Implementing Eccentric Resistance Training—Part 2: Practical Recommendations
Abstract
:1. Introduction
2. Previous Eccentric Training Recommendations
3. Updated Eccentric Training Recommendations
3.1. Tempo Eccentric Training
3.2. Flywheel Inertial Training
3.3. Accentuated Eccentric Loading
3.4. Plyometric Training
4. Additional Programming Considerations
4.1. Training Experience
4.2. Phase Specificity
4.3. Integration with Other Training Methods
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing eccentric resistance training—Part 1: A brief review of existing methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef]
- Moore, C.A.; Schilling, B.K. Theory and application of augmented eccentric loading. Strength Cond. J. 2005, 27, 20–27. [Google Scholar] [CrossRef]
- Mike, J.; Kerksick, C.M.; Kravitz, L. How to incorporate eccentric training into a resistance training program. Strength Cond. J. 2015, 37, 5–17. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M.R. Chronic adaptations to eccentric training: A systematic review. Sports Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M.R. Eccentric exercise: Physiological characteristics and acute responses. Sports Med. 2017, 47, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Triplett, N.T. Program design for resistance training. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Harden, M.; Wolf, A.; Haff, G.G.; Hicks, K.M.; Howatson, G. Repeatability and specificity of eccentric force output and the implications for eccentric training load prescription. J. Strength Cond. Res. 2019, 33, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, T.; Nimphius, S.; Hart, N.H.; Specos, C.; Sheppard, J.M.; Newton, R.U. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2014, 28, 2415–2423. [Google Scholar] [CrossRef]
- Martino, F.; Perestrelo, A.R.; Vinarský, V.; Pagliari, S.; Forte, G. Cellular mechanotransduction: From tension to function. Front. Physiol. 2018, 9, 21. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A.; Dooly, C.; Feigenbaum, M.S.; Fleck, S.J.; Franklin, B.; Fry, A.C.; Hoffman, J.R.; et al. American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2002, 34, 364–380. [Google Scholar]
- Wilk, M.; Golas, A.; Krzysztofik, M.; Nawrocka, M.; Zajac, A. The effects of eccentric cadence on power and velocity of the bar during the concentric phase of the bench press movement. J. Sports Sci. Med. 2019, 18, 191–197. [Google Scholar]
- Martins-Costa, H.C.; Diniz, R.C.R.; Lima, F.V.; Machado, S.C.; de Almeida, R.S.V.; de Andrade, A.G.P.; Chagas, M.H. Longer repetition duration increases muscle activation and blood lactate response in matched resistance training protocols. Motriz Revista de Educação Física 2016, 22, 35–41. [Google Scholar] [CrossRef]
- Diniz, R.C.; Martins-Costa, H.C.; Machado, S.C.; Lima, F.V.; Chagas, M.H. Repetition duration influences ratings of perceived exertion. Percept. Mot. Ski. 2014, 118, 261E–273E. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.T.; Docherty, D.; Behm, D. The effects of varying time under tension and volume load on acute neuromuscular responses. Eur. J. Appl. Physiol. 2006, 98, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.E.A.; Motoyama, Y.L.; Esteves, G.J.; Quinelato, W.C.; Botter, L.; Tanaka, K.H.; Azevedo, P. Resistance training with slow speed of movement is better for hypertrophy and muscle strength gains than fast speed of movement. Int. J. Appl. Exerc. Physiol. 2016, 5, 37–43. [Google Scholar]
- Minetti, A.E. On the mechanical power of joint extensions as affected by the change in muscle force (or cross-sectional area), ceteris paribus. Eur. J. Appl. Physiol. 2002, 86, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Zamparo, P.; Minetti, A.; di Prampero, P. Interplay among the changes of muscle strength, cross-sectional area and maximal explosive power: Theory and facts. Eur. J. Appl. Physiol. 2002, 88, 193–202. [Google Scholar] [PubMed]
