Determinants of Health and Performance in Wildland Firefighters: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Emergency and Immediate Response Situations
3.2. Terrain Conditions, Equipment Weight, and Duration of Effort
3.2.1. Carrying Heavy Loads
3.2.2. Long Duration of Interventions
3.3. Smoke Inhalation and Its Health Effects
3.4. Thermal Stress and Environmental Stress in the Work Environment
3.5. Dehydration and Its Impact on Health and Performance
- -
- Increased fatigue and muscular weakness, raising the risk of injuries and accidents during operations.
- -
- Greater susceptibility to heatstroke, due to impaired thermoregulation when hydration levels are insufficient.
- -
- Higher likelihood of gastrointestinal disturbances, including stomach discomfort, vomiting, diarrhea, and abdominal cramps.
- -
- Electrolyte imbalances, potentially leading to muscle cramps, and in severe cases arrhythmias.
- -
- Reduced cognitive function, impairing mental focus and decision-making, which can compromise safety and operational effectiveness.
3.6. Importance of Sleep and Rest in Recovery and Performance
3.7. Personal Protective Equipment and Its Influence on Health and Performance
3.8. Physical Load and Energy Expenditure
- -
- Accelerometers. These devices measure the frequency and magnitude of body movements, estimating TEE based on individual characteristics such as age, sex, height, and weight. Accelerometers can operate in one plane (uniaxial) or three planes (triaxial) and have been validated under habitual living conditions using indirect calorimetry and doubly labeled water methods [79].
- -
- Doubly Labeled Water. Considered the gold standard for estimating energy expenditure, this method involves enriching body water with isotopes of hydrogen and oxygen. The difference in the washout kinetics of these isotopes provides an accurate measure of carbon dioxide production and consequently energy expenditure. While ideal for assessing energy expenditure in real-world conditions, this technique requires a complex equipment and strict protocols [80,81].
- -
- Metabolic Equivalents (METs). METs provide a standardized measure of energy demands, expressed as the ratio of working metabolic rate to resting metabolic rate (RMR, defined as 1.0 kcal·kg−1·h−1). For reference, 1 MET is approximately 3.5 mL O2·kg−1·min−1 or 1 kcal·kg−1·h−1. Physical activities are categorized based on intensity: sedentary (<1.49 METs), light (1.50–2.99 METs), moderate (3–5.99 METs), and vigorous (>6 METs) [82,83].
3.9. Mental Stress and Anxiety
3.10. Injuries and Chronic Pain Associated with the Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chappel, S.E.; Aisbett, B.; Vincent, G.E.; Ridgers, N.D. Firefighters’ Physical Activity across Multiple Shifts of Planned Burn Work. Int. J. Environ. Res. Public Health 2016, 13, 973. [Google Scholar] [CrossRef] [PubMed]
- Sol, J.A.; Ruby, B.C.; Gaskill, S.E.; Dumke, C.L.; Domitrovich, J.W. Metabolic Demand of Hiking in Wildland Firefighting. Wilderness Environ. Med. 2018, 29, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Marroyo, J.A.; López-Satue, J.; Pernía, R.; Carballo, B.; García-López, J.; Foster, C.; Villa, J.G. Physiological Work Demands of Spanish Wildland Firefighters during Wildfire Suppression. Int. Arch. Occup. Environ. Health 2012, 85, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Marroyo, J.A.; Villa, J.G.; López-Satue, J.; Pernía, R.; Carballo, B.; García-López, J.; Foster, C. Physical and Thermal Strain of Firefighters According to the Firefighting Tactics Used to Suppress Wildfires. Ergonomics 2011, 54, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Britton, C.; Lynch, C.F.; Ramirez, M.; Torner, J.; Buresh, C.; Peek-Asa, C. Epidemiology of Injuries to Wildland Firefighters. Am. J. Emerg. Med. 2013, 31, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Ruby, B.C.; Coker, R.H.; Sol, J.; Quindry, J.; Montain, S.J. Physiology of the Wildland Firefighter: Managing Extreme Energy Demands in Hostile, Smoky, Mountainous Environments. Compr. Physiol. 2023, 13, 4587–4615. [Google Scholar] [CrossRef]
- Petersen, S.R.; Anderson, G.S.; Tipton, M.J.; Docherty, D.; Graham, T.E.; Sharkey, B.J.; Taylor, N.A.S. Towards Best Practice in Physical and Physiological Employment Standards. Appl. Physiol. Nutr. Metab. 2016, 41, S47–S62. [Google Scholar] [CrossRef]
- Paterson, J.L.; Aisbett, B.; Ferguson, S.A. Sound the Alarm: Health and Safety Risks Associated with Alarm Response for Salaried and Retained Metropolitan Firefighters. Saf. Sci. 2016, 82, 174–181. [Google Scholar] [CrossRef]
- Choong, M.K.; Galgani, F.; Dunn, A.G.; Tsafnat, G. Automatic Evidence Retrieval for Systematic Reviews. J. Med. Internet Res. 2014, 16, e223. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Aisbett, B.; Tait, J.; Turner, A.; Ferguson, S.; Main, L. The Acute Physiological Stress Response to an Emergency Alarm and Mobilization during the Day and at Night. Noise Health 2016, 18, 150. [Google Scholar] [CrossRef] [PubMed]
- González- Garnelo, M.; Fernández- Huertas, V. Manual Para Cuadrillas de Prevención y Extinción de Incendios Forestales; Junta de Castilla y León; Consejería de Medio Ambiente: Valladolid, Spain, 2003.
