the menstrual cycle: Potential implications for female sport. Neuropsychologia 2025, 206, 108909. [Google Scholar] [CrossRef]
- Antero, J.; Golovkine, S.; Niffoi, L.; Meignié, A.; Chassard, T.; Delarochelambert, Q.; Duclos, M.; Maitre, C.; Maciejewski, H.; Diry, A. Menstrual cycle and hormonal contraceptive phases’ effect on elite rowers’ training, performance and wellness. Front. Physiol. 2023, 14, 1110526. [Google Scholar] [CrossRef]
- Priego Quesada, J.I.; Pérez-Soriano, P.; Lucas-Cuevas, A.G.; Salvador Palmer, R.; Cibrián Ortiz de Anda, R.M. Effect of bike-fit in the perception of comfort, fatigue and pain. J. Sports Sci. 2017, 35, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Momeni, K.; Faghri, P.D.; Evans, M. Lower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individuals. J. Neuroeng. Rehabil. 2014, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.D.; Alouche, S.R.; Hakansson, N.; Cohen, M. Electromyography during pedaling on upright and recumbent ergometer. Int. J. Sports Phys. Ther. 2014, 9, 76. [Google Scholar] [PubMed]
- Hagberg, J.M.; Mullin, J.; Giese, M.; Spitznagel, E. Effect of pedaling rate on submaximal exercise responses of competitive cyclists. J. Appl. Physiol. 1981, 51, 447–451. [Google Scholar] [CrossRef]
- Jordan, L.; Merrill, E. Relative efficiency as a function of pedalling rate for racing cyclists [proceedings]. J. Physiol. 1979, 296, 49P–50P. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 20–26. [Google Scholar]
- Partin, S.N.; Connell, K.A.; Schrader, S.; LaCombe, J.; Lowe, B.; Sweeney, A.; Reutman, S.; Wang, A.; Toennis, C.; Melman, A. The bar sinister: Does handlebar level damage the pelvic floor in female cyclists? J. Sex. Med. 2012, 9, 1367–1373. [Google Scholar] [CrossRef]
- Bredella, M.A. Sex differences in body composition. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity; Springer: Cham, Switzerland, 2017; pp. 9–27. [Google Scholar]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef]
- Yim, J.-E.; Heshka, S.; Albu, J.B.; Heymsfield, S.; Gallagher, D. Femoral-gluteal subcutaneous and intermuscular adipose tissues have independent and opposing relationships with CVD risk. J. Appl. Physiol. 2008, 104, 700–707. [Google Scholar] [CrossRef]
- Encarnación-Martínez, A.; Ferrer-Roca, V.; García-López, J. Influence of sex on current methods of adjusting saddle height in indoor cycling. J. Strength Cond. Res. 2021, 35, 519–526. [Google Scholar] [CrossRef]
- Tague, R.G. Big-bodied males help us recognize that females have big pelves. Am. J. Phys. Anthropol. 2005, 127, 392–405. [Google Scholar] [CrossRef]
- Chiu, M.-C.; Wu, H.-C.; Tsai, N.-T. The relationship between handlebar and saddle heights on cycling comfort. In Proceedings of the International Conference on Human Interface and the Management of Information, Las Vegas, NV, USA, 21–26 July 2013; pp. 12–19. [Google Scholar]
- Sauer, J.L.; Potter, J.J.; Weisshaar, C.L.; Ploeg, H.-L.; Thelen, D.G. Influence of gender, power, and hand position on pelvic motion during seated cycling. Med. Sci. Sports Exerc. 2007, 39, 2204–2211. [Google Scholar] [CrossRef] [PubMed]
- Paungmali, A.; Joseph, L.H.; Sitilertpisan, P.; Pirunsan, U.; Uthaikhup, S. Lumbopelvic core stabilization exercise and pain modulation among individuals with chronic nonspecific low back pain. Pain Pract. 2017, 17, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Underwood, L.; Jermy, M. Optimal handlebar position for track cyclists. Sports Eng. 2013, 16, 81–90. [Google Scholar] [CrossRef]
Muscle Group | Description | |
---|---|---|
Biceps brachii (BB) | Perform elbow flexion by contracting the biceps brachii and bending the arms upward, while simultaneously applying manual resistance. | |
