Immediate Effects of Focal Muscle Vibration on Squat Power and Velocity in Amateur Athletes: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Simple Size Calculation
2.3. Participants
2.4. Measurements
2.5. Variables
2.5.1. Velocity and Power During Squat
2.5.2. Scale of Perceived Effort During Squat
2.5.3. Participant’s Rating of Clinical Change
2.5.4. Muscle Activity
2.6. Intervention
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almagro, B.J.; Sáenz-López, P.; Fierro-Suero, S.; Conde, C. Perceived Performance, Intrinsic Motivation and Adherence in Athletes. Int. J. Environ. Res. Public Health 2020, 17, 9441. [Google Scholar] [CrossRef] [PubMed]
- Arribas-Galarraga, S.; Saies, E.; Cecchini, J.A.; Arruza, J.A.; Luis-De-Cos, I. The Relationship between Emotional Intelligence, Self-Determined Motivation and Performance in Canoeists. J. Hum. Sport Exerc. 2017, 12, 630–639. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and Power-Load Relationships in the Half, Parallel and Full Back Squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.R.; Lambert, M.I.; Hunter, A.M. Muscle Activation in the Loaded Free Barbell Squat: A Brief Review. J. Strength Cond. Res. 2012, 26, 1169–1178. [Google Scholar] [CrossRef]
- Mina, M.A.; Blazevich, A.J.; Giakas, G.; Seitz, L.B.; Kay, A.D. Chain-Loaded Variable Resistance Warm-Up Improves Free-Weight Maximal Back Squat Performance. Eur. J. Sport Sci. 2016, 16, 932–939. [Google Scholar] [CrossRef]
- Parr, M.; Price, P.D.; Cleather, D.J. Effect of a Gluteal Activation Warm-Up on Explosive Exercise Performance. BMJ Open Sport Exerc. Med. 2017, 3, e000245. [Google Scholar] [CrossRef]
- Rahmani, A.; Viale, F.; Dalleau, G.; Lacour, J.R. Force/Velocity and Power/Velocity Relationships in Squat Exercise. Eur. J. Appl. Physiol. 2001, 84, 227–232. [Google Scholar] [CrossRef]
- Heather, O.; Lander, P.; Rayner, R. Practice to Pitch: The Relationship between Force-Velocity Profiles and Match-Day Performance of Semi-Professional Rugby Union Players. Front. Sports Act. Living 2023, 5, 1066767. [Google Scholar] [CrossRef]
- Cunningham, D.J.; Shearer, D.A.; Drawer, S.; Pollard, B.; Cook, C.J.; Bennett, M.; Russell, M.; Kilduff, L.P. Relationships between Physical Qualities and Key Performance Indicators during Match-Play in Senior International Rugby Union Players. PLoS ONE 2018, 13, e0202811. [Google Scholar] [CrossRef]
- Zemková, E. Strength and Power-Related Measures in Assessing Core Muscle Performance in Sport and Rehabilitation. Front. Physiol. 2022, 13, 861582. [Google Scholar] [CrossRef]
- Hartmann, H.; Wirth, K.; Keiner, M.; Mickel, C.; Sander, A.; Szilvas, E. Short-Term Periodization Models: Effects on Strength and Speed-Strength Performance. Sports Med. 2015, 45, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of Adding a Weekly Eccentric-Overload Training Session on Strength and Athletic Performance in Team-Handball Players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Wortman, R.J.; Brown, S.M.; Savage-Elliott, I.; Finley, Z.J.; Mulcahey, M.K. Blood Flow Restriction Training for Athletes: A Systematic Review. Am. J. Sports Med. 2021, 49, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.J.; Bourke, G. The Effect of Resisted Sprint Training on Speed and Strength Performance in Male Rugby Players. J. Strength Cond. Res. 2009, 23, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Lesinski, M.; Fernandez-del-Olmo, M.; Granacher, U. Small and Inconsistent Effects of Whole-Body Vibration on Athletic Performance: A Systematic Review and Meta-Analysis. Eur. J. Appl. Physiol. 2015, 115, 1605–1625. [Google Scholar] [CrossRef] [PubMed]