- Holder, J.D.; Stallings, L.A.; Peeples, L.; Burress, J.W.; Kales, S.N. Firefighter Heart Presumption Retirements in Massachusetts 1997–2004. J. Occup. Environ. Med. 2006, 48, 1047–1053. [Google Scholar] [CrossRef]
- Kuorinka, I.; Korhonen, O. Firefighters’ Reaction to Alarm, an ECG and Heart Rate Study. J. Occup. Environ. Med. 1981, 23, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Kales, S.N.; Tsismenakis, A.J.; Zhang, C.; Soteriades, E.S. Blood Pressure in Firefighters, Police Officers, and Other Emergency Responders. Am. J. Hypertens. 2009, 22, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Kadmiel, M.; Cidlowski, J.A. Glucocorticoid Receptor Signaling in Health and Disease. Trends Pharmacol. Sci. 2013, 34, 518–530. [Google Scholar] [CrossRef]
- Soteriades, E.S.; Vogazianos, P.; Tozzi, F.; Antoniades, A.; Economidou, E.C.; Psalta, L.; Spanoudis, G. Exercise and Occupational Stress among Firefighters. Int. J. Environ. Res. Public Health 2022, 19, 4986. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Leyenda, B.; Gutiérrez-Arroyo, J.; García-Heras, F.; Sánchez-Collado, P.; Villa-Vicente, J.G.; Rodríguez-Marroyo, J.A. Influence of Personal Protective Equipment on Wildland Firefighters’ Physiological Response and Performance during the Pack Test. Int. J. Environ. Res. Public Health 2021, 18, 5050. [Google Scholar] [CrossRef]
- Cuddy, J.S.; Sol, J.A.; Hailes, W.S.; Ruby, B.C. Work Patterns Dictate Energy Demands and Thermal Strain During Wildland Firefighting. Wilderness Environ. Med. 2015, 26, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Gumieniak, R.J.; Gledhill, N.; Jamnik, V.K. Physical Employment Standard for Canadian Wildland Fire Fighters; Developing and Validating the Test Protocol. Ergonomics 2018, 61, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- García-Heras, F.; Gutiérrez-Arroyo, J.; León-Guereño, P.; Carballo-Leyenda, B.; Rodríguez-Marroyo, J.A. Chronic Pain in Spanish Wildland Firefighters. J. Clin. Med. 2022, 11, 989. [Google Scholar] [CrossRef]
- Carballo-Leyenda, B.; Villa, J.G.; López-Satué, J.; Collado, P.S.; Rodríguez-Marroyo, J.A. Fractional Contribution of Wildland Firefighters’ Personal Protective Equipment on Physiological Strain. Front. Physiol. 2018, 9, 1139. [Google Scholar] [CrossRef]
- Carballo-Leyenda, B.; Villa, J.G.; López-Satué, J.; Rodríguez-Marroyo, J.A. Characterizing Wildland Firefighters’ Thermal Environment During Live-Fire Suppression. Front. Physiol. 2019, 10, 949. [Google Scholar] [CrossRef]
- Ruby, B.C.; Leadbetter, G.W.; Armstrong, D.W.; Gaskill, S.E. Wildland Firefighter Load Carriage: Effects on Transit Time and Physiological Responses during Simulated Escape to Safety Zone. Int. J. Wildl. Fire 2003, 12, 111–116. [Google Scholar] [CrossRef]
- Taylor, N.A.S.; Peoples, G.E.; Petersen, S.R. Load Carriage, Human Performance, and Employment Standards. Appl. Physiol. Nutr. Metab. 2016, 41, S131–S147. [Google Scholar] [CrossRef]
- Orr, R.; Pope, R.; Lopes, T.J.A.; Leyk, D.; Blacker, S.; Bustillo-Aguirre, B.S.; Knapik, J.J. Soldier Load Carriage, Injuries, Rehabilitation and Physical Conditioning: An International Approach. Int. J. Environ. Res. Public Health 2021, 18, 4010. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.J.; Harman, E.A.; Steelman, R.A.; Graham, B.S. A Systematic Review of the Effects of Physical Training on Load Carriage Performance. J. Strength Cond. Res. 2012, 26, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Gumieniak, R.J.; Shaw, J.; Gledhill, N.; Jamnik, V.K. Physical Employment Standard for Canadian Wildland Fire Fighters; Identifying and Characterising Critical Initial Attack Response Tasks. Ergonomics 2018, 61, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Lui, B.; Cuddy, J.S.; Hailes, W.S.; Ruby, B.C. Seasonal Heat Acclimatization in Wildland Firefighters. J. Therm. Biol. 2014, 45, 134–140. [Google Scholar] [CrossRef]
