Do Longer Fins Improve Ocean Rescues? A Comprehensive Investigation into Lifeguard Performance and Physiological Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Characteristics of Equipment
2.4. Trial Characteristics (Figure 3)
2.5. Variables and Measuring Procedures
- Rescue Time: Expressed in seconds, broken down into (a) time to approach the victim, (b) time to tow the victim, and (c) total rescue time. This variable was recorded by two members of the research team using the stopwatch app on the iPhone SE with iOS 17. To discriminate between the approach time and tow-in time, the victim is instructed to raise their right hand as a signal that the lifeguard begins tow-in (second phase) when the rescuer initiates the first pull towards the shore.
- Physiological Variables: (d) Rate of perceived exertion (RPE): Measured on an index from 0 to 10 according to Foster’s scale, RPE ranges from 0 meaning “totally rest” to 10 meaning “maximal effort” [27], disaggregated into four values (overall RPE, chest, arms, and legs); (e) Blood lactate concentration post-rescue: For lactate measurements, the Lactate Scout device (SensLab GmbH, Leipzig, Germany) was used, and the results were expressed in mmol/L. Lactate measurements were taken within the first minute after the test.
2.6. Weather Conditions
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Practical Implications
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szpilman, D.; de Barros Oliveira, R.; Mocellin, O.; Webber, J. Is drowning a mere matter of resuscitation? Resuscitation 2018, 129, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Szpilman, D.; Webber, J.; Quan, L.; Bierens, J.; Morizot-Leite, L.; Langendorfer, S.J.; Beerman, S.; Løfgren, B. Creating a drowning chain of survival. Resuscitation 2014, 85, 1149–1152. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.; Wentz, K.R.; Gore, E.J.; Copass, M.K. Outcome and predictors of outcome in pediatric submersion victims receiving prehospital care in King County, Washington. Pediatrics 1990, 86, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Avramidis, S.; Butterly, R.; Llewellyn, D. The 4W Model of Drowning. Int. J. Aquat. Res. Educ. 2007, 1, 5. [Google Scholar] [CrossRef]
- Van Beeck, E.F.; Branche, C.M.; Szpilman, D.; Modell, J.H.; Bierens, J.J. A new definition of drowning: Towards documentation and prevention of a global public health problem. Bull World Health Organ. 2005, 83, 853–856. [Google Scholar] [PubMed]
- Suominen, P.; Baillie, C.; Korpela, R.; Rautanen, S.; Ranta, S.; Olkkola, K.T. Impact of age, submersion time and water temperature on outcome in near-drowning. Resuscitation 2002, 52, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Barcala-Furelos, R.; Szpilman, D.; Palacios-Aguilar, J.; Costas-Veiga, J.; Abelairas-Gomez, C.; Bores-Cerezal, A.; López-García, S.; Rodríguez-Nuñez, A. Assessing the efficacy of rescue equipment in lifeguard resuscitation efforts for drowning. Am. J. Emerg. Med. 2016, 34, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Abelairas-Gómez, C.; Barcala-Furelos, R.; Mecías-Calvo, M.; Rey-Eiras, E.; López-García, S.; Costas-Veiga, J.; Bores-Cerezal, A.; Palacios-Aguilar, J. Prehospital Emergency Medicine at the Beach: What Is the Effect of Fins and Rescue Tubes in Lifesaving and Cardiopulmonary Resuscitation after Rescue? Wilderness Environ. Med. 2017, 28, 176–184. [Google Scholar] [CrossRef]
- Morgan, D.; Ozanne-Smith, J. Surf lifeguard rescues. Wilderness Environ. Med. 2013, 24, 285–290. [Google Scholar] [CrossRef]
- Venema, A.M.; Groothoff, J.W.; Bierens, J.J. The role of bystanders during rescue and resuscitation of drowning victims. Resuscitation 2010, 81, 434–439. [Google Scholar] [CrossRef]
- Dahl, A.M.; Miller, D.I. Body contact swimming rescues, what are the risks? Am. J. Public Health 1979, 69, 150–152. [Google Scholar] [CrossRef]
- Michniewicz, R.; Walczuk, T.; Rostkowska, E. An assessment of the effectiveness of various variants of water rescue. Kinesiology 2008, 40, 96–106. [Google Scholar]