- Canet-Vintró, M.; Rodríguez-Sanz, J.; López-de-Celis, C.; Campañá-Arnal, E.; Hidalgo-Garcia, C.; Pérez-Bellmunt, A. Effects of Focal Vibration on Changes in Sports Performance in Amateur Athletes: A Randomized Clinical Trial. J. Orthop. Res. 2024, 42, 2106–2115. [Google Scholar] [CrossRef]
- Iversen, V.M.; Norum, M.; Schoenfeld, B.J.; Fimland, M.S. No Time to Lift? Designing Time-Efficient Training Programs for Strength and Hypertrophy: A Narrative Review. Sports Med. 2021, 51, 2079–2095. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Li, C.; Zhu, D.; Hu, Y.; Fu, H.; Zhai, H.; Wang, Y. Acute Effects of Vibration Foam Rolling and Local Vibration during Warm-Up on Athletic Performance in Tennis Players. PLoS ONE 2022, 17, e0268515. [Google Scholar] [CrossRef]
- Aprile, I.; Di Sipio, E.; Germanotta, M.; Simbolotti, C.; Padua, L. Muscle Focal Vibration in Healthy Subjects: Evaluation of the Effects on Upper Limb Motor Performance Measured Using a Robotic Device. Eur. J. Appl. Physiol. 2016, 116, 729–737. [Google Scholar] [CrossRef]
- Brunetti, O.; Botti, F.M.; Roscini, M.; Brunetti, A.; Panichi, R.; Filippi, G.M.; Biscarini, A.; Pettorossi, V.E. Focal Vibration of Quadriceps Muscle Enhances Leg Power and Decreases Knee Joint Laxity in Female Volleyball Players. J. Sports Med. Phys. Fitness 2012, 52, 596–660. [Google Scholar]
- Rogan, S.; de Bruin, E.D.; Radlinger, L.; Joehr, C.; Wyss, C.; Stuck, N.J.; Bruelhart, Y.; de Bie, R.A.; Hilfiker, R. Effects of whole-body vibration on proxies of muscle strength in old adults: A systematic review and meta-analysis on the role of physical capacity level. Eur. Rev. Aging Phys. Act. 2015, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Iodice, P.; Bellomo, R.G.; Gialluca, G.; Fanò, G.; Saggini, R. Acute and Cumulative Effects of Focused High-Frequency Vibrations on the Endocrine System and Muscle Strength. Eur. J. Appl. Physiol. 2011, 111, 897–904. [Google Scholar] [CrossRef] [PubMed]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Gallego-Sendarrubias, G.M.; Arias-Buría, J.L.; Úbeda-D’ocasar, E.; Hervás-Pérez, J.P.; Rubio-Palomino, M.A.; Fernández-De-las-Peñas, C.; Valera-Calero, J.A. Effects of Percutaneous Electrical Nerve Stimulation on Countermovement Jump and Squat Performance Speed in Male Soccer Players: A Pilot Randomized Clinical Trial. J. Clin. Med. 2021, 10, 690. [Google Scholar] [CrossRef]
- Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement Velocity as a Measure of Exercise Intensity in Three Lower Limb Exercises. J. Sports Sci. 2016, 34, 1099–1106. [Google Scholar] [CrossRef]
- Beckham, G.K.; Layne, D.K.; Kim, S.B.; Martin, E.A.; Perez, B.G.; Adams, K.J. Reliability and Criterion Validity of the Assess2perform Bar Sensei. Sports 2019, 7, 230. [Google Scholar] [CrossRef]
- Weakley, J.; Morrison, M.; García-Ramos, A.; Johnston, R.; James, L.; Cole, M.H. The Validity and Reliability of Commercially Available Resistance Training Monitoring Devices: A Systematic Review. Sports Med. 2021, 51, 443–502. [Google Scholar] [CrossRef]