- Stone, M.H.; O’Bryant, H.; Garhammer, J.; McMillan, J.; Rozenek, R. A theoretical model of strength training. Strength Cond. J. 1982, 4, 36–39. [Google Scholar] [CrossRef]
- Nóbrega, S.R.; Barroso, R.; Ugrinowitsch, C.; da Costa, J.L.F.; Alvarez, I.F.; Barcelos, C.; Libardi, C.A. Self-selected vs. Fixed repetition duration: Effects on number of repetitions and muscle activation in resistance-trained men. J. Strength Cond. Res. 2018, 32, 2419–2424. [Google Scholar]
- Pryor, R.R.; Sforzo, G.A.; King, D.L. Optimizing power output by varying repetition tempo. J. Strength Cond. Res. 2011, 25, 3029–3034. [Google Scholar] [CrossRef]
- Wilk, M.; Golas, A.; Stastny, P.; Nawrocka, M.; Krzysztofik, M.; Zajac, A. Does tempo of resistance exercise impact training volume? J. Hum. Kinet. 2018, 62, 241–250. [Google Scholar] [CrossRef]
- Lacerda, L.T.; Martins-Costa, H.C.; Diniz, R.C.; Lima, F.V.; Andrade, A.G.; Tourino, F.D.; Bemben, M.G.; Chagas, M.H. Variations in repetition duration and repetition numbers influence muscular activation and blood lactate response in protocols equalized by time under tension. J. Strength Cond. Res. 2016, 30, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Keeler, L.K.; Finkelstein, L.H.; Miller, W.; Fernhall, B. Early-phase adaptations of traditional-speed vs. Superslow resistance training on strength and aerobic capacity in sedentary individuals. J. Strength Cond. Res. 2001, 15, 309–314. [Google Scholar] [PubMed]
- Munn, J.; Herbert, R.D.; Hancock, M.J.; Gandevia, S.C. Resistance training for strength: Effect of number of sets and contraction speed. Med. Sci. Sports Exerc. 2005, 37, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Stasinaki, A.-N.; Zaras, N.; Methenitis, S.; Bogdanis, G.; Terzis, G. Rate of force development and muscle architecture after fast and slow velocity eccentric training. Sports 2019, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; García-López, D.; Fernandez-Gonzalo, R.; Moreira, O.C.; González-Gallego, J.; de Paz, J.A. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. J. Sci. Med. Sport 2017, 20, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, F.J.N.; de Villarreal, E.S.S. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J. Strength Cond. Res. 2017, 31, 3177–3186. [Google Scholar] [CrossRef]
- Vicens-Bordas, J.; Esteve, E.; Fort-Vanmeerhaeghe, A.; Bandholm, T.; Thorborg, K. Is inertial flywheel resistance training superior to gravity-dependent resistance training in improving muscle strength? A systematic review with meta-analyses. J. Sci. Med. Sport 2018, 21, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of flywheel training on strength-related variables: A meta-analysis. Sports Med. Open 2018, 4, 55. [Google Scholar] [CrossRef]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical applications of iso-inertial, eccentric-overload (yoyo™) resistance exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef]
- Fernandez-Gonzalo, R.; Lundberg, T.R.; Alvarez-Alvarez, L.; de Paz, J.A. Muscle damage responses and adaptations to eccentric-overload resistance exercise in men and women. Eur. J. Appl. Physiol. 2014, 114, 1075–1084. [Google Scholar] [CrossRef]
- Lundberg, T.R.; Fernandez-Gonzalo, R.; Tesch, P.A. Exercise-induced ampk activation does not interfere with muscle hypertrophy in response to resistance training in men. J. Appl. Physiol. 2014, 116, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, T.R.; Fernandez-Gonzalo, R.; Gustafsson, T.; Tesch, P.A. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J. Appl. Physiol. 2012, 114, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; García-López, D.; de Paz, J.A. Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball players. J. Hum. Kinet. 2017, 60, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Norrbrand, L.; Pozzo, M.; Tesch, P.A. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur. J. Appl. Physiol. 2010, 110, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Norrbrand, L.; Fluckey, J.D.; Pozzo, M.; Tesch, P.A. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur. J. Appl. Physiol. 2008, 102, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Núñez, F.J.; Santalla, A.; Carrasquila, I.; Asian, J.A.; Reina, J.I.; Suarez-Arrones, L.J. The effects of unilateral and bilateral eccentric overload training on hypertrophy, muscle power and cod performance, and its determinants, in team sport players. PLoS ONE 2018, 13, e0193841. [Google Scholar] [CrossRef]
