Velocity-Based Training in Soccer: A Brief Narrative Review with Practical Recommendations
Abstract
:1. Introduction
2. Physical Preparation in Soccer
- Linear sprint capacity;
- Vertical jump ability;
- Kicking ball speed;
- Sprinting with directional changes;
- Repeated sprint ability with short recovery.
3. Methodology
3.1. Study Selection Criteria
- Research applying VBT in soccer and other sport modalities, considering the specificity of velocity and the type of exercise used.
- Studies designed to evaluate validity, reliability, or accuracy of load control through movement velocity.
- Interventions aimed at improving key physical capacities in soccer, such as sprinting speed, rate of force development (RFD), and change of direction ability.
- Systematic or narrative reviews that provide conceptual and empirical support for using the velocity of the first repetition and velocity loss within a set as strategies for training load control.
3.2. Exclusion Criteria
- Studies that divide training into velocity zones, as this approach misrepresents the original concept of velocity-based load control.
- Research that considers VBT as a training methodology in itself, rather than a tool or procedure for quantifying and controlling resistance training. This misconception suggests a lack of understanding of the true concept of VBT.
3.3. Sources and Databases
- PubMed;
- Scopus;
- Web of Science;
- SportDiscus.
3.4. Search Period
3.5. Keywords Used
- “velocity-based training” AND “soccer”;
- “strength training” AND “velocity monitoring”;
- “load control” AND “velocity loss” AND “soccer players”;
- “velocity of first repetition” AND “fatigue monitoring”.
3.6. Analysis Strategy
- Evidence on the relationship between velocity and training load.
- Applications of VBT in soccer and its impact on physical performance.
- Methods for monitoring fatigue through execution velocity.
- Limitations and challenges in the implementation of VBT in sports settings.
3.7. Methodological Limitations
4. What Characteristics Should Strength Training Programs Have to Improve High-Velocity Musculoskeletal Actions?
5. How to Quantify the Load or Degree of Fatigue During Strength Training?
6. What Exercises Should Be Used During Strength Training for Soccer Players?
- (a)
- Lower limb push: Squat or weighted sprint;
- (b)
- Lower limbs pull: Deadlift;
- (c)
- Horizontal upper limb push: Bench press;
- (d)
- Vertical upper limb push: Military press;
- (e)
- Horizontal upper limb pulls: Bench rows;
- (f)
- Vertical upper limb pulls: Pull-ups.
7. What Combination of Volume and Relative Load Should Be Used for the Beginning of ST in Soccer?
8. Importance of Quantifying Training Load
9. Practical Recommendations
10. Conclusions
11. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soos, I.; Boryslawski, K.; Boraczynski, M.; Ihasz, F.; Podstawski, R. Anthropometric and Physiological Profiles of Hungarian Youth Male Soccer Players of Varying Ages and Playing Positions: A Multidimensional Assessment with a Critical Approach. Int. J. Res. Public. Health 2022, 19, 11041. [Google Scholar] [CrossRef]
- Hoff, J. Training and testing physical capacities for elite soccer players. J. Sports Sci. 2005, 23, 573–582. [Google Scholar] [CrossRef]
- Hoff, J.; Helgerud, J. Endurance and strength training for soccer players: Physiological considerations. Sports Med. 2004, 34, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Stolen, T.; Chamari, K.; Castagna, C.; Wisloff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef] [PubMed]
- Wisloff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar]
- Wisloff, U.; Helgerud, J.; Hoff, J. Strength and endurance of elite soccer players. Med. Sci. Sports Exerc. 1998, 30, 462–467. [Google Scholar]