- Comité de Lucha Contra Incendios Forestales. Recomendación Técnica Sobre Duración de La Jornada de Trabajo, Período de Descanso y Tiempo de Trabajo En Incendios Forestales; Ministerio para la Transformación Ecológica y el Reto Demográfico: Madrid, Spain, 2013.
- Jeklin, A.T.; Davies, H.W.; Bredin, S.S.D.; Hives, B.A.; Meanwell, L.E.; Perrotta, A.S.; Warburton, D.E.R. Fatigue and Sleep Patterns among Canadian Wildland Firefighters during a 17-Day Fire Line Deployment. J. Occup. Environ. Hyg. 2020, 17, 364–371. [Google Scholar] [CrossRef]
- Navarro, K.M.; Kleinman, M.T.; Mackay, C.E.; Reinhardt, T.E.; Balmes, J.R.; Broyles, G.A.; Ottmar, R.D.; Naher, L.P.; Domitrovich, J.W. Wildland Firefighter Smoke Exposure and Risk of Lung Cancer and Cardiovascular Disease Mortality. Environ. Res. 2019, 173, 462–468. [Google Scholar] [CrossRef]
- Adetona, O.; Reinhardt, T.E.; Domitrovich, J.; Broyles, G.; Adetona, A.M.; Kleinman, M.T.; Ottmar, R.D.; Naeher, L.P. Review of the Health Effects of Wildland Fire Smoke on Wildland Firefighters and the Public. Inhal. Toxicol. 2016, 28, 95–139. [Google Scholar] [CrossRef]
- Hwang, J.; Chong, N.S.; Zhang, M.; Agnew, R.J.; Xu, C.; Li, Z.; Xu, X. Face-to-Face with Scorching Wildfire: Potential Toxicant Exposure and the Health Risks of Smoke for Wildland Firefighters at the Wildland-Urban Interface. Lancet Reg. Health Am. 2023, 21, 100482. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.V.; Farraia, M.; Branco, P.T.B.S.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Annesi-Maesano, I.; Sousa, S.I.V. The Effect of Fire Smoke Exposure on Firefighters’ Lung Function: A Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16799. [Google Scholar] [CrossRef]
- Groot, E.; Caturay, A.; Khan, Y.; Copes, R. A Systematic Review of the Health Impacts of Occupational Exposure to Wildland Fires. Int. J. Occup. Med. Environ. Health 2019, 32, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, E.; Cornish, K.; Fyfe, T.M.; Bailey, K.; Pelletier, C.A. Health Risks and Mitigation Strategies from Occupational Exposure to Wildland Fire: A Scoping Review. J. Occup. Med. Toxicol. 2022, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Booze, T.F.; Reinhardt, T.E.; Quiring, S.J.; Ottmar, R.D. A Screening-Level Assessment of the Health Risks of Chronic Smoke Exposure for Wildland Firefighters. J. Occup. Environ. Hyg. 2004, 1, 296–305. [Google Scholar] [CrossRef]
- Aisbett, B.; Wolkow, A.; Sprajcer, M.; Ferguson, S.A. ‘ Awake, Smoky, and Hot’: Providing an Evidence-Base for Managing the Risks Associated with Occupational Stressors Encountered by Wildland Firefighters. Appl. Ergon. 2012, 43, 916–925. [Google Scholar] [CrossRef]
- Petruzzello, S.J.; Gapin, J.I.; Snook, E.; Smith, D.L. Perceptual and Physiological Heat Strain: Examination in Firefighters in Laboratory- and Field-Based Studies. Ergonomics 2009, 52, 747–754. [Google Scholar] [CrossRef]
- Butts, C.L.; Smith, C.R.; Ganio, M.S.; McDermott, B.P. Physiological and Perceptual Effects of a Cooling Garment during Simulated Industrial Work in the Heat. Appl. Ergon. 2017, 59, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Cuddy, J.S.; Ham, J.A.; Harger, S.G.; Slivka, D.R.; Ruby, B.C. Effects of an Electrolyte Additive on Hydration and Drinking Behavior during Wildfire Suppression. Wilderness Environ. Med. 2008, 19, 172–180. [Google Scholar] [CrossRef]