- Borg, G.A.V. Psychophysical Bases of Perceived Exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Gill, E.; Finch, P.W.; Stratford, J.; Binkley, P.; Solomon, C. Back Pain Assessing Change Over Time in Patients with Low Back Pain. Phys. Ther. 1994, 74, 528–533. [Google Scholar] [CrossRef]
- Jaeschke, R.; Singer, J.; Guyatt, G.H. Measurement of Health Status: Ascertaining the Minimal Clinically Important Difference. Control. Clin. Trials 1989, 10, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Kamper, S.J.; Maher, C.G.; Mackay, G. Global Rating of Change Scales: A Review of Strengths and Weaknesses and Considerations for Design. J. Manip. Physiol. Ther. 2009, 17, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Fauth, M.L.; Petushek, E.J.; Feldmann, C.R.; Hsu, B.E.; Garceau, L.R.; Lutsch, B.N.; Ebben, W.P. Reliability of Surface Electromyography during Maximal Voluntary Isometric Contractions, Jump Landings, and Cutting. J. Strength Cond. Res. 2010, 24, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Bastida Castillo, A.; Gómez Carmona, C.D.; Pino Ortega, J.; de La Cruz Sánchez, E. Validity of an Inertial System to Measure Sprint Time and Sport Task Time: A Proposal for the Integration of Photocells in an Inertial System. Int. J. Perform. Anal. Sport 2017, 17, 600–608. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Cè, E.; Scurati, R.; Milanese, C.; Schena, F.; Esposito, F. Effects of In-Season Enhanced Negative Work-Based vs. Traditional Weight Training on Change of Direction and Hamstrings-to-Quadriceps Ratio in Soccer Players. Biol. Sport 2019, 36, 241–248. [Google Scholar] [CrossRef]
- Dallas, G.; Pappas, P.; Dallas, C.; Paradisis, G. Acute Effects of Dynamic and PNF Stretching on Leg and Vertical Stiffness in Female Gymnasts. Sci. Gymnast. J. 2021, 13, 263–274. [Google Scholar] [CrossRef]
- Molina-Molina, A.; Ruiz-Malagón, E.J.; Carrillo-Pérez, F.; Roche-Seruendo, L.E.; Damas, M.; Banos, O.; García-Pinillos, F. Validation of MDurance, a Wearable Surface Electromyography System for Muscle Activity Assessment. Front. Physiol. 2020, 11, 606287. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Padulo, J.; Migliaccio, G.M.; Ardigò, L.P.; Leban, B.; Cosso, M.; Samozino, P. Lower Limb Force, Velocity, and Power Capabilities during Leg Press and Squat Movements. Int. J. Sports Med. 2017, 38, 1083–1089. [Google Scholar] [CrossRef]
- Toscano, M.; Celletti, C.; Viganò, A.; Altarocca, A.; Giuliani, G.; Jannini, T.B.; Mastria, G.; Ruggiero, M.; Maestrini, I.; Vicenzini, E.; et al. Short-Term Effects of Focal Muscle Vibration on Motor Recovery after Acute Stroke: A Pilot Randomized Sham-Controlled Study. Front. Neurol. 2019, 10, 115. [Google Scholar] [CrossRef]
- Anagnostakou, V.; Chatzimichail, K.; Dimopoulos, S.; Karatzanos, E.; Papazachou, O.; Tasoulis, A.; Anastasiou-Nana, M.; Roussos, C.; Nanas, S. Effects of Interval Cycle Training with or without Strength Training on Vascular Reactivity in Heart Failure Patients. J. Card. Fail. 2011, 17, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Goebel, R.T.; Kleinöder, H.; Yue, Z.; Gosh, R.; Mester, J. Effect of Segment-Body Vibration on Strength Parameters. Sports Med. Open 2015, 1, 14. [Google Scholar] [CrossRef]