Triceps brachii (TB) | Perform elbow extension by straightening the arms to their maximum extent, while simultaneously applying manual resistance. | |
Deltoid (DEL) | Lift the shoulders and upper arms until they form an angle of approximately 60 to 90 degrees with the ground, while simultaneously applying manual resistance. | |
Latissimus dorsi (LAT) | Perform elbow flexion and push backward while simultaneously applying manual resistance. | |
Rectus femoris (RF) | Extend the knee and apply manual resistance simultaneously. | |
Biceps femoris (BF) | Bend the knee, bringing the thigh toward the buttocks, while simultaneously applying manual resistance. | |
Tibialis anterior (TA) | Lift the ankle upward while simultaneously applying manual resistance. | |
Gastrocnemius (GAS) | Push down on the toes to raise the heels while simultaneously applying manual resistance above the knees. |
MVC% | Narrow | Moderate | Wide | Self-Chosen | p-Value | Effect Size (η2) |
---|---|---|---|---|---|---|
BB | 32.74 ± 6.22 a | 22.66 ± 8.77 a,b | 22.84 ± 8.96 | 31.04 ± 9.55 b | p = 0.002 * | 0.40 |
TB | 36.44 ± 3.13 c | 38.76 ± 3.11 | 36.59 ± 4.85 | 41.30 ± 3.65 c | p = 0.006 * | 0.36 |
DEL | 30.62 ± 9.83 | 24.00 ± 9.35 | 29.20 ± 4.51 | 28.42 ± 7.85 | p = 0.113 | 0.19 |
LAT | 30.88 ± 3.19 | 27.89 ± 4.63 b,d | 33.54 ± 2.45 d | 32.71 ± 2.71 b | p = 0.000 * | 0.53 |
RF | 26.52 ± 4.20 | 25.67 ± 7.56 | 24.99 ± 3.34 | 26.28 ± 2.51 | p = 0.811 | 0.03 |
BF | 24.87 ± 6.04 | 20.10 ± 6.94 | 23.77 ± 2.77 | 25.60 ± 4.05 | p = 0.122 | 0.19 |
TA | 34.00 ± 1.62 | 34.52 ± 1.73 | 34.02 ± 1.35 | 33.82 ± 2.20 | p = 0.505 | 0.08 |
GAS | 34.56 ± 0.86 | 34.78 ± 1.73 | 35.34 ± 1.13 | 35.36 ± 1.00 | p = 0.255 | 0.13 |
Degrees (+/−°) | Narrow | Moderate | Wide | Self-Chosen | p-Value | Effect Size (η2) |
---|---|---|---|---|---|---|
Hip FE/EXT rom | 54.29 ± 8.07 | 48.71 ± 2.98 b | 51.68 ± 5.79 | 52.03 ± 5.01 b | p = 0.008 * | 0.35 |
Hip ADD/ABD rom | 7.93 ± 3.57 | 5.71 ± 1.56 | 7.67 ± 4.84 | 8.30 ± 3.47 | p = 0.067 | 0.23 |
Hip IR/ER rom | 50.66 ± 33.26 | 50.41 ± 28.84 | 49.54 ± 25.69 | 51.61 ± 32.22 | p = 0.968 | 0.02 |
Knee FE/EXT rom | 89.77 ± 28.91 | 80.64 ± 11.36 | 83.97 ± 19.48 | 86.18 ± 17.36 | p = 0.344 | 0.11 |
Knee ADD/ABD rom | 42.94 ± 29.72 | 43.17 ± 26.63 | 42.53 ± 26.31 | 42.40 ± 31.31 | p = 0.993 | 0.00 |
Knee IR/ER rom | 36.10 ± 33.51 | 26.36 ± 12.85 | 30.24 ± 20.40 | 41.76 ± 30.05 | p = 0.301 | 0.12 |
Ankle DF/PF rom | 27.56 ± 7.89 | 27.03 ± 4.02 | 25.89 ± 7.06 | 35.67 ± 31.66 | p = 0.435 | 0.09 |
Ankle ADD/ABD rom | 8.88 ± 3.94 | 8.73 ± 2.85 | 9.66 ± 5.90 | 14.23 ± 17.71 | p = 0.470 | 0.08 |
Ankle IR/ER rom | 7.57 ± 2.41 | 6.90 ± 1.94 | 11.68 ± 10.79 | 15.15 ± 18.81 | p = 0.138 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.-J.; Tsai, P.-C.; Chen, C.-H. Handlebar Width Choices Must Be Considered for Female Cyclists. J. Funct. Morphol. Kinesiol. 2025, 10, 28. https://doi.org/10.3390/jfmk10010028
Lin Z-J, Tsai P-C, Chen C-H. Handlebar Width Choices Must Be Considered for Female Cyclists. Journal of Functional Morphology and Kinesiology. 2025; 10(1):28. https://doi.org/10.3390/jfmk10010028
Chicago/Turabian StyleLin, Zi-Jun, Pei-Chen Tsai, and Chia-Hsiang Chen. 2025. "Handlebar Width Choices Must Be Considered for Female Cyclists" Journal of Functional Morphology and Kinesiology 10, no. 1: 28. https://doi.org/10.3390/jfmk10010028
APA StyleLin, Z.-J., Tsai, P.-C., & Chen, C.-H. (2025). Handlebar Width Choices Must Be Considered for Female Cyclists. Journal of Functional Morphology and Kinesiology, 10(1), 28. https://doi.org/10.3390/jfmk10010028