- Silva, J.R.; Magalhaes, J.; Ascensao, A.; Seabra, A.F.; Rebelo, A.N. Training status and match activity of professional soccer players throughout a season. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2013, 27, 20–30. [Google Scholar] [CrossRef]
- Silva, J.R.; Nassis, G.P.; Rebelo, A. Strength training in soccer with a specific focus on highly trained players. Sports Med. Open 2015, 1, 1–27. [Google Scholar] [CrossRef]
- Beato, M.; Maroto-Izquierdo, S.; Turner, A.N.; Bishop, C. Implementing Strength Training Strategies for Injury Prevention in Soccer: Scientific Rationale and Methodological Recommendations. Int. J. Sports Physiol. Perform. 2021, 16, 456–461. [Google Scholar] [CrossRef]
- Chalmers, S.; Esterman, A.; Eston, R.; Bowering, K.J.; Norton, K. Short-term heat acclimation training improves physical performance: A systematic review, and exploration of physiological adaptations and application for team sports. Sports Med. 2014, 44, 971–988. [Google Scholar] [CrossRef]
- Griffin, A.; Kenny, I.C.; Comyns, T.M.; Purtill, H.; Tiernan, C.; O’Shaughnessy, E.; Lyons, M. Training load monitoring in team sports: A practical approach to addressing missing data. J. Sports Sci. 2021, 39, 2161–2171. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Ye, Z.; Yin, X.; Zhou, C.; Gong, B. Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health 2022, 19, 14800. [Google Scholar] [CrossRef]
- Stojanović, M.D.M.; Andrić, N.; Mikić, M.; Vukosav, N.; Vukosav, B.; Zolog-Șchiopea, D.N.; Tăbăcar, M.; Melinte, R.M. Effects of Eccentric-Oriented Strength Training on Return to Sport Criteria in Late-Stage Anterior Cruciate Ligament (ACL)-Reconstructed Professional Team Sport Players. Medicina 2023, 59, 1111. [Google Scholar] [CrossRef]
- Bianchi, M.; Coratella, G.; Dello Iacono, A.; Beato, M. Comparative effects of single vs. double weekly plyometric training sessions on jump, sprint and change of directions abilities of elite youth football players. J. Sports Med. Phys. Fit. 2019, 59, 910–915. [Google Scholar] [CrossRef]
- Melziddinov, R.; Akramov, B.; Kazoqov, R. The relationship of the efficiency of technical-tactical actions of football players with the level of physical preparation. Mod. Sci. Res. 2024, 3, 1153–1165. [Google Scholar]
- Bujalance-Moreno, P.; Latorre-Román, P.Á.; García-Pinillos, F. A systematic review on small-sided games in football players: Acute and chronic adaptations. J. Sports Sci. 2019, 37, 921–949. [Google Scholar] [PubMed]
- Fiorilli, G.; Mariano, I.; Iuliano, E.; Giombini, A.; Ciccarelli, A.; Buonsenso, A.; Calcagno, G.; di Cagno, A. Isoinertial eccentric-overload training in young soccer players: Effects on strength, sprint, change of direction, agility and soccer shooting precision. J. Sports Sci. Med. 2020, 19, 213–223. [Google Scholar]
- Almeida, M.O.; Maher, C.G.; Saragiotto, B.T. Prevention programmes including Nordic exercises to prevent hamstring injuries in football players (PEDro synthesis). Br. J. Sports Med. 2018, 52, 877–878. [Google Scholar]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Sanchez-Medina, L.; Ribas-Serna, J.; Rodriguez-Rosell, D. Toward a New Paradigm in Resistance Training by Means of Velocity Monitoring: A Critical and Challenging Narrative. Sports Med. Open 2022, 8, 118. [Google Scholar] [CrossRef]
- Baena-Marin, M.; Rojas-Jaramillo, A.; Gonzalez-Santamaria, J.; Rodriguez-Rosell, D.; Petro, J.L.; Kreider, R.B.; Bonilla, D.A. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports 2022, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rosell, D.; Torres-Torrelo, J.; Franco-Marquez, F.; Gonzalez-Suarez, J.M.; Gonzalez-Badillo, J.J. Effects of light-load maximal lifting velocity weight training vs. combined weight training and plyometrics on sprint, vertical jump and strength performance in adult soccer players. J. Sci. Med. Sport Sports Med. Aust. 2017, 20, 695–699. [Google Scholar] [CrossRef]