- Azzollini, V.; Fragapane, N.; Baster, Z.; Carozzo, S.; Dalise, S.; Chisari, C. Focal Muscle Vibration and Action Observation: A Combined Approach for Muscle Strengthening. Eur. J. Transl. Myol. 2024, 34, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D.J. Does Muscular Force of the Upper Body Increase Following Acute, Direct Vibration? Int. J. Sports Med. 2016, 37, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Souron, R.; Zambelli, A.; Espeit, L.; Besson, T.; Cochrane, D.J.; Lapole, T. Active versus Local Vibration Warm-Up Effects on Knee Extensor Stiffness and Neuromuscular Performance of Healthy Young Males. J. Sci. Med. Sport 2019, 22, 206–211. [Google Scholar] [CrossRef]
- Zinke, F.; Gebel, A.; Granacher, U.; Prieske, O. Acute Effects of Short-Term Local Tendon Vibration on Plantar Flexor Torque, Muscle Contractile Properties, Neuromuscular, and Brain Activity in Young Athletes. J. Sports Sci. Med. 2019, 18, 327–336. [Google Scholar]
- Enoka, R.M. Neuromechanics of Human Movement, 5th ed.; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar] [CrossRef]
- Filippi, G.M.; Fattorini, L.; Summa, A.; Zagaglia, A.; Rodio, A. Effects of Focal Vibration on Power and Work in Multiple Wingate Tests. Biol. Sport 2020, 37, 25–31. [Google Scholar] [CrossRef]
- Marconi, B.; Filippi, G.M.; Koch, G.; Pecchioli, C.; Salerno, S.; Don, R.; Camerota, F.; Saraceni, V.M.; Caltagirone, C. Long-Term Effects on Motor Cortical Excitability Induced by Repeated Muscle Vibration during Contraction in Healthy Subjects. J. Neurol. Sci. 2008, 275, 51–59. [Google Scholar] [CrossRef]
- Fattorini, L.; Rodio, A.; Pettorossi, V.E.; Filippi, G.M. Is the Focal Muscle Vibration an Effective Motor Conditioning Intervention? A Systematic Review. J. Funct. Morphol. Kinesiol. 2021, 6, 39. [Google Scholar] [CrossRef]
- Ardigò, L.P.; Iacono, A.D.; Zagatto, A.M.; Bragazzi, N.L.; Kuvacic, G.; Bellafiore, M.; Padulo, J. Vibration Effect on Ball Score Test in International vs. National Level Table Tennis. Biol. Sport 2018, 35, 329–334. [Google Scholar] [CrossRef]
- Celletti, C.; Fattorini, L.; Camerota, F.; Ricciardi, D.; La Torre, G.; Landi, F.; Filippi, G.M. Focal Muscle Vibration as a Possible Intervention to Prevent Falls in Elderly Women: A Pragmatic Randomized Controlled Trial. Aging Clin. Exp. Res. 2015, 27, 857–863. [Google Scholar] [CrossRef] [PubMed]
Experimental Group (n = 36) | Sham Group (n = 36) | p | |
---|---|---|---|
Age (years) | 25 ± 5 | 21 ± 4 | 0.594 |
Sex | 25 (69.5%) Men 11 (30.5%) Women | 22 (61.1%) Men 14 (38.9%) Women | 0.458 |
Dominance | 24 (66.7%) Right 12 (33.3%) Left | 28 (88.8%) Right 8 (22.2%) Left | 0.293 |
Height (cm) | 174 ± 9 | 173 ± 10 | 0.691 |
Weight (kg) | 72.7 ± 13.8 | 70.3 ± 13.5 | 0.466 |
Hours of sport per week | 6.3 ± 2.6 | 6.7 ± 3.6 | 0.683 |
Experimental Group | Sham Group | |||||
---|---|---|---|---|---|---|
Outcome | Pre-Treatment | Post-Treatment | Pre-Treatment | Post-Treatment | ||
Mean ± SD | Mean ± SD | p/ES/% | Mean ± SD | Mean ± SD | p/ES/% | |
Peak power (Watts) | 519 ± 207 | 534 ± 207 | p = 0.052 ES = 0.08 2.9% | 457 ± 188 | 443 ± 176 | p = 0.055 ES = 0.08 −3.2% |
Mean power (Watts) | 488 ± 193 | 512 ± 196 | p < 0.001 ES = 0.13 4.9% | 422 ± 161 | 421 ± 159 | p = 0.570 ES = 0.01 −0.4% |
Peak velocity (m/s) | 0.91 ± 0.06 | 0.94 ± 0.08 | p < 0.010 ES = 0.42 3.3% | 0.92 ± 0.11 | 0.90 ± 0.10 | p < 0.016 ES = 0.26 −2.2% |
Mean velocity (m/s) | 0.86 ± 0.06 | 0.90 ± 0.07 | p < 0.001 ES = 0.66 5.9% | 0.85 ± 0.07 | 0.84 ± 0.08 | p = 0.367 ES = 0.07 −1.2% |