- Périard, J.D.; Travers, G.J.S.; Racinais, S.; Sawka, M.N. Cardiovascular Adaptations Supporting Human Exercise-Heat Acclimation. Auton. Neurosci. Basic Clin. 2016, 196, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D.; Eijsvogels, T.M.H.; Daanen, H.A.M. Exercise under Heat Stress: Thermoregulation, Hydration, Performance Implications, and Mitigation Strategies. Physiol. Rev. 2021, 101, 1873–1979. [Google Scholar] [CrossRef]
- McLellan, T.M.; Havenith, G. Protective Clothing Ensembles and Physical Employment Standards. Appl. Physiol. Nutr. Metab. 2016, 41, S121–S130. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D.; Racinais, S. Heat Stress in Sport and Exercise, 1st ed.; Périard, J.D., Racinais, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-93514-0. [Google Scholar]
- Racinais, S.; Alonso, J.M.; Coutts, A.J.; Flouris, A.D.; Girard, O.; González-Alonso, J.; Hausswirth, C.; Jay, O.; Lee, J.K.W.; Mitchell, N.; et al. Consensus Recommendations on Training and Competing in the Heat. Br. J. Sports Med. 2015, 49, 1164–1173. [Google Scholar] [CrossRef]
- Daanen, H.A.M.; Racinais, S.; Périard, J.D. Heat Acclimation Decay and Re-Induction: A Systematic Review and Meta-Analysis. Sport. Med. 2018, 48, 409–430. [Google Scholar] [CrossRef]
- Alhadad, S.B.; Tan, P.M.S.; Lee, J.K.W. Efficacy of Heat Mitigation Strategies on Core Temperature and Endurance Exercise: A Meta-Analysis. Front. Physiol. 2019, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.J.; Reeve, T.; Hodges, G.J.; Cheung, S.S. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis. Sport. Med. 2016, 46, 1699–1724. [Google Scholar] [CrossRef]
- Tyler, C.J.; Sunderland, C.; Cheung, S.S. The Effect of Cooling Prior to and during Exercise on Exercise Performance and Capacity in the Heat: A Meta-Analysis. Br. J. Sports Med. 2015, 49, 7–13. [Google Scholar] [CrossRef]
- Febbraio, M.A. Alterations in Energy Metabolism During Exercise and Heat Stress. Sport. Med. 2001, 31, 47–59. [Google Scholar] [CrossRef]
- Hargreaves, M. Physiological Limits to Exercise Performance in the Heat. J. Sci. Med. Sport 2008, 11, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J. Exercise in the Heat: Limitations to Performance and the Impact of Fluid Replacement Strategies. Introduction to the Symposium. Can. J. Appl. Physiol. 1999, 24, 149–151. [Google Scholar] [CrossRef]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. Exercise and Fluid Replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef]
- Sawka, M.N.; Physiology, A.; States, U. Heat Acclimatization To Improve Athletic Performance in Warm-Hot Environments. Sports Sci. Exch. 2015, 28, 1–6. [Google Scholar]
- Sawka, M.N.; Wenger, C.B.; Pandolf, K.B. Thermoregulatory Responses to Acute Exercise-Heat Stress and Heat Acclimation. In Handbook of Physiology, Section 4, Environmental Physiology; Fregly, M.J., Blatteis, C.M., Eds.; Oxford University Press: New York, NY, USA, 1996; pp. 157–185. [Google Scholar]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. Hypohydration and Human Performance: Impact of Environment and Physiological Mechanisms. Sport. Med. 2015, 45, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Marks, A.N.; Sol, J.A.; Domitrovich, J.W.; West, M.R.; Ruby, B.C. Total Energy Intake and Self-Selected Macronutrient Distribution During Wildland Fire Suppression. Wilderness Environ. Med. 2020, 31, 188–196. [Google Scholar] [CrossRef]
- Raines, J.; Snow, R.; Petersen, A.; Harvey, J.; Nichols, D.; Aisbett, B. The Effect of Prescribed Fluid Consumption on Physiology and Work Behavior of Wildfire Fighters. Appl. Ergon. 2013, 44, 404–413. [Google Scholar] [CrossRef]