- Abraldes, J.A. Valoración de las aletas en función del tiempo empleado en pruebas de nado y remolque de maniquí. (Evaluation of swim fins according to the time taken in swim tests and manikin tow tests). Cult. Cienc. Deport. 2006, 2, 67–72. [Google Scholar] [CrossRef]
- Sanz Arribas, I.; Aguado Gómez, R.; Martínez De Haro, V. Influencia de las aletas sobre el tiempo de ejecución en los rescates de víctimas con parada cardiorespiratoria (Influence of fins on the lifeguard answer’s time to rescue victims with a cardiorespiratory arrest). Archivos 2016, 31, 133–136. [Google Scholar] [CrossRef]
- Abraldes, J.A.; Soares, S.; Lima, A.; Fernandes, R.; Vilas-Boas, J.P. The Effect of Fin Use on the Speed of Lifesaving Rescues. Int. J. Aquat. Res. Educ. 2007, 1, 4. [Google Scholar] [CrossRef]
- Soares, S.; Machado, L.M.; Vilas-Boa, J.P.; Fernandes, R.J.; Toubekis, A.; Abraldes, J.A. Using Wavelet Transform for Speed Fluctuation Analysis during Manikin Carry with Fins. Open Sports Sci. J. 2017, 10, 272–278. [Google Scholar] [CrossRef]
- Abraldes, J.A.; Fernandes, R.J.; Soares, S.; Lima, A.B.; Vilas-Boas, J.P. Assessment of A Lifesaver’s Instantaneous Velocity in Mannequin Carry using Diferent Types of Fins. Open Sports Sci. J. 2010, 3, 19–21. [Google Scholar] [CrossRef]
- Claesson, A.; Karlsson, T.; Thorén, A.B.; Herlitz, J. Delay and performance of cardiopulmonary resuscitation in surf lifeguards after simulated cardiac arrest due to drowning. Am. J. Emerg. Med. 2011, 29, 1044–1050. [Google Scholar] [CrossRef]
- Claesson, A.; Lindqvist, J.; Herlitz, J. Cardiac arrest due to drowning—Changes over time and factors of importance for survival. Resuscitation 2014, 85, 644–648. [Google Scholar] [CrossRef]
- Zamparo, P.; Pendergast, D.R.; Termin, B.; Minetti, A.E. How fins affect the economy and efficiency of human swimming. J. Exp. Biol. 2002, 205, 2665–2676. [Google Scholar] [CrossRef]
- Zamparo, P.; Pendergast, D.R.; Termin, A.; Minetti, A.E. Economy and efficiency of swimming at the surface with fins of different size and stiffness. Eur. J. Appl. Physiol. 2006, 96, 459–470. [Google Scholar] [CrossRef]
- Pendergast, D.R.; Mollendorf, J.; Logue, C.; Samimy, S. Evaluation of fins used in underwater swimming. Undersea Hyperb. Med. 2003, 30, 57–73. [Google Scholar]
- Pendergast, D.R.; Mollendorf, J.; Logue, C.; Samimy, S. Underwater fin swimming in women with reference to fin selection. Undersea Hyperb. Med. 2003, 30, 75–85. [Google Scholar]
- Rejman, M.; Wiesner, W.; Silakiewicz, P.; Klarowicz, A.; Abraldes, J.A. Comparison of temporal parameters of swimming rescue elements when performed using dolphin and flutter kick with fins-didactical approach. J. Sports Sci. Med. 2012, 11, 682. [Google Scholar]
- Reilly, T.; Iggleden, C.; Gennser, M.; Tipton, M. Occupational fitness standards for beach lifeguards. Phase 2: The development of an easily administered fitness test. Occup. Med. 2006, 56, 12–17. [Google Scholar] [CrossRef]
- World Aquatics. Available online: https://www.worldaquatics.com/rules/competition-regulations (accessed on 10 April 2024).
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 1988; pp. 1–17. [Google Scholar]
- Heck, H.; Mader, A.; Hess, G.; Mücke, S.; Müller, R.; Hollmann, W. Justification of the 4-mmol/l lactate threshold. Int. J. Sports Med. 1985, 6, 117–130. [Google Scholar] [CrossRef]
- McArdle, W.; Katch, F.; Katch, V. Exercise Physiology: Nutrition, Energy, and Human Performance; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2010. [Google Scholar]
- Saborit, J.A.P.; del Valle Soto, M.; Díez, V.G.; Sanclement, M.A.M.; Hernández, P.N.; Rodríguez, J.E.; Rodríguez, L.S. Physiological response of beach lifeguards in a rescue simulation with surf. Ergonomics 2010, 53, 1140–1150. [Google Scholar] [CrossRef]
- López-García, S.; Ruibal-Lista, B.; Palacios-Aguilar, J.; Santiago-Alonso, M.; Prieto, J.A. Relationship between the Performance in a Maximum Effort Test for Lifeguards and the Time Spent in a Water Rescue. Int. J. Environ. Res. Public Health 2021, 18, 3407. [Google Scholar] [CrossRef]
