Effects of a Low-Volume Kettlebell Strength Program on Vertical Jump and Isometric Strength in Dancers: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethics
2.3. Procedure
2.3.1. Body Composition Measurement
2.3.2. Dynamometry
- Isometric Strength of Hip Flexors (ISHF): In a supine position with the leg bent at 90° of hip flexion, the device was placed 5 cm above the proximal edge of the patella. The participants were instructed to apply pressure against the device for 5 s against maximum resistance [22].
- Isometric Strength of Hip Extensors (ISHE): In a prone position with the leg bent at 90°, the device was placed 5 cm above the knee joint line on the back of the thigh. The participants applied pressure against the device for 5 s against maximum resistance [22].
- Isometric Strength of Knee Flexors (ISKF): In a prone position with the knee straight, the device was placed on the posterior region of the heel. The participants applied pressure against the device for 5 s against maximum resistance [23].
- Isometric Strength of Knee Extensors (ISKE): Seated with the legs perpendicular to the floor and knees bent at 90°, the device was placed on the anterior leg 5 cm above the perpendicular line with the ankle. The participants applied pressure against the device for 5 s against maximum resistance [24].
- Isometric Strength of External Hip Rotators (ISHER): In a prone position with the knee bent at 90°, the device was placed 5 cm above the tibial malleolus, and the participants applied maximum isometric contraction against the device for 5 s [22].
2.3.3. Vertical Jump Capacity
2.4. Intervention Protocol
2.5. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvo, Á.; León-Prados, J.A. Historia de La Danza Contemporánea En España [History of Contemporary Dance in Spain]. Arte Mov. 2011, 4, 17–30. [Google Scholar]
- Delgado, E.A. Del Origen de La Danza a La Hegemonía Del Ballet [From the Origins of Dance to the Hegemony of Ballet]. In Corporalidad Danzante y Cultura Expresiva; Universidad de Guadalajara: Guadalajara, Mexico, 2022; pp. 53–66. [Google Scholar]
- Fernández Truan, J.C. Orígenes Del Break Dance Como Deporte Olímpico [Origins of Break Dance as an Olympic Sport]. Retos 2023, 51, 470–479. [Google Scholar] [CrossRef]
- Gómez Cimiano, J. El Homo Ludens de Johan Huizinga [Johan Huizinga’s Homo Ludens]. Retos 2003, 4, 32–35. [Google Scholar] [CrossRef]
- Vieiro-Pérez, A.; Romero-Arenas, S. Comparative Study of the Force-Velocity Profile with Different Starting Positions of the Vertical Jump in Dance. Cult. Cienc. Deporte 2023, 18, 35–50. [Google Scholar] [CrossRef]
- Gómez-Lozano, S.; Vargas-Macías, A. El En Dehors En La Danza Clásica: Mecanismos de Producción de Lesiones [The En Dehors in Classical Dance: Mechanisms of Injury Production]. Rev. Cent. Investig. Flamenco Telethusa 2010, 3, 4–8. [Google Scholar]
- Ujvári, M.; Szabó, B. Developing Core Strength In Classical Ballet Dancers Through Kettlebell Training. Tánc Nev. 2023, 4, 15–26. [Google Scholar] [CrossRef]
- Rafferty, S. Considerations for Integrating Fitness into Dance Training. J. Danc. Med. Sci. 2010, 14, 45–49. [Google Scholar] [CrossRef]