- Raines, J.; Snow, R.; Nichols, D.; Aisbett, B. Fluid Intake, Hydration, Work Physiology of Wildfire Fighters Working in the Heat over Consecutive Days. Ann. Occup. Hyg. 2015, 59, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Rosales, A.M.; Dodds, P.S.; Sol, J.A.; Marks, A.N.; Domitrovich, J.W.; Ruby, B.C. Workshift Changes in Hydration Status During Wildfire Suppression. J. Occup. Environ. Med. 2021, 63, 963–969. [Google Scholar] [CrossRef]
- Walker, A.; Pope, R.; Orr, R.M. The Impact of Fire Suppression Tasks on Firefighter Hydration: A Critical Review with Consideration of the Utility of Reported Hydration Measures. Ann. Occup. Environ. Med. 2016, 28, 63. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.M. Sleep and Athletic Performance. Curr. Sports Med. Rep. 2017, 16, 413–418. [Google Scholar] [CrossRef]
- Bird, S.P. Sleep, Recovery, and Athletic Performance: A Brief Review and Recommendations. Strength Cond. J. 2013, 35, 43–47. [Google Scholar] [CrossRef]
- Charest, J.; Grandner, M.A. Sleep and Athletic Performance: Impacts on Physical Performance, Mental Performance, Injury Risk and Recovery, and Mental Health. Sleep Med. Clin. 2020, 15, 41–57. [Google Scholar] [CrossRef]
- McGillis, Z.; Dorman, S.C.; Robertson, A.; Larivière, M.; Leduc, C.; Eger, T.; Oddson, B.E.; Larivière, C. Sleep Quantity and Quality of Ontario Wildland Firefighters Across a Low-Hazard Fire Season. J. Occup. Environ. Med. 2017, 59, 1188–1196. [Google Scholar] [CrossRef]
- Vincent, G.; Ferguson, S.; Tran, J.; Larsen, B.; Wolkow, A.; Aisbett, B. Sleep Restriction during Simulated Wildfire Suppression: Effect on Physical Task Performance. PLoS ONE 2015, 10, e0115329. [Google Scholar] [CrossRef] [PubMed]
- Vincent, G.; Ferguson, S.; Larsen, B.; Ridgers, N.; Snow, R.; Aisbett, B. Adding Sleep Restriction to the Equation: Impact on Wildland Firefighters’ Work Performance and Physiology in Hot Conditions. Int. Arch. Occup. Environ. Health 2018, 91, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Vincent, G.; Aisbett, B.; Wolkow, A.; Jay, S.; Ridgers, N.; Ferguson, S. Sleep in Wildland Firefighters: What Do We Know and Why Does It Matter? Int. J. Wildl. Fire 2018, 27, 73. [Google Scholar] [CrossRef]
- Vincent, G.; Aisbett, B.; Hall, S.; Ferguson, S. Fighting Fire and Fatigue: Sleep Quantity and Quality during Multi-Day Wildfire Suppression. Ergonomics 2016, 59, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Cater, H.; Clancy, D.; Duffy, K.; Holgate, A.; Wilison, B.; Wood, J. Fatigue on the Fireground: The DPI Experience. In Australasian Fire Authorities Council/Bushfire Co-Operative Research Centre Annual Conference; Grand Chancellor: Hobart, Australia, 2007; pp. 19–21. [Google Scholar]
- Carballo-Leyenda, B.; Villa, J.G.; López-Satué, J.; Rodríguez-Marroyo, J.A. Impact of Different Personal Protective Clothing on Wildland Firefighters’ Physiological Strain. Front. Physiol. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Louhevaara, V.; Tuomi, T.; Korhonen, O.; Jaakkola, J. Cardiorespiratory Effects of Respiratory Protective Devices during Exercise in Well-Trained Men. Eur. J. Appl. Physiol. Occup. Physiol. 1984, 52, 340–345. [Google Scholar] [CrossRef]
- McGill, S.; Frost, D.; Andersen, J.; Crosby, I.; Gardiner, D. Movement Quality and Links to Measures of Fitness in Firefighters. Work 2013, 45, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.B.; Stickland, M.K.; Petersen, S.R. Physiological and Performance Consequences of Heavy Thoracic Load Carriage in Females. Appl. Physiol. Nutr. Metab. 2016, 41, 741–748. [Google Scholar] [CrossRef]