- Cejuela, R.; Pérez Turpin, J.A.; Villa Vicente, J.G.; Cortell-Tormo, J.M.; Rodríguez Marroyo, J.A. Análisis de los factores de rendimiento en triatlón distancia sprint. J. Hum. Sport Exerc. 2007, 2, 2007. [Google Scholar] [CrossRef]
- Chatard, J.C.; Senegas, X.; Selles, M.; Dreanot, P.; Geyssant, A. Wetsuit effect: A comparison between competitive swimmers and triathletes. Med. Sci. Sports Exerc. 1995, 27, 580. [Google Scholar]
- Ruibal-Lista, B.; Palacios-Aguilar, J.; Prieto, J.A.F.; López-García, S.; Cecchini-Estrada, J.A.; Santiago-Alonso, M.; Abelairas-Gómez, C. Validation of a New Incremental Swim Test as a Tool for Maximum Oxygen Uptake Analysis in Lifeguards. Int. J. Aquat. Res. Educ. 2019, 11, 6. [Google Scholar] [CrossRef]
Ocean Rescue Variables | R | R-SF | R-LF | p-Value | Bonferroni Test | ηp2 | |
---|---|---|---|---|---|---|---|
Mean ± SD [95% CI] | Mean ± SD [95% CI] | Mean ± SD [95% CI] | |||||
Swim to approach | 105.42 ± 21.81 [92.83–118.02] | 104.28 ± 14.51 [95.90–112.66] | 89.57 ± 9.86 [83.87–95.26] | 0.001 | R vs. R-LF: | 0.003 | 0.401 |
R vs. R-SF: | 1.000 | ||||||
R-LF vs. R-SF | 0.005 | ||||||
Tow-in to the shore | 206.35 ± 47.49 [178.93–233.77] | 152.21 ± 32.46 [133.46–170.95] | 130.57 ± 17.27 [120.60–140.57] | <0.001 | R vs. R-LF: | <0.001 | 0.778 |
R vs. R-SF: | <0.001 | ||||||
R-LF vs. R-SF | 0.041 | ||||||
Overall rescue time | 311.78 ± 61.49 [276.28–347.28] | 256.50 ± 41.60 [232.48–280.51] | 220.14 ± 24.65 [205.90–234.38] | <0.001 | R vs. R-LF: | <0.001 | 0.775 |
R vs. R-SF: | <0.001 | ||||||
R-LF vs. R-SF | 0.003 |
Physiological Variables | R | R-SF | R-LF | p-Value | Bonferroni Test | ηp2 | |
---|---|---|---|---|---|---|---|
Mean ± SD [95% CI] | Mean ± SD [95% CI] | Mean ± SD [95% CI] | |||||
RPE (Overall) | 7.37 ± 1.35 [7.35–8.09] | 6.78 ± 1.57 [6.78–7.69] | 6.42 ± 1.50 [5.56–7.29] | 0.047 | R vs. R-LF: | 0.045 | 0.209 |
R vs. R-SF: | 0.364 | ||||||
R-LF vs. R-SF | 0.979 | ||||||
RPE (Chest) | 5.71 ± 1.93 [5.71–6.83] | 5.28 ± 2.01 [5.28–6.45] | 5.14 ± 12.03 [5.14–6.31] | 0.526 | R vs. R-LF: | 0.841 | 0.048 |
R vs. R-SF: | 1.000 | ||||||
R-LF vs. R-SF | 1.000 | ||||||
RPE (Arms) | 6.71 ± 2.55 [5.23–8.18] | 5.00 ± 1.88 [3.91–6.08] | 4.35 ± 1.90 [3.25–5.45] | < 0.001 | R vs. R-LF: | 0.010 | 0.445 |
R vs. R-SF: | <0.001 | ||||||
R-LF vs. R-SF | 0.717 | ||||||
RPE (Legs) | 6.92 ± 1.54 [6.03–7.81] | 7.14 ± 2.07 [5.94–8.33] | 7.35 ± 2.09 [6.14–8.56] | 0.668 | R vs. R-LF: | 1.000 | 0.031 |
R vs. R-SF: | 1.000 | ||||||
R-LF vs. R-SF | 1.000 | ||||||
LACTATE Post rescue | 7.29 ± 1.70 [6.30–8.27] | 7.64 ± 1.80 [6.60–8.68] | 7.95 ± 1.48 [7.09–8.80] | 0.193 | R vs. R-LF: | 0.984 | 0.119 |
R vs. R-SF: | 0.218 | ||||||
R-LF vs. R-SF | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignacio-Rodríguez, I.; Barcala-Furelos, R.; Rey, E.; Sanmartín-Montes, M. Do Longer Fins Improve Ocean Rescues? A Comprehensive Investigation into Lifeguard Performance and Physiological Impact. J. Funct. Morphol. Kinesiol. 2024, 9, 79. https://doi.org/10.3390/jfmk9020079
Ignacio-Rodríguez I, Barcala-Furelos R, Rey E, Sanmartín-Montes M. Do Longer Fins Improve Ocean Rescues? A Comprehensive Investigation into Lifeguard Performance and Physiological Impact. Journal of Functional Morphology and Kinesiology. 2024; 9(2):79. https://doi.org/10.3390/jfmk9020079
Chicago/Turabian StyleIgnacio-Rodríguez, Isaac, Roberto Barcala-Furelos, Ezequiel Rey, and Marcos Sanmartín-Montes. 2024. "Do Longer Fins Improve Ocean Rescues? A Comprehensive Investigation into Lifeguard Performance and Physiological Impact" Journal of Functional Morphology and Kinesiology 9, no. 2: 79. https://doi.org/10.3390/jfmk9020079
APA StyleIgnacio-Rodríguez, I., Barcala-Furelos, R., Rey, E., & Sanmartín-Montes, M. (2024). Do Longer Fins Improve Ocean Rescues? A Comprehensive Investigation into Lifeguard Performance and Physiological Impact. Journal of Functional Morphology and Kinesiology, 9(2), 79. https://doi.org/10.3390/jfmk9020079