- Owerkowicz, T.; Cotter, J.A.; Haddad, F.; Yu, A.M.; Camilon, M.L.; Hoang, T.N.; Jimenez, D.J.; Kreitenberg, A.; Tesch, P.A.; Caiozzo, V.J. Exercise responses to gravity-independent flywheel aerobic and resistance training. Aerosp. Med. Hum. Perform. 2016, 87, 93–101. [Google Scholar] [CrossRef]
- Seynnes, O.R.; de Boer, M.; Narici, M.V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. 2007, 102, 368–373. [Google Scholar] [CrossRef]
- Tesch, P.A.; Ekberg, A.; Lindquist, D.M.; Trieschmann, J.T. Muscle hypertrophy following 5-week resistance training using a non-gravity-dependent exercise system. Acta Physiol. Scand. 2004, 180, 89–98. [Google Scholar] [CrossRef]
- Lundberg, T.R.; García-Gutiérrez, M.T.; Mandic, M.; Lilja, M.; Fernandez-Gonzalo, R. Regional and muscle-specific adaptations in knee extensor hypertrophy using flywheel vs. Conventional weight-stack resistance exercise. Appl. Physiol. Nutr. Metab. 2019, 44, 827–833. [Google Scholar] [CrossRef]
- Carroll, K.M.; Wagle, J.P.; Sato, K.; Taber, C.B.; Yoshida, N.; Bingham, G.E.; Stone, M.H. Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomech. 2019, 18, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Aranda, L.M.; Fernandez-Gonzalo, R. Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. J. Strength Cond. Res. 2017, 31, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of different inertial loads on basic training variables during the flywheel squat exercise. Int. J. Sports Physiol. Perform. 2017, 13, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Askling, C.; Karlsson, J.; Thorstensson, A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand. J. Med. Sci. Sports 2003, 13, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Berg, H.E.; Tesch, P.A. Force and power characteristics of a resistive exercise device for use in space. Acta Astronaut. 1998, 42, 219–230. [Google Scholar] [CrossRef]
- de Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 46–52. [Google Scholar] [CrossRef]
- Naczk, M.; Naczk, A.; Brzenczek-Owczarzak, W.; Arlet, J.; Adach, Z. Impact of inertial training on strength and power performance in young active men. J. Strength Cond. Res. 2016, 30, 2107–2113. [Google Scholar] [CrossRef]
- Gual, G.; Fort-Vanmeerhaeghe, A.; Romero-Rodríguez, D.; Tesch, P.A. Effects of in-season inertial resistance training with eccentric overload in a sports population at risk for patellar tendinopathy. J. Strength Cond. Res. 2016, 30, 1834–1842. [Google Scholar] [CrossRef]
- Naczk, M.; Naczk, A.; Brzenczek-Owczarzak, W.; Arlet, J.; Adach, Z. Efficacy of inertial training in elbow joint muscles: Influence of different movement velocities. J. Sports Med. Phys. Fit. 2016, 56, 223–231. [Google Scholar]
- Naczk, M.; Brzenczek-Owczarzak, W.; Arlet, J.; Naczk, A.; Adach, Z. Training effectiveness of the inertial training and measurement system. J. Hum. Kinet 2014, 44, 19–28. [Google Scholar] [CrossRef]
- Onambélé, G.L.; Maganaris, C.N.; Mian, O.S.; Tam, E.; Rejc, E.; McEwan, I.M.; Narici, M.V. Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. J. Biomech. 2008, 41, 3133–3138. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Stiff, A.; Coratella, G. Effects of postactivation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength. J. Strength Cond Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Timon, R.; Allemano, S.; Camacho-Cardeñosa, M.; Camacho-Cardeñosa, A.; Martinez-Guardado, I.; Olcina, G. Post-activation potentiation on squat jump following two different protocols: Traditional vs. inertial flywheel. J. Hum. Kinet. 