- Selkirk, G.A.; McLellan, T.M.; Wong, J. Active versus Passive Cooling during Work in Warm Environments While Wearing Firefighting Protective Clothing. J. Occup. Environ. Hyg. 2004, 1, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.B.; Ehnes, C.M.; Welch, B.G.; Lee, L.N.; Simin, I.; Petersen, S.R. Influence of Work Clothing on Physiological Responses and Performance during Treadmill Exercise and the Wildland Firefighter Pack Test. Appl. Ergon. 2018, 68, 313–318. [Google Scholar] [CrossRef] [PubMed]
- McQuerry, M.; Barker, R.; DenHartog, E. Relationship between Novel Design Modifications and Heat Stress Relief in Structural Firefighters’ Protective Clothing. Appl. Ergon. 2018, 70, 260–268. [Google Scholar] [CrossRef]
- Plasqui, G.; Westerterp, K.R. Accelerometers: An Evaluation Against Doubly Labeled Water. October 2007, 15, 2371–2379. [Google Scholar]
- Ruby, B.C.; Shriver, T.C.; Zderic, T.W.; Sharkey, B.J.; Burks, C.; Tysk, S. Total Energy Expenditure during Arduous Wildfire Suppression. Med. Sci. Sports Exerc. 2002, 34, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R. Doubly Labelled Water Assessment of Energy Expenditure: Principle, Practice, and Promise. Eur. J. Appl. Physiol. 2017, 117, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; HASKELL, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-LocKE, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities. Med. Sci. Sport. Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S. Compendium of Physical Activities: Classification of Energy Costs of Human Physical Activities. Med. Sci. Sport. Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Cuddy, J.S.; Slivka, D.R.; Tucker, T.J.; Hailes, W.S.; Ruby, B.C. Glycogen Levels in Wildland Firefighters During Wildfire Suppression. Wilderness Environ. Med. 2011, 22, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Elsner, K.L.; Kolkhorst, F.W. Metabolic Demands of Simulated Firefighting Tasks. Ergonomics 2008, 51, 1418–1425. [Google Scholar] [CrossRef]
- Heil, D.P. Estimating Energy Expenditure in Wildland Fire Fighters Using a Physical Activity Monitor. Appl. Ergon. 2002, 33, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.H.; Larivière, C.; Leduc, C.R.; McGillis, Z.; Eger, T.; Godwin, A.; Larivière, M.; Dorman, S.C. Novel Tools in Determining the Physiological Demands and Nutritional Practices of Ontario Firerangers during Fire Deployments. PLoS ONE 2017, 12, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Periodized Nutrition for Athletes. Sport. Med. 2017, 47, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Cuddy, J.S.; Gaskill, S.E.; Sharkey, B.J.; Harger, S.G.; Ruby, B.C. Supplemental Feedings Increase Self-Selected Work Output during Wildfire Suppression. Med. Sci. Sports Exerc. 2007, 39, 1004–1012. [Google Scholar] [CrossRef]
- Coker, R.H.; Murphy, C.J.; Johannsen, M.; Galvin, G.; Ruby, B.C. Wildland Firefighting. Adverse Influence on Indices of Metabolic and Cardiovascular Health. J. Occup. Environ. Med. 2019, 61, e91–e94. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.; Brooks, R.; Sturz, B.; Nelson, A.; Keefe, R. Body Composition Changes of United States Smokejumpers during the 2017 Fire Season. Fire 2018, 1, 48. [Google Scholar] [CrossRef]
- Brooks, S.J.; West, M.R.; Domitrovich, J.W.; Sol, J.A.; Holubetz, H.; Partridge, C.; Ruby, B.C.; Brown, A.F.; Roe, A.J. Nutrient Intake of Wildland Firefighters During Arduous Wildfire Suppression. J. Occup. Environ. Med. 2021, 63, e949–e956. [Google Scholar] [CrossRef]
- Crespo-Ruiz, B.; Esteban García, P.; Fernández-Vega, C.; Crespo-Ruiz, C.; Rivas-Galan, S. A Descriptive Analysis of Body Composition Among Forest Firefighters in Spain. J. Occup. Environ. Med. 2020, 62, e174–e179. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human Exposure and Sensitivity to Globally Extreme Wildfire Events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef]