- Torres-Torrelo, J.; Rodriguez-Rosell, D.; Gonzalez-Badillo, J.J. Light-load maximal lifting velocity full squat training program improves important physical and skill characteristics in futsal players. J. Sports Sci. 2017, 35, 967–975. [Google Scholar] [CrossRef]
- Carling, C.; Bloomfield, J.; Nelsen, L.; Reilly, T. The role of motion analysis in elite soccer: Contemporary performance measurement techniques and work rate data. Sports Med. 2008, 38, 839–862. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Engen, L.C.; Wisloff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef]
- Hostrup, M.; Bangsbo, J. Performance Adaptations to Intensified Training in Top-Level Football. Sports Med. 2023, 53, 577–594. [Google Scholar] [CrossRef] [PubMed]
- Rampinini, E.; Coutts, A.J.; Castagna, C.; Sassi, R.; Impellizzeri, F.M. Variation in top level soccer match performance. Int. J. Sports Med. 2007, 28, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F.J.; Bachl, N.; Pigozzi, F. Performance characteristics according to playing position in elite soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef]
- Castellano, J.; Casamichana, D.; Calleja-Gonzalez, J.; Roman, J.S.; Ostojic, S.M. Reliability and Accuracy of 10 Hz GPS Devices for Short-Distance Exercise. J. Sports Sci. Med. 2011, 10, 233–234. [Google Scholar]
- Castellano, J.; Blanco-Villasenor, A.; Alvarez, D. Contextual variables and time-motion analysis in soccer. Int. J. Sports Med. 2011, 32, 415–421. [Google Scholar] [CrossRef]
- Bradley, P.S.; Di Mascio, M.; Peart, D.; Olsen, P.; Sheldon, B. High-intensity activity profiles of elite soccer players at different performance levels. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2010, 24, 2343–2351. [Google Scholar] [CrossRef]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Lago-Penas, C.; Lorenzo-Martinez, M.; Lopez-Del Campo, R.; Resta, R.; Rey, E. Evolution of physical and technical parameters in the Spanish LaLiga 2012–2019. Sci Med. Footb. 2023, 7, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Gomez, M.A.; Lorenzo, A. The evolution of physical and technical performance parameters in the Chinese Soccer Super League. Biol. Sport. 2020, 37, 139–145. [Google Scholar] [CrossRef]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, D.; Quinn, M.; Jones, P. Linear advancing actions followed by deceleration and turn are the most common movements preceding goals in male professional soccer. Sci. Med. Footb. 2023, 7, 25–33. [Google Scholar] [CrossRef]
- Martinez-Hernandez, D.; Quinn, M.; Jones, P. Most common movements preceding goal scoring situations in female professional soccer. Sci. Med. Footb. 2024, 8, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical Demands of Different Positions in FA Premier League Soccer. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Buchheit, M.; Mendez-villanueva, A.; Simpson, B.M.; Bourdon, P.C. Repeated-sprint sequences during youth soccer matches. Int. J. Sports Med. 2010, 31, 709–716. [Google Scholar] [CrossRef]
- Meylan, C.; Malatesta, D. Effects of in-season plyometric training within soccer practice on explosive actions of young players. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2009, 23, 2605–2613. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; Gonzalez-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S. ‘Setting the Benchmark’ Part 2: Contextualising the Physical Demands of Teams in the FIFA World Cup Qatar 2022. Biol Sport 2024, 41, 271–278. [Google Scholar] [CrossRef]