Outcome | Difference Experimental Group Pre- and Post-Treatment | Difference Sham Group Pre- and Post-Treatment | |
---|---|---|---|
Mean ± SD | Mean ± SD | p | |
Peak power (Watts) | 14 ± 29 | −14 ± 56 | p < 0.049 ES = 0.65 |
Mean power (Watts) | 23 ± 20 | −1 ± 15 | p < 0.034 ES:1.42 |
Peak velocity (m/s) | 0.03 ± 0.04 | −0.03 ± 0.08 | p < 0.024 ES:0.95 |
Mean velocity (m/s) | 0.05 ± 0.03 | −0.00 ± 0.03 | p < 0.002 ES:1.67 |
Outcome | Group | RMS Pre-Treatment | RMS Post-Treatment | Difference Between Pre- and Post-Treatment | Group × Temps Interaction | |||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean | 95% CI | p | F | p | ||
Rectus Femoris | Experimental Group | 100 ± 0 | 94.78 ± 22.41 | −5.22 | −12.28; 1.83 | 0.144 | 0.004 | 0.952 |
Sham Group | 100 ± 0 | 95.07 ± 18.17 | −4.93 | −11.68; 1.83 | 0.150 | |||
Vastus Lateralis | Experimental Group | 100 ± 0 | 100.41 ± 22.86 | 0.41 | −9.70; 10.51 | 0.936 | 0.203 | 0.654 |
Sham Group | 100 ± 0 | 103.57 ± 33.80 | 3.56 | −6.11; 13.24 | 0.465 | |||
Vastus Medialis | Experimental Group | 100 ± 0 | 105.96 ± 34.19 | 5.96 | −8.21; 20.12 | 0.404 | 0.001 | 0.976 |
Sham Group | 100 ± 0 | 106.26 ± 42.75 | 6.26 | −7.67; 20.20 | 0.372 | |||
Biceps Femoris | Experimental Group | 100 ± 0 | 95.64 ± 19.48 | −4.36 | −11.86; 3.15 | 0.250 | 0.092 | 0.763 |
Sham Group | 100 ± 0 | 94.07 ± 22.13 | −5.93 | −13.09; 1.24 | 0.103 | |||
Gluteus Maximus | Experimental Group | 100 ± 0 | 96.07 ± 28.07 | −3.93 | −20.13; 12.27 | 0.630 | 2.135 | 0.149 |
Sham Group | 100 ± 0 | 112.37 ± 57.24 | 12.37 | −12.27; 20.13 | 0.111 | |||
Erector Spinae Longissimus | Experimental Group | 100 ± 0 | 99.27 ± 25.48 | −0.73 | −13.42; 11.96 | 0.909 | 0.299 | 0.587 |
Sham Group | 100 ± 0 | 104.04 ± 42.21 | 4.04 | −7.90; 15.98 | 0.502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Rodríguez, S.; Canet-Vintró, M.; López-de-Celis, C.; Shen-Chen, Z.; Caballero-Martínez, I.; García-Ribell, E.; Rodríguez-Sanz, J. Immediate Effects of Focal Muscle Vibration on Squat Power and Velocity in Amateur Athletes: A Randomized Controlled Trial. J. Funct. Morphol. Kinesiol. 2025, 10, 60. https://doi.org/10.3390/jfmk10010060
Rodríguez-Rodríguez S, Canet-Vintró M, López-de-Celis C, Shen-Chen Z, Caballero-Martínez I, García-Ribell E, Rodríguez-Sanz J. Immediate Effects of Focal Muscle Vibration on Squat Power and Velocity in Amateur Athletes: A Randomized Controlled Trial. Journal of Functional Morphology and Kinesiology. 2025; 10(1):60. https://doi.org/10.3390/jfmk10010060
Chicago/Turabian StyleRodríguez-Rodríguez, Sergi, Max Canet-Vintró, Carlos López-de-Celis, Zhifan Shen-Chen, Iván Caballero-Martínez, Erik García-Ribell, and Jacobo Rodríguez-Sanz. 2025. "Immediate Effects of Focal Muscle Vibration on Squat Power and Velocity in Amateur Athletes: A Randomized Controlled Trial" Journal of Functional Morphology and Kinesiology 10, no. 1: 60. https://doi.org/10.3390/jfmk10010060
APA StyleRodríguez-Rodríguez, S., Canet-Vintró, M., López-de-Celis, C., Shen-Chen, Z., Caballero-Martínez, I., García-Ribell, E., & Rodríguez-Sanz, J. (2025). Immediate Effects of Focal Muscle Vibration on Squat Power and Velocity in Amateur Athletes: A Randomized Controlled Trial. Journal of Functional Morphology and Kinesiology, 10(1), 60. https://doi.org/10.3390/jfmk10010060