- Wyon, M. Preparing to Perform: Periodization and Dance. J. Dance Med. Sci. 2010, 14, 67–72. [Google Scholar] [CrossRef]
- Bemben, M.G.; Murphy, R.E. Age Related Neural Adaptation Following Short Term Resistance Training in Women. J. Sports Med. Phys. Fitness 2001, 41, 291–299. [Google Scholar]
- Stracciolini, A.; Hanson, E.; Kiefer, A.W.; Myer, G.D.; Faigenbaum, A.D. Resistance Training for Pediatric Female Dancers. J. Danc. Med. Sci. 2016, 20, 64–71. [Google Scholar] [CrossRef]
- Jeffri, J.; Throsby, D. Life after Dance: Career Transition of Professional Dancers. Int. J. Arts Manag. 2006, 8, 54–63. [Google Scholar]
- Allen, N.; Wyon, M. Dance Medicine: Artist or Athlete? Sport. Ex. Med. 2008, 35, 6–9. [Google Scholar]
- Ávila-Carvalho, L.; Conceição, F.; Escobar-Álvarez, J.A.; Gondra, B.; Leite, I.; Rama, L. The Effect of 16 Weeks of Lower-Limb Strength Training in Jumping Performance of Ballet Dancers. Front. Physiol. 2022, 12, 774327. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Hongfeng, H.; Ying, Z. The Effects of Eccentric Training on Hamstring Flexibility and Strength in Young Dance Students. Sci. Rep. 2024, 14, 3692. [Google Scholar] [CrossRef]
- Kim, G.; Kim, H.; Kim, W.K.; Kim, J. Effect of Stretching-Based Rehabilitation on Pain, Flexibility and Muscle Strength in Dancers with Hamstring Injury: A Single-Blind, Prospective, Randomized Clinical Trial. J. Sports Med. Phys. Fit. 2018, 58, 1287–1295. [Google Scholar] [CrossRef]
- Velez, M. El Entrenamiento de Fuerza Para La Mejora Del Salto [Strength Training for Jump Improvement]. Apunt. Sports Med. 1992, 112, 139–156. [Google Scholar]
- Jiménez-Reyes, P.; Samozino, P.; Cuadrado-Peñafiel, V.; Conceição, F.; González-Badillo, J.J.; Morin, J.-B. Effect of Countermovement on Power–Force–Velocity Profile. Eur. J. Appl. Physiol. 2014, 114, 2281–2288. [Google Scholar] [CrossRef]
- Grigoletto, D.; Marcolin, G.; Borgatti, E.; Zonin, F.; Steele, J.; Gentil, P.; Galvão, L.; Paoli, A. Kettlebell Training for Female Ballet Dancers: Effects on Lower Limb Power and Body Balance. J. Hum. Kinet. 2020, 74, 15–22. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1689–1697. [Google Scholar] [CrossRef]
- Lee, H.; Kim, I.G.; Sung, C.; Kim, J.S. El Efecto Del Entrenamiento de Fuerza de 12 Semanas Sobre La Fuerza Muscular y La Composición Corporal En Mujeres Jóvenes No Entrenadas: Implicaciones de La Frecuencia Del Ejercicio [The Effect of 12-Week Strength Training on Muscular Strength and Body Composition in Untrained Young Women: Implications of Exercise Frequency]. PubliCE 2018, 20, 88–95. [Google Scholar]
- Thorborg, K.; Petersen, J.; Magnusson, S.P.; Hölmich, P. Clinical Assessment of Hip Strength Using a Hand-Held Dynamometer Is Reliable. Scand. J. Med. Sci. Sports 2010, 20, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Kelln, B.M.; McKeon, P.O.; Gontkof, L.M.; Hertel, J. Hand-Held Dynamometry: Reliability of Lower Extremity Muscle Testing in Healthy, Physically Active, Young Adults. J. Sport. Rehabil. 