- Ferrandis, J.; Coso, J.D.; Moreno-Perez, V.; Campo, R.L.; Resta, R.; Gonzalez-Rodenas, J. Changes in physical and technical match performance variables in football players promoted from the Spanish Second Division to the First Division. Biol. Sport. 2024, 41, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Ronnestad, B.R.; Hansen, E.A.; Raastad, T. High volume of endurance training impairs adaptations to 12 weeks of strength training in well-trained endurance athletes. Eur. J. Appl. Physiol. 2012, 112, 1457–1466. [Google Scholar] [CrossRef]
- Ronnestad, B.R.; Kvamme, N.H.; Sunde, A.; Raastad, T. Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2008, 22, 773–780. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Cronin, J.B.; Pinder, S.D.; Oliver, J.; Hughes, M. Effect of different training methods on running sprint times in male youth. Pediatr. Exerc. Sci. 2012, 24, 170–186. [Google Scholar]
- Aagaard, P.; Simonsen, E.B.; Trolle, M.; Bangsbo, J.; Klausen, K. Effects of different strength training regimes on moment and power generation during dynamic knee extensions. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 382–386. [Google Scholar]
- Bogdanis, G.C.; Papaspyrou, A.; Souglis, A.; Theos, A.; Sotiropoulos, A.; Maridaki, M. Effects of hypertrophy and a maximal strength training programme on speed, force and power of soccer players. In Science and Football VI Proceedings of the Sixth World Congress on Science and Football; Reilly, T., Korkusuz, F., Eds.; Routledge: New York, NY, USA, 2009; pp. 290–295. [Google Scholar]
- Bogdanis, G.C.; Papaspyrou, A.; Souglis, A.G.; Theos, A.; Sotiropoulos, A.; Maridaki, M. Effects of two different half-squat training programs on fatigue during repeated cycling sprints in soccer players. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2011, 25, 1849–1856. [Google Scholar] [CrossRef]
- Chelly, M.S.; Fathloun, M.; Cherif, N.; Ben Amar, M.; Tabka, Z.; Van Praagh, E. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2009, 23, 2241–2249. [Google Scholar] [CrossRef]
- Ingle, L.; Sleap, M.; Tolfrey, K. The effect of a complex training and detraining programme on selected strength and power variables in early pubertal boys. J. Sports Sci. 2006, 24, 987–997. [Google Scholar] [CrossRef]
- Kotzamanidis, C.; Chatzopoulos, D.; Michailidis, C.; Papaiakovou, G.; Patikas, D. The effect of a combined high-intensity strength and speed training program on the running and jumping ability of soccer players. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2005, 19, 369–375. [Google Scholar] [CrossRef]
- Sander, A.; Keiner, M.; Wirth, K.; Schmidtbleicher, D. Influence of a 2-year strength training programme on power performance in elite youth soccer players. Eur. J. Sport. Sci. 2013, 13, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Franco-Marquez, F.; Rodriguez-Rosell, D.; Gonzalez-Suarez, J.M.; Pareja-Blanco, F.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Effects of Combined Resistance Training and Plyometrics on Physical Performance in Young Soccer Players. Int. J. Sports Med. 2015, 36, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Badillo, J.J.; Pareja-Blanco, F.; Rodriguez-Rosell, D.; Abad-Herencia, J.L.; Del Ojo-Lopez, J.J.; Sanchez-Medina, L. Effects of velocity-based resistance training on young soccer players of different ages. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2015, 29, 1329–1338. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Franco-Marquez, F.; Mora-Custodio, R.; Gonzalez-Badillo, J.J. Effect of High-Speed Strength Training on Physical Performance in Young Soccer Players of Different Ages. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2017, 31, 2498–2508. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Franco-Marquez, F.; Pareja-Blanco, F.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Gonzalez-Suarez, J.M.; Gonzalez-Badillo, J.J. Effects of 6 Weeks Resistance Training Combined With Plyometric and Speed Exercises on Physical Performance of Pre-Peak-Height-Velocity Soccer Players. Int. J. Sports Physiol. Perform. 2016, 11, 240–246. [Google Scholar] [CrossRef]