2019. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; López-Contreras, G.; Mourão, L.; de Jesus, K.; de Jesus, K.; Zacca, R.; Vilas-Boas, J.P.; Fernandes, R.J.; Arellano, R. Eccentric flywheel post-activation potentiation influences swimming start performance kinetics. J. Sports Sci. 2019, 37, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Fernández, F.; López-Contreras, G.; Arellano, R. Effect on swimming start performance of two types of activation protocols: Lunge and yoyo squat. J. Strength Cond. Res. 2015, 29, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Tøien, T.; Haglo, H.P.; Unhjem, R.J.; Hoff, J.; Wang, E. Maximal strength training: The impact of eccentric overload. J. Neurophysiol. 2018, 120, 2868–2876. [Google Scholar] [CrossRef] [PubMed]
- Gerber, J.P.; Marcus, R.L.; Dibble, L.E.; Greis, P.E.; Burks, R.T.; LaStayo, P.C. Effects of early progressive eccentric exercise on muscle size and function after anterior cruciate ligament reconstruction: A 1-year follow-up study of a randomized clinical trial. Phys. Ther. 2009, 89, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Gerber, J.P.; Marcus, R.L.; Dibble, L.E.; Greis, P.E.; Burks, R.T.; Lastayo, P.C. Safety, feasibility, and efficacy of negative work exercise via eccentric muscle activity following anterior cruciate ligament reconstruction. J. Orthop. Sports Phys. Ther. 2007, 37, 10–18. [Google Scholar] [CrossRef]
- Gerber, J.P.; Marcus, R.L.; Dibble, L.E.; Greis, P.E.; Burks, R.T.; LaStayo, P.C. Effects of early progressive eccentric exercise on muscle structure after anterior cruciate ligament reconstruction. J. Bone Jt. Surg. Am. 2007, 89, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Romero-Rodriguez, D.; Gual, G.; Tesch, P.A. Efficacy of an inertial resistance training paradigm in the treatment of patellar tendinopathy in athletes: A case-series study. Phys. Ther. Sport 2011, 12, 43–48. [Google Scholar] [CrossRef]
- Greenwood, J.; Morrissey, M.C.; Rutherford, O.M.; Narici, M.V. Comparison of conventional resistance training and the fly-wheel ergometer for training the quadriceps muscle group in patients with unilateral knee injury. Eur. J. Appl. Physiol. 2007, 101, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.; Blazevich, A.J.; Haff, G.G.; Tufano, J.J.; Newton, R.U.; Häkkinen, K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front. Physiol. 2016, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, B.; Kinscherf, R.; Vorwald, S.; Muller, H.; Kucera, K.; Borisch, S.; Richter, G.; Bartsch, P.; Billeter, R. Muscular adaptations to computer-guided strength training with eccentric overload. Acta Physiol. Scand. J. 2004, 182, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Friedmann-Bette, B.; Bauer, T.; Kinscherf, R.; Vorwald, S.; Klute, K.; Bischoff, D.; Muller, H.; Weber, M.A.; Metz, J.; Kauczor, H.U.; et al. Effects of strength training with eccentric overload on muscle adaptation in male athletes. Eur. J. Appl. Physiol. 2010, 108, 821–836. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, R. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: The role of tendon compliance. J. Physiol. 1991, 436, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Refsnes, P.E. Testing and training for top norwegian athletes. In Science in Elite Sport; Müller, E., Ludescher, F., Zallinger, G., Eds.; Routledge: New York, NY, USA, 1999; pp. 98–116. [Google Scholar]
- Wagle, J.P.; Cunanan, A.J.; Carroll, K.M.; Sams, M.L.; Wetmore, A.; Bingham, G.E.; Taber, C.B.; DeWeese, B.H.; Sato, K.; Stuart, C.A. Accentuated eccentric loading and cluster set configurations in the back squat: A kinetic and kinematic analysis. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Effects of accentuated eccentric loading on muscle properties, strength, power, and speed in resistance-trained rugby players. J. Strength Cond. Res. 2018, 32, 2750–2761. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J. Eccentric overload training: A viable strategy to enhance muscle hypertrophy? Strength Cond. J. 2018, 40, 78–81. [Google Scholar] [CrossRef]