- Aisbett, B.; Nichols, D. Fighting Fatigue Whilst Fighting Bushfire: An Overview of Factors Contributing to Firefighter Fatigue during Bushfire Suppression. Aust. J. Emerg. Manag. 2007, 22, 31–39. [Google Scholar]
- García-Heras, F.; Gutiérrez Arroyo, J.; Molinero González, O. Ansiedad, Estrés, y Estados de Ánimo Del Personal Especialista En Extinción de Incendios Forestales (Anxiety, Stress, and Mood States of Wildland Firefighters). Retos 2020, 2041, 228–236. [Google Scholar] [CrossRef]
- Robinson, S.J.; Leach, J.; Owen-Lynch, P.J.; Sünram-Lea, S.I. Stress Reactivity and Cognitive Performance in a Simulated Firefighting Emergency. Aviat. Sp. Environ. Med. 2013, 84, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Budd, G.; Brotherhood, J.; Hendrie, A.; Jeffery, S.; Beasley, F.; Costin, B.; Zhien, W.; Baker, M.; Cheney, N.; Dawson, M. Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer Bushfires With Hand Tools: Background, Objectives, and Methods. Int. J. Wildl. Fire 1997, 7, 69. [Google Scholar] [CrossRef]
- Perroni, F.; Tessitore, A.; Cibelli, G.; Lupo, C.; D’Artibale, E.; Cortis, C.; Cignitti, L.; De Rosas, M.; Capranica, L. Effects of Simulated Firefighting on the Responses of Salivary Cortisol, Alpha-Amylase and Psychological Variables. Ergonomics 2009, 52, 484–491. [Google Scholar] [CrossRef]
- Oakley, R.H.; Cidlowski, J.A. The Biology of the Glucocorticoid Receptor: New Signaling Mechanisms in Health and Disease. J. Allergy Clin. Immunol. 2013, 132, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Márquez, S. Ansiedad, Estrés y Deporte; Editorial EOS: Madrid, Spain, 2004. [Google Scholar]
- Curilem, G.C.; Almagià, F.A.; Yuing, F.T.; Rodríguez, R.F. Evaluación Del Estado Psicobiotipológico En Bomberos: Parámetros de Salud y Recursos Anti Estrés. Int. J. Morphol. 2014, 32, 709–714. [Google Scholar] [CrossRef]
- Gonzalez, D.E.; Lanham, S.N.; Martin, S.E.; Cleveland, R.E.; Wilson, T.E.; Langford, E.L.; Abel, M.G. Firefighter Health: A Narrative Review of Occupational Threats and Countermeasures. Healthcare 2024, 12, 440. [Google Scholar] [CrossRef]
- Plat, M.J.; Frings-Dresen, M.H.W.; Sluiter, J.K. A Systematic Review of Job-Specific Workers’ Health Surveillance Activities for Fire-Fighting, Ambulance, Police and Military Personnel. Int. Arch. Occup. Environ. Health 2011, 84, 839–857. [Google Scholar] [CrossRef] [PubMed]
- Britton, C.; Ramirez, M.; Lynch, C.F.; Torner, J.; Peek-asa, C. Risk of Injury by Job Assignment among Federal Wildland Firefighters, United States, 2003–2007. Int. J. Occup. Environ. Health 2013, 19, 77–84. [Google Scholar] [CrossRef]
- Gordon, H.; Larivière, M. Physical and Psychological Determinants of Injury in Ontario Forest Firefighters. Occup. Med. 2014, 64, 583–588. [Google Scholar] [CrossRef] [PubMed]
- García-Heras, F.; Rodríguez-Medina, J.; Castañeda, A.; León-Guereño, P.; Gutiérrez-Arroyo, J. Occupational Injuries of Spanish Wildland Firefighters: A Descriptive Analysis. Healthcare 2024, 12, 1615. [Google Scholar] [CrossRef] [PubMed]
- Phelps, S.M.; Drew-Nord, D.C.; Neitzel, R.L.; Wallhagen, M.I.; Bates, M.N.; Hong, O.S. Characteristics and Predictors of Occupational Injury Among Career Firefighters. Work. Health Saf. 2018, 66, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Levins, K.J.; Drago, T.; Roman, E.; Martin, A.; King, R.; Murphy, P.; Gallagher, H.; Barry, D.; O’Hanlon, E.; Roddy, D.W. Magnetic Resonance Spectroscopy across Chronic Pain Disorders: A Systematic Review Protocol Synthesising Anatomical and Metabolite Findings in Chronic Pain Patients. Syst. Rev. 2019, 8, 338. [Google Scholar] [CrossRef]