- Rojas-Jaramillo, A.; Leon-Sanchez, G.; Calvo-Lluch, A.; Gonzalez-Badillo, J.J.; Rodriguez-Rosell, D. Comparison of 10% vs. 30% Velocity Loss during Squat Training with Low Loads on Strength and Sport-Specific Performance in Young Soccer Players. Sports 2024, 12, 43. [Google Scholar] [CrossRef]
- Torres-Torrelo, J.; Rodriguez-Rosell, D.; Mora-Custodio, R.; Pareja-Blanco, F.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Effects of Resistance Training and Combined Training Program on Repeated Sprint Ability in Futsal Players. Int. J. Sports Med. 2018, 39, 517–526. [Google Scholar] [CrossRef]
- Apriantono, T.; Nunome, H.; Ikegami, Y.; Sano, S. The effect of muscle fatigue on instep kicking kinetics and kinematics in association football. J. Sports Sci. 2006, 24, 951–960. [Google Scholar] [CrossRef]
- Draganidis, D.; Chatzinikolaou, A.; Jamurtas, A.Z.; Carlos Barbero, J.; Tsoukas, D.; Theodorou, A.S.; Margonis, K.; Michailidis, Y.; Avloniti, A.; Theodorou, A.; et al. The time-frame of acute resistance exercise effects on football skill performance: The impact of exercise intensity. J. Sports Sci. 2013, 31, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.P.; Tarpenning, K.M.; Marino, F.E. Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Med. 2005, 35, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Tan, B. Manipulating resistance training program variables to optimize maximum strength in men: A review. J. Strength Cond. Res. 1999, 13, 289–304. [Google Scholar]
- Hickmott, L.M.; Butcher, S.J.; Chilibeck, P.D. Conceptualizing a load and volume autoregulation integrated velocity model to minimize neuromuscular fatigue and maximize neuromuscular adaptations in resistance training. Eur. J. Appl. Physiol. 2025. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Francisco, A.C.; Kayes, A.V.; Speer, K.P.; Moorman, C.T., 3rd. An electromyographic analysis of sumo and conventional style deadlifts. Med. Sci. Sports Exerc. 2002, 34, 682–688. [Google Scholar] [CrossRef]
- Hartmann, H.; Wirth, K.; Keiner, M.; Mickel, C.; Sander, A.; Szilvas, E. Short-term Periodization Models: Effects on Strength and Speed-strength Performance. Sports Med. 2015, 45, 1373–1386. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Gonzalez-Badillo, J.J.; Perez, C.E.; Pallares, J.G. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int. J. Sports Med. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; Pallarés, J.G.; Pérez, C.E.; Morán-Navarro, R.; González-Badillo, J.J. Estimation of relative load from bar velocity in the full back squat exercise. Sports Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef]
- Benavides-Ubric, A.; Diez-Fernandez, D.M.; Rodriguez-Perez, M.A.; Ortega-Becerra, M.; Pareja-Blanco, F. Analysis of the Load-Velocity Relationship in Deadlift Exercise. J. Sports Sci. Med. 2020, 19, 452–459. [Google Scholar]
- Moran-Navarro, R.; Martinez-Cava, A.; Escribano-Penas, P.; Courel-Ibanez, J. Load-velocity relationship of the deadlift exercise. Eur. J. Sport. Sci. 2021, 21, 678–684. [Google Scholar] [CrossRef]