- Ojasto, T.; Häkkinen, K. Effects of different accentuated eccentric load levels in eccentric-concentric actions on acute neuromuscular, maximal force, and power responses. J. Strength Cond. Res. 2009, 23, 996–1004. [Google Scholar] [CrossRef]
- Doan, B.K.; Newton, R.U.; Marsit, J.L.; Triplett-Mcbride, N.T.; Koziris, L.P.; Fry, A.C.; Kraemer, W.J. Effects of increased eccentric loading on bench press 1rm. J. Strength Cond. Res. 2002, 16, 9–13. [Google Scholar]
- Kaminski, T.W.; Wabbersen, C.V.; Murphy, R.M. Concentric versus enhanced eccentric hamstring strength training: Clinical implications. J. Athl. Train. 1998, 33, 216–221. [Google Scholar] [PubMed]
- Hortobagyi, T.; Devita, P.; Money, J.; Barrier, J. Effects of standard and eccentric overload strength training in young women. Med. Sci. Sports Exerc. 2001, 33, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Yarrow, J.F.; Borsa, P.A.; Borst, S.E.; Sitren, H.S.; Stevens, B.R.; White, L.J. Early-phase neuroendocrine responses and strength adaptations following eccentric-enhanced resistance training. J. Strength Cond. Res. 2008, 22, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Yarrow, J.F.; Borsa, P.A.; Borst, S.E.; Sitren, H.S.; Stevens, B.R.; White, L.J. Neuroendocrine responses to an acute bout of eccentric-enhanced resistance exercise. Med. Sci. Sports Exerc. 2007, 39, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.P.; Docherty, D. The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. J. Strength Cond. Res. 2002, 16, 25–32. [Google Scholar] [PubMed]
- Aboodarda, S.J.; Byrne, J.M.; Samson, M.; Wilson, B.D.; Mokhtar, A.H.; Behm, D.G. Does performing drop jumps with additional eccentric loading improve jump performance? J. Strength Cond. Res. 2014, 28, 2314–2323. [Google Scholar] [CrossRef] [PubMed]
- Aboodarda, S.J.; Yusof, A.; Osman, N.A.A.; Thompson, M.W.; Mokhtar, A.H. Enhanced performance with elastic resistance during the eccentric phase of a countermovement jump. Int. J. Sports Physiol. Perform. 2013, 8, 181–187. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med. Sci. Sports Exerc. 2010, 42, 1731–1744. [Google Scholar] [CrossRef]
- Brearley, S.; Wild, J.; Agar-Newman, D.; Cizmic, H. How to monitor net plyometric training stress: Guidelines for the coach. Prof. Strength Cond. 2017, 47, 15–24. [Google Scholar]
- Kossow, A.J.; Ebben, W.P. Kinetic analysis of horizontal plyometric exercise intensity. J. Strength Cond. Res. 2018, 32, 1222–1229. [Google Scholar] [CrossRef]
- Ebben, W.P.; Fauth, M.L.; Garceau, L.R.; Petushek, E.J. Kinetic quantification of plyometric exercise intensity. J. Strength Cond. Res. 2011, 25, 3288–3298. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Petushek, E.J. Using the reactive strength index modified to evaluate plyometric performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Vanderzanden, T.; Wurm, B.J.; Petushek, E.J. Evaluating plyometric exercises using time to stabilization. J. Strength Cond. Res. 2010, 24, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Simenz, C.; Jensen, R.L. Evaluation of plyometric intensity using electromyography. J. Strength Cond. Res. 2008, 22, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.L.; Ebben, W.P. Quantifying plyometric intensity via rate of force development, knee joint, and ground reaction forces. J. Strength Cond. Res. 2007, 21, 763–767. [Google Scholar] [PubMed]
- Jarvis, M.M.; Graham-Smith, P.; Comfort, P. A methodological approach to quantifying plyometric intensity. J. Strength Cond. Res. 2016, 30, 2522–2532. [Google Scholar] [CrossRef]
- McNitt-Gray, J.L. Kinetics of the lower extremities during drop landings from three heights. J. Biomech. 1993, 26, 1037–1046. [Google Scholar] [CrossRef]
- Van Lieshout, K.G.; Anderson, J.G.; Shelburne, K.B.; Davidson, B.S. Intensity rankings of plyometric exercises using joint power absorption. Clin. Biomech. 2014, 29, 918–922. [Google Scholar] [CrossRef]