- Scherzer, T.; Rugulies, R.; Krause, N. Work-Related Pain and Injury and Barriers to Workers’ Compensation Among Las Vegas Hotel Room Cleaners. Am. J. Public Health 2005, 95, 483–488. [Google Scholar] [CrossRef] [PubMed]
Wildfire Type | Percentage of Maximal Heart Rate (%) | Time at Low Intensity (%) | Time at Moderate Intensity (%) | Time at High Intensity (%) |
---|---|---|---|---|
By type of work | ||||
Direct attack | 67.2 ± 1.1 | 66.1 + 2.5 | 27.0 + 1.5 | 6.9 ±1.0 |
Indirect attack | 58.1 ± 1.6 | 84.4 ± 2.6 | 12.9 ± 2.1 | 2.7 ± 0.6 |
Mixed attack | 66.3 ± 0.9 | 64.0 + 2.1 | 28.8 + 1.6 | 7.1 ± 0.8 |
By duration | ||||
<1 h | 70.8 ± 0.8 | 57.1 ± 2.4 | 35.0 ± 2.1 | 7.9 ± 1.2 |
1–3 h | 67.0 ± 0.4 | 62.8 ± 2.0 | 30.2 ± 1.7 | 7.0 ± 0.9 |
>3 h | 62.0 ± 1.1 | 76.5 ± 2.1 | 20.5 ± 1.5 | 3.0 ± 0.6 |
Study | Sample | Measurement Method | Measurement Period | Energy Demand |
---|---|---|---|---|
Ruby et al. [80] | 17 | Total energy expenditure (TEE) estimated using doubly labeled water | 5 days of real wildfire suppression | 4878 ± 716 kcal (male), 3541 ± 718 kcal (female) |
Heil [86] | 10 | Energy expenditure measured using an electronic activity monitor (uniaxial accelerometer) to estimate TEE (total·d−1) and activity energy expenditure (AEE) during suppression | 21-day wildfire suppression shift | 4768 ± 478 kcal (TEE, per workday), 2585 ± 406 kcal (AEE, during wildfire suppression) |
Cuddy et al. [18] | 15 | Estimation of TEE using a triaxial accelerometer | 3-day wildfire suppression shift, with an average of 11.4 ± 0.7 h of work·d−1 | 4556 ± 943 kcal (TEE, per workday), 2381 ± 746 kcal (AEE, during wildfire suppression), 10 kcal·min−1 of work |
Robertson et al. [87] | 21 | Energy expenditure over 24 h estimated using MET values from a compendium of physical activities | 2014 wildfire season (June to September)—divided into three phases: base work (training and preventative tasks), initial attack (direct attack), and extended attack (indirect attack, prescribed burns, mop-up, and cleaning) | Base work: 2842 ± 650 kcal; initial attack: 4538 ± 1006 kcal; extended attack: 4029 ± 1165 kcal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Heras, F.; Gutiérrez-Arroyo, J.; Rodríguez-Medina, J.; Carballo-Leyenda, B.; Sánchez-Collado, P.; Villa-Vicente, G.; Rodríguez-Marroyo, J.A. Determinants of Health and Performance in Wildland Firefighters: A Narrative Review. J. Funct. Morphol. Kinesiol. 2025, 10, 80. https://doi.org/10.3390/jfmk10010080
García-Heras F, Gutiérrez-Arroyo J, Rodríguez-Medina J, Carballo-Leyenda B, Sánchez-Collado P, Villa-Vicente G, Rodríguez-Marroyo JA. Determinants of Health and Performance in Wildland Firefighters: A Narrative Review. Journal of Functional Morphology and Kinesiology. 2025; 10(1):80. https://doi.org/10.3390/jfmk10010080
Chicago/Turabian StyleGarcía-Heras, Fabio, Jorge Gutiérrez-Arroyo, Juan Rodríguez-Medina, Belén Carballo-Leyenda, Pilar Sánchez-Collado, Gerardo Villa-Vicente, and Jose A. Rodríguez-Marroyo. 2025. "Determinants of Health and Performance in Wildland Firefighters: A Narrative Review" Journal of Functional Morphology and Kinesiology 10, no. 1: 80. https://doi.org/10.3390/jfmk10010080
APA StyleGarcía-Heras, F., Gutiérrez-Arroyo, J., Rodríguez-Medina, J., Carballo-Leyenda, B., Sánchez-Collado, P., Villa-Vicente, G., & Rodríguez-Marroyo, J. A. (2025). Determinants of Health and Performance in Wildland Firefighters: A Narrative Review. Journal of Functional Morphology and Kinesiology, 10(1), 80. https://doi.org/10.3390/jfmk10010080