2008, 17, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Maffiuletti, N.A. Assessment of Hip and Knee Muscle Function in Orthopaedic Practice and Research. J. Bone Jt. Surg. Am. Vol. 2010, 92, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Villa, J.G.; García-López, J. Tests de Salto Vertical (I): Aspectos Funcionales [Vertical Jump Tests (I): Functional Aspects]. Rend. Deport. Com. 2003, 6, 1–14. [Google Scholar]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The Validity and Reliability of an IPhone App for Measuring Vertical Jump Performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef]
- Tsatsouline, P. Kettlebell Simple & Sinister; Blue Vision, s.r.o.: Praga, Czech Republic, 2016. [Google Scholar]
- Jay, K.; Frisch, D.; Hansen, K.; Zebis, M.K.; Andersen, C.H.; Mortensen, O.S.; Andersen, L.L. Kettlebell Training for Musculoskeletal and Cardiovascular Health: A Randomized Controlled Trial. Scand. J. Work. Environ. Health 2011, 37, 196–203. [Google Scholar] [CrossRef]
- Araya, J.I. Percepción de Esfuerzo Físico Mediante Uso de Escala de Borg [Perception of Physical Effort Using the Borg Scale]. Salud Ocup. Inst. Salud Pública Chile 2019, 2–10. [Google Scholar]
- Tsatsouline, P. Kettlebell: Simple & Sinister; Strong First Inc.: Reno, NV, USA, 2013. [Google Scholar]
- Ferragut, C.; Cortadellas, J.; Arteaga, R.; Calbet, J. Predicción de La Altura de Salto Vertical. Importancia Del Impulso Mecánico y de La Masa Muscular de Las Extremidades Inferiores [Prediction of Vertical Jump Height: The Importance of Mechanical Impulse and Lower Limb Muscle Mass]. Motricidad. Eur. J. Hum. Mov. 2003, 10, 7–22. [Google Scholar]
- Voigt, M.; Simonsen, E.B.; Dyhre-Poulsen, P.; Klausen, K. Mechanical and Muscular Factors Influencing the Performance in Maximal Vertical Jumping after Different Prestretch Loads. J. Biomech. 1995, 28, 293–307. [Google Scholar] [CrossRef]
- Refalo, M.C.; Hamilton, D.L.; Paval, D.R.; Gallagher, I.J.; Feros, S.A.; Fyfe, J.J. Influence of Resistance Training Load on Measures of Skeletal Muscle Hypertrophy and Improvements in Maximal Strength and Neuromuscular Task Performance: A Systematic Review and Meta-Analysis. J. Sports Sci. 2021, 39, 1723–1745. [Google Scholar] [CrossRef]
- Jenkins, N.D.M.; Miramonti, A.A.; Hill, E.C.; Smith, C.M.; Cochrane-Snyman, K.C.; Housh, T.J.; Cramer, J.T. Greater Neural Adaptations Following High- vs. Low-Load Resistance Training. Front. Physiol. 2017, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Van Roie, E.; Bautmans, I.; Boonen, S.; Coudyzer, W.; Kennis, E.; Delecluse, C. Impact of External Resistance and Maximal Effort on Force-Velocity Characteristics of the Knee Extensors During Strengthening Exercise. J. Strength Cond. Res. 2013, 27, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Popov, D.V.; Swirkun, D.V.; Netreba, A.I.; Tarasova, O.S.; Prostova, A.B.; Larina, I.M.; Borovik, A.S.; Vinogradova, O.L. Hormonal Adaptation Determines the Increase in Muscle Mass and Strength during Low-Intensity Strength Training without Relaxation. Hum. Physiol. 2006, 32, 609–614. [Google Scholar] [CrossRef]