- Wallace, B.J.; Kernozek, T.W.; White, J.M.; Kline, D.E.; Wright, G.A.; Peng, H.-T.; Huang, C.-F. Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. J. Strength Cond. Res. 2010, 24, 207–212. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Potach, D.H.; Chu, D.A. Program design and technique for plyometric training. In Essentials of Strength Training and Conditioning, 3rd ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 471–520. [Google Scholar]
- de Villarreal, E.S.S.; Kellis, E.; Kraemer, W.J.; Izquierdo, M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009, 23, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Suchomel, T.J.; Garceau, L.R. The Effect of Plyometric Training Volume on Jumping Performance. In Proceedings of the XXXII International Conference of Biomechanics in Sports, Johnson City, TN, USA, 12–16 July 2014; Sato, K., Sands, W.A., Mizuguchi, S., Eds.; the International Society of Biomechanics in Sports: Johnson City, TN, USA, 2014; pp. 566–569. [Google Scholar]
- de Villarreal, E.S.S.; González-Badillo, J.J.; Izquierdo, M. Low and moderate plyometric training frequency produces greater jumping and sprinting gains compared with high frequency. J. Strength Cond. Res. 2008, 22, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Coratella, G.; Dello, A.I.; Beato, M. Comparative effects of single vs. Double weekly plyometric training sessions on jump, sprint and cod abilities of elite youth football players. J. Sports Med. Phys. Fit. 2018, 59, 910–915. [Google Scholar]
- Buchner, D.; De Lateur, B. The importance of skeletal muscle strength to physical function in older adults. Ann. Behav. Med. 1991, 13, 91–98. [Google Scholar]
- Haff, G.G. Strength-isometric and dynamic testing. In Performance Assessment in Strength and Conditioning; Comfort, P., Jones, P.A., McMahon, J.J., Eds.; Routledge, Taylor Francis Group: New York, NY, USA, 2019; pp. 166–192. [Google Scholar]
- Kurokawa, S.; Fukunaga, T.; Nagano, A.; Fukashiro, S. Interaction between fascicles and tendinous structures during counter movement jumping investigated in vivo. J. Appl. Physiol. 2003, 95, 2306–2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurokawa, S.; Fukunaga, T.; Fukashiro, S. Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J. Appl. Physiol. 2001, 90, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.G. 10-year changes in upper body strength and power in elite professional rugby league players—the effect of training age, stage, and content. J. Strength Cond. Res. 2013, 27, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. Actn3: More than just a gene for speed. Front. Physiol. 2017, 8, 9. [Google Scholar] [CrossRef]
- Whitehead, N.P.; Allen, T.J.; Morgan, D.L.; Proske, U. Damage to human muscle from eccentric exercise after training with concentric exercise. J. Physiol. 1998, 512, 615–620. [Google Scholar] [CrossRef]
- Ebben, W.P.; Feldmann, C.R.; Vanderzanden, T.L.; Fauth, M.L.; Petushek, E.J. Periodized plyometric training is effective for women, and performance is not influenced by the length of post-training recovery. J. Strength Cond. Res. 2010, 24, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Comfort, P. Developing muscular strength and power. In Advanced Strength and Conditioning—An Evidence-Based Approach; Turner, A., Comfort, P., Eds.; Routledge: New York, NY, USA, 2018; pp. 13–38. [Google Scholar]
- De Weese, B.H.; Hornsby, G.; Stone, M.; Stone, M.H. The training process: Planning for strength–power training in track and field. Part 2: Practical and applied aspects. J. Sport Health Sci. 2015, 4, 318–324. [Google Scholar] [CrossRef]
- Stone, M.H.; Cormie, P.; Lamont, H.; Stone, M.E. Developing strength and power. In Strength and Conditioning for Sports Performance; Jeffreys, I., Moody, J., Eds.; Routledge: New York, NY, USA, 2016; pp. 230–260. [Google Scholar]