- Miras-Moreno, S.; Pérez-Castilla, A.; Weakley, J.; Rojas-Ruiz, F.J.; García-Ramos, A. Improving the Use of Lifting Velocity to Predict Repetitions to Failure: A Systematic Review. Int. J. Sports Physiol. Perform. 2025, 1, 1–10. [Google Scholar]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Badillo, J.J.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Rodriguez-Rosell, D. Velocity Loss as a Variable for Monitoring Resistance Exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Sanchez-Medina, L.; Mora-Custodio, R.; Gonzalez-Badillo, J.J. Relationship Between Velocity Loss and Repetitions in Reserve in the Bench Press and Back Squat Exercises. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2020, 34, 2537–2547. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Torres-Torrelo, J.; Ribas-Serna, J.; Gonzalez-Badillo, J.J. Role of the Effort Index in Predicting Neuromuscular Fatigue During Resistance Exercises. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2020. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Morales-Alamo, D.; Perez-Suarez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Pareja-Blanco, F.; Ravelo-Garcia, A.G.; Ribas-Serna, J.; Gonzalez-Badillo, J.J. Velocity-based resistance training: Impact of velocity loss in the set on neuromuscular performance and hormonal response. Appl. Physiol. Nutr. Metab. 2020, 45, 817–828. [Google Scholar] [CrossRef]
- Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Sanchez-Medina, L.; Ribas-Serna, J.; Gonzalez-Badillo, J.J. Effect of velocity loss during squat training on neuromuscular performance. Scand. J. Med. Sci. Sports 2021, 31, 1621–1635. [Google Scholar] [CrossRef]
- Seitz, L.B.; Reyes, A.; Tran, T.T.; Saez de Villarreal, E.; Haff, G.G. Increases in lower-body strength transfer positively to sprint performance: A systematic review with meta-analysis. Sports Med. 2014, 44, 1693–1702. [Google Scholar] [CrossRef]
- Kubo, K.; Ikebukuro, T.; Yata, H. Effects of squat training with different depths on lower limb muscle volumes. Eur. J. Appl. Physiol. 2019, 119, 1933–1942. [Google Scholar] [CrossRef]
- Chelly, M.S.; Ghenem, M.A.; Abid, K.; Hermassi, S.; Tabka, Z.; Shephard, R.J. Effects of in-season short-term plyometric training program on leg power, jump- and sprint performance of soccer players. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2010, 24, 2670–2676. [Google Scholar] [CrossRef] [PubMed]
- Fatouros, I.G.; Jamurtas, A.Z.; Leontsini, D.; Taxildaris, K.; Aggelousis, N.; Kostopoulos, N.; Buckenmeyer, P. Evaluation of plyometric exercise training, weight training, and their combination on vertical jumping performance and leg strength. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2000, 14, 470–476. [Google Scholar]
- Faude, O.; Roth, R.; Di Giovine, D.; Zahner, L.; Donath, L. Combined strength and power training in high-level amateur football during the competitive season: A randomised-controlled trial. J. Sports Sci. 2013, 31, 1460–1467. [Google Scholar] [CrossRef]
- de Villarreal, E.S.; Kellis, E.; Kraemer, W.J.; Izquierdo, M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2009, 23, 495–506. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Moraes, J.E.; Kitamura, K.; Cal Abad, C.C.; Kobal, R.; Nakamura, F.Y. Jump-Squat and Half-Squat Exercises: Selective Influences on Speed-Power Performance of Elite Rugby Sevens Players. PLoS ONE 2017, 12, e0170627. [Google Scholar] [CrossRef] [PubMed]
- Ferley, D.D.; Scholten, S.; Vukovich, M.D. Combined Sprint Interval, Plyometric, and Strength Training in Adolescent Soccer Players: Effects on Measures of Speed, Strength, Power, Change of Direction, and Anaerobic Capacity. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2020, 34, 957–968. [Google Scholar] [CrossRef]
- Oliver, J.L.; Ramachandran, A.K.; Singh, U.; Ramirez-Campillo, R.; Lloyd, R.S. The Effects of Strength, Plyometric and Combined Training on Strength, Power and Speed Characteristics in High-Level, Highly Trained Male Youth Soccer Players: A Systematic Review and Meta-Analysis. Sports Med. 2024, 54, 623–643. [Google Scholar] [CrossRef] [PubMed]