- Hermosilla-Palma, F.; Loro-Ferrer, J.F.; Merino-Muñoz, P.; Gómez-Álvarez, N.; Cerda-Kohler, H.; Portes-Junior, M.; Aedo-Muñoz, E. Prediction of Physical Performance in Young Soccer Players through Anthropometric Characteristics, Body Composition, and Somatic Maturation States. Retos Nuevas Perspect. Educ. Física Deporte Recreación 2024, 61, 1199–1206. [Google Scholar]
Pretest (n = 9) | Posttest (n = 9) | ||||||||
---|---|---|---|---|---|---|---|---|---|
X (SD) | ICC (95%) | Mean CV (%) | X (SD) | ICC (95%) | Mean CV (%) | p-Value | |||
Weight (kg) | 62.12 (7.38) | 62.71 (7.37) | 0.257 | ||||||
Body Mass Index (kg/m2) | 22.29 (2.62) | 22.73 (2.51) | 0.148 | ||||||
Body Fat % | 22.39 (6.46) | 21.48 (7.94) | 0.197 | ||||||
Muscle Mass (kg) | 45.69 (6.16) | 46.66 (6.40) | 0.053 | ||||||
Isometric Strength | Hip Flexors | (R) | 171.36 (44.16) | 0.901 | 8.7 | 178.98 (26.65) | 0.953 | 2.6 | 0.541 |
(L) | 169.12 (38.10) | 0.927 | 4.8 | 185.92 (27.26) | 0.882 | 4.6 | 0.073 | ||
Hip Extensors | (R) | 199.22 (53.17) | 0.935 | 5.8 | 232.02 (86.88) | 0.979 | 4.1 | 0.125 | |
(L) | 196.49 (60.46) | 0.896 | 7.8 | 209.42 (70.03) | 0.963 | 5.2 | 0.518 | ||
Knee Flexors | (R) | 204.32 (48.94) | 0.886 | 5.4 | 211.86 (40.09) | 0.894 | 3.6 | 0.186 | |
(L) | 198.73 (50.52) | 0.917 | 6.6 | 210.01 (38.83) | 0.975 | 2.4 | 0.444 | ||
Knee Extensors | (R) | 247.46 (66.52) | 0.938 | 6.0 | 249.80 (53.26) | 0.934 | 4.9 | 0.902 | |
(L) | 243.41 (43.70) | 0.869 | 5.6 | 258.40 (44.43) | 0.947 | 3.8 | 0.435 | ||
External Hip Rotators | (R) | 117.24 (19.67) | 0.881 | 4.9 | 122.31 (25.85) | 0.955 | 3.0 | 0.266 | |
(L) | 132.86 (31.46) | 0.902 | 5.1 | 122.81 (25.89) | 0.934 | 4.1 | 0.288 | ||
Parallel Position Jump (cm) | 25.31 (5.41) | 0.948 | 3.7 | 29.91 (4.93) | 0.915 | 3.5 | 0.003 * | ||
Dehors Position Jump (cm) | 21.60 (4.64) | 0.890 | 4.9 | 26.54 (4.48) | 0.835 | 5.9 | 0.000 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taboada-Iglesias, Y.; Filgueira-Loureiro, I.; Reguera-López-de-la-Osa, X.; Gutiérrez-Sánchez, Á. Effects of a Low-Volume Kettlebell Strength Program on Vertical Jump and Isometric Strength in Dancers: A Pilot Study. J. Funct. Morphol. Kinesiol. 2025, 10, 130. https://doi.org/10.3390/jfmk10020130
Taboada-Iglesias Y, Filgueira-Loureiro I, Reguera-López-de-la-Osa X, Gutiérrez-Sánchez Á. Effects of a Low-Volume Kettlebell Strength Program on Vertical Jump and Isometric Strength in Dancers: A Pilot Study. Journal of Functional Morphology and Kinesiology. 2025; 10(2):130. https://doi.org/10.3390/jfmk10020130
Chicago/Turabian StyleTaboada-Iglesias, Yaiza, Iria Filgueira-Loureiro, Xoana Reguera-López-de-la-Osa, and Águeda Gutiérrez-Sánchez. 2025. "Effects of a Low-Volume Kettlebell Strength Program on Vertical Jump and Isometric Strength in Dancers: A Pilot Study" Journal of Functional Morphology and Kinesiology 10, no. 2: 130. https://doi.org/10.3390/jfmk10020130
APA StyleTaboada-Iglesias, Y., Filgueira-Loureiro, I., Reguera-López-de-la-Osa, X., & Gutiérrez-Sánchez, Á. (2025). Effects of a Low-Volume Kettlebell Strength Program on Vertical Jump and Isometric Strength in Dancers: A Pilot Study. Journal of Functional Morphology and Kinesiology, 10(2), 130. https://doi.org/10.3390/jfmk10020130