- James, L.P.; Haff, G.G.; Kelly, V.G.; Connick, M.; Hoffman, B.; Beckman, E.M. The impact of strength level on adaptations to combined weightlifting, plyometric and ballistic training. Scand. J. Med. Sci. Sports 2018, 28, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Influence of strength on magnitude and mechanisms of adaptation to power training. Med. Sci. Sports Exerc. 2010, 42, 1566–1581. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.; Hobson, S.; Barker, M.; Taylor, K.; Chapman, D.; McGuigan, M.; Newton, R.U. The effect of training with accentuated eccentric load counter-movement jumps on strength and power characteristics of high-performance volleyball players. Int. J. Sports Sci. Coach 2008, 3, 355–363. [Google Scholar] [CrossRef]
- Issurin, V.B. Block periodization versus traditional training theory: A review. J. Sports Med. Phys. Fit. 2008, 48, 65–75. [Google Scholar]
- Issurin, V.B. Generalized training effects induced by athletic preparation. A review. J. Sports Med. Phys. Fit. 2009, 49, 333–345. [Google Scholar]
- Moolyk, A.N.; Carey, J.P.; Chiu, L.Z.F. Characteristics of lower extremity work during the impact phase of jumping and weightlifting. J. Strength Cond. Res. 2013, 27, 3225–3232. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Lake, J.P.; Comfort, P. Load absorption force-time characteristics following the second pull of weightlifting derivatives. J. Strength Cond. Res. 2017, 31, 1644–1652. [Google Scholar] [CrossRef]
- Comfort, P.; Williams, R.; Suchomel, T.J.; Lake, J.P. A comparison of catch phase force-time characteristics during clean derivatives from the knee. J. Strength Cond. Res. 2017, 31, 1911–1918. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Taber, C.B.; Wright, G.A. Jump shrug height and landing forces across various loads. Int. J. Sports Physiol. Perform. 2016, 11, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; Mundy, P.D.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. The effect of barbell load on vertical jump landing force-time characteristics. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Peñailillo, L.; Blazevich, A.; Numazawa, H.; Nosaka, K. Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling. Med. Sci. Sports Exerc. 2013, 45, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- Clos, P.; Laroche, D.; Stapley, P.J.; Lepers, R. Neuromuscular and perceptual responses to sub-maximal eccentric cycling: A mini-review. Front. Physiol. 2019, 10, 10. [Google Scholar] [CrossRef] [PubMed]
Monday | Wednesday | Friday | |||
---|---|---|---|---|---|
1. Back squat | 3 x 8 5/0/1 | 1. Mid-thigh pull | 3 x 8 x/0/x | 1. Back squat | 3 x 8 5/0/1 |
2. Bench press | 3 x 8 5/0/1 | 2. Deadlift | 3 x 8 5/0/1 | 2. Bench press | 3 x 8 5/0/1 |
3. Split squat | 3 x 8 x/0/x | 3. Bent over row | 3 x 8 5/0/1 | 3. Split squat | 3 x 8 x/0/x |
4. Military press | 3 x 8 x/0/x | 4. Pull-up | 3 x 8 x/0/x | 4. Military press | 3 x 8 x/0/x |
Beginner (<1.0× body mass squat) | Intermediate (1.5× body mass squat) | Advanced (≥2× body mass squat) | |
---|---|---|---|
Suggested Eccentric Training Method(s) | Tempo Eccentric Training Flywheel Inertial Training Plyometric Training * | Flywheel Inertial Training Submaximal Accentuated Eccentric Loading Plyometric Training ** | Maximal to Supramaximal Accentuated Eccentric Loading Plyometric Training *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 2: Practical Recommendations. J. Funct. Morphol. Kinesiol. 2019, 4, 55. https://doi.org/10.3390/jfmk4030055
Suchomel TJ, Wagle JP, Douglas J, Taber CB, Harden M, Haff GG, Stone MH. Implementing Eccentric Resistance Training—Part 2: Practical Recommendations. Journal of Functional Morphology and Kinesiology. 2019; 4(3):55. https://doi.org/10.3390/jfmk4030055
Chicago/Turabian StyleSuchomel, Timothy J., John P. Wagle, Jamie Douglas, Christopher B. Taber, Mellissa Harden, G. Gregory Haff, and Michael H. Stone. 2019. "Implementing Eccentric Resistance Training—Part 2: Practical Recommendations" Journal of Functional Morphology and Kinesiology 4, no. 3: 55. https://doi.org/10.3390/jfmk4030055