- Berton, R.; Lixandrao, M.E.; Pinto, E.S.C.M.; Tricoli, V. Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance: A meta-analysis. J. Sports Sci. 2018, 36, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Hackett, D.; Davies, T.; Soomro, N.; Halaki, M. Olympic weightlifting training improves vertical jump height in sportspeople: A systematic review with meta-analysis. Br. J. Sports Med. 2016, 50, 865–872. [Google Scholar] [CrossRef]
- de Hoyo, M.; Gonzalo-Skok, O.; Sanudo, B.; Carrascal, C.; Plaza-Armas, J.R.; Camacho-Candil, F.; Otero-Esquina, C. Comparative Effects of In-Season Full-Back Squat, Resisted Sprint Training, and Plyometric Training on Explosive Performance in U-19 Elite Soccer Players. J. Strength Cond. Res. Natl. Strength. Cond. Assoc. 2016, 30, 368–377. [Google Scholar] [CrossRef]
- Gil, S.; Barroso, R.; Crivoi do Carmo, E.; Loturco, I.; Kobal, R.; Tricoli, V.; Ugrinowitsch, C.; Roschel, H. Effects of resisted sprint training on sprinting ability and change of direction speed in professional soccer players. J. Sports Sci. 2018, 36, 1923–1929. [Google Scholar] [CrossRef] [PubMed]
- Grazioli, R.; Loturco, I.; Veeck, F.; Setuain, I.; Zandavalli, L.A.; Inacio, M.; Pinto, R.S.; Cadore, E.L. Speed-Related Abilities Are Similarly Improved After Sled Training Under Different Magnitudes of Velocity Loss in Highly Trained Soccer Players. Int. J. Sports Physiol. Perform. 2023, 18, 420–427. [Google Scholar] [CrossRef]
- Petersen, J.; Thorborg, K.; Nielsen, M.B.; Budtz-Jorgensen, E.; Holmich, P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: A cluster-randomized controlled trial. Am. J. Sports Med. 2011, 39, 2296–2303. [Google Scholar] [CrossRef] [PubMed]
- Haroy, J.; Clarsen, B.; Wiger, E.G.; Oyen, M.G.; Serner, A.; Thorborg, K.; Holmich, P.; Andersen, T.E.; Bahr, R. The Adductor Strengthening Programme prevents groin problems among male football players: A cluster-randomised controlled trial. Br. J. Sports Med. 2019, 53, 150–157. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.; Sharma, M. Effect of Mini-Band Post Activation on Speed, Countermovement Jump, Peak Torque and Agility. J. Soc. Indian Physiother. 2023, 7, 33–37. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Cardozo, L.A.; Velez-Gutierrez, J.M.; Arevalo-Rodriguez, A.; Vargas-Molina, S.; Stout, J.R.; Kreider, R.B.; Petro, J.L. Exercise Selection and Common Injuries in Fitness Centers: A Systematic Integrative Review and Practical Recommendations. Int. J. Environ. Res. Public Health 2022, 19, 12710. [Google Scholar] [CrossRef]
- Gonzalez-Badillo, J.J.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Gorostiaga, E.M.; Pareja-Blanco, F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur. J. Sport. Sci. 2014, 14, 772–781. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Gorostiaga, E.M.; Gonzalez-Badillo, J.J. Effect of movement velocity during resistance training on neuromuscular performance. Int. J. Sports Med. 2014, 35, 916–924. [Google Scholar] [CrossRef]
- Lauersen, J.B.; Bertelsen, D.M.; Andersen, L.B. The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2014, 48, 871–877. [Google Scholar] [CrossRef]
- Hernandez-Belmonte, A.; Martinez-Cava, A.; Vetrovsky, T.; Steffl, M.; Courel-Ibanez, J.; Pallares, J.G. Partial range of motion and muscle hypertrophy: Not all ROMs lead to Rome-Response. Scand. J. Med. Sci. Sports 2022, 32, 634–635. [Google Scholar] [CrossRef]
- Pallares, J.G.; Hernandez-Belmonte, A.; Martinez-Cava, A.; Vetrovsky, T.; Steffl, M.; Courel-Ibanez, J. Effects of range of motion on resistance training adaptations: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2021, 31, 1866–1881. [Google Scholar] [CrossRef] [PubMed]
League/Competition Level (Sex) | Total Distance (m) |
---|---|
International Swedish/Danish (F) | 10,000 |
Elite Swedish/Danish (F) | 9700 |
Brazilian first division (M) | 10,012 |
French Professional | 11,000 |
Professional Australians (M) | 10,100 |
Profession European Leagues (M) | 11,393 |
Champions League matches (M) | 11,010 |
Portuguese first division (M) | 12,793 |
Elite Norwegian Juniors (M) | 10,335 |
International Australian (F) | 9140 |
Elite English (F) | 12,400 |
Elite Danish (F) | 10,300 |
Italian junior professionals (M) | 9890 |
Japanese professionals (M) | 10,460 |
Italian professionals (M) | 10,860 |
Elite Danish (M) | 10,330 |
English professionals (M) | 10,659 |
European professionals (M) | 10,864 |
Danish Premier League (M) | 10,800 |
Swedish Premier League (M) | 10,150 |
South American professionals (M) | 8638 |
English professionals (M) | 10,104 |
International English (F) | 11,979 |
English professionals (M) | 11,264 |
English Professionals (M) | 10,274 |
U/19 Professionals (M) | 9741 |
Champions League matches (M) | 10,461 |
Mean (SD) | 10,543 (904) |
Maximum | 12,793 |
Minimum | 8638 |
Load (% 1-RM) | Bench Press (m·s−1) | Pull ups (m·s−1) | Back Squat (m·s−1) | Bench Rowing (m·s−1) | Deadlift (m·s−1) |
---|---|---|---|---|---|
40 | 1.13 | - | 1.28 | 1.36 | 1.09 |
45 | 1.04 | - | 1.21 | 1.28 | 1.02 |
50 | 0.95 | 1.00 | 1.14 | 1.21 | 0.96 |
55 | 0.87 | 0.92 | 1.07 | 1.13 | 0.90 |
60 | 0.78 | 0.85 | 1.00 | 1.06 | 0.83 |
65 | 0.70 | 0.77 | 0.92 | 0.99 | 0.77 |
70 | 0.62 | 0.69 | 0.84 | 0.92 | 0.71 |
75 | 0.55 | 0.61 | 0.76 | 0.85 | 0.64 |
80 | 0.47 | 0.53 | 0.68 | 0.78 | 0.58 |
85 | 0.39 | 0.45 | 0.59 | 0.72 | 0.52 |
90 | 0.32 | 0.37 | 0.51 | 0.65 | 0.45 |
95 | 0.25 | 0.30 | 0.42 | 0.59 | 0.39 |
100 | 0.18 | 0.22 | 0.32 | 0.53 | 0.33 |
Effort Character (EC) | Low | Medium | High | Maximal |
---|---|---|---|---|
Reps (MaxRep) | 6(18) | 6(12) | 6(10) | 6(6) |
%VL | 5–15% | 20–25% | 30–40% | >50% |
Relative LOAD | Repetitions Completed at Different %VL in the Set | |||||
---|---|---|---|---|---|---|
% 1-RM | MPV (m·s−1) | Reps (Average) | 10% | 15% | 20% | 30% |
50 | 1.14 | 23 | 5 | 7 | 8 | 11 |
55 | 1.07 | 19 | 5 | 6 | 7 | 8 |
60 | 1.00 | 16 | 4 | 4–5 | 6 | 7 |
65 | 0.92 | 13 | 3–4 | 4–5 | 5–6 | 6–7 |
70 | 0.84 | 10 | 3 | 3–4 | 4 | 5 |
75 | 0.76 | 8 | 2–3 | 2–3 | 3–4 | 4–5 |
80 | 0.68 | 6 | 2 | 2–3 | 3 | 4 |
85 | 0.59 | 5 | 1–2 | 2 | 2–3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas Jaramillo, A.; Kreider, R.B.; Petro, J.L.; Bonilla, D.A.; Gonzalez-Badillo, J.J.; Rodriguez-Rosell, D. Velocity-Based Training in Soccer: A Brief Narrative Review with Practical Recommendations. J. Funct. Morphol. Kinesiol. 2025, 10, 106. https://doi.org/10.3390/jfmk10020106
Rojas Jaramillo A, Kreider RB, Petro JL, Bonilla DA, Gonzalez-Badillo JJ, Rodriguez-Rosell D. Velocity-Based Training in Soccer: A Brief Narrative Review with Practical Recommendations. Journal of Functional Morphology and Kinesiology. 2025; 10(2):106. https://doi.org/10.3390/jfmk10020106
Chicago/Turabian StyleRojas Jaramillo, Andrés, Richard B. Kreider, Jorge L. Petro, Diego A. Bonilla, Juan José Gonzalez-Badillo, and David Rodriguez-Rosell. 2025. "Velocity-Based Training in Soccer: A Brief Narrative Review with Practical Recommendations" Journal of Functional Morphology and Kinesiology 10, no. 2: 106. https://doi.org/10.3390/jfmk10020106
APA StyleRojas Jaramillo, A., Kreider, R. B., Petro, J. L., Bonilla, D. A., Gonzalez-Badillo, J. J., & Rodriguez-Rosell, D. (2025). Velocity-Based Training in Soccer: A Brief Narrative Review with Practical Recommendations. Journal of Functional Morphology and Kinesiology, 10(2), 106. https://doi.org/10.3390/jfmk10020106