Data Mining Paths for Standard Weekly Training Load in Sub-Elite Young Football Players: A Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedures
2.3. Target Variables
2.4. Data Preprocessing
2.5. Data Analysis
3. Results
3.1. Feature Selection
3.2. Data Interpolation
3.3. Machine Learning Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goes, F.R.; Meerhoff, L.A.; Bueno, M.J.O.; Rodrigues, D.M.; Moura, F.A.; Brink, M.S.; Elferink-Gemser, M.T.; Knobbe, A.J.; Cunha, S.A.; Torres, R.S.; et al. Unlocking the Potential of Big Data to Support Tactical Performance Analysis in Professional Soccer: A Systematic Review. Eur. J. Sport Sci. 2021, 21, 481–496. [Google Scholar] [CrossRef]
- Memmert, D.; Raabe, D. Data Analytics in Football: Positional Data Collection, Modelling and Analysis; Routledge: London, UK, 2018; ISBN 978-1-351-21016-4. [Google Scholar]
- Rico-González, M.; Pino-Ortega, J.; Méndez, A.; Clemente, F.; Baca, A. Machine Learning Application in Soccer: A Systematic Review. Biol. Sport 2022, 40, 249–263. [Google Scholar] [CrossRef]
- Bunker, R.; Susnjak, T. The Application of Machine Learning Techniques for Predicting Match Results in Team Sport: A Review. J. Artif. Intell. Res. 2022, 73, 1285–1322. [Google Scholar] [CrossRef]
- Teixeira, J.E.; Leal, M.; Ferraz, R.; Ribeiro, J.; Cachada, J.M.; Barbosa, T.M.; Monteiro, A.M.; Forte, P. Effects of Match Location, Quality of Opposition and Match Outcome on Match Running Performance in a Portuguese Professional Football Team. Entropy 2021, 23, 973. [Google Scholar] [CrossRef]
- Pillitteri, G.; Petrigna, L.; Ficarra, S.; Giustino, V.; Thomas, E.; Rossi, A.; Clemente, F.M.; Paoli, A.; Petrucci, M.; Bellafiore, M.; et al. Relationship between External and Internal Load Indicators and Injury Using Machine Learning in Professional Soccer: A Systematic Review and Meta-Analysis. Res. Sports Med. 2023, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Van Eetvelde, H.; Mendonça, L.D.; Ley, C.; Seil, R.; Tischer, T. Machine Learning Methods in Sport Injury Prediction and Prevention: A Systematic Review. J. Exp. Orthop. 2021, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Alves, A.R.; Ferraz, R.; Forte, P.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Effects of Chronological Age, Relative Age, and Maturation Status on Accumulated Training Load and Perceived Exertion in Young Sub-Elite Football Players. Front. Physiol. 2022, 13, 832202. [Google Scholar] [CrossRef]
- Teixeira, J.E.; Branquinho, L.; Ferraz, R.; Leal, M.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M.; Forte, P. Weekly Training Load across a Standard Microcycle in a Sub-Elite Youth Football Academy: A Comparison between Starters and Non-Starters. Int. J. Environ. Res. Public. Health 2022, 19, 11611. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Quantifying Sub-Elite Youth Football Weekly Training Load and Recovery Variation. Appl. Sci. 2021, 11, 4871. [Google Scholar] [CrossRef]
- Coutinho, D.; Oliveira, D.; Lisboa, P.; Campos, F.; Nakamura, F.; Baptista, J.; Abade, E. Weekly External Load Distribution in Football Teams of Different Competitive Levels. Biol. Sport 2024, 41, 155–164. [Google Scholar] [CrossRef]
- Oliveira, R.; Brito, J.P.; Moreno-Villanueva, A.; Nalha, M.; Rico-González, M.; Clemente, F.M. Reference Values for External and Internal Training Intensity Monitoring in Young Male Soccer Players: A Systematic Review. Healthcare 2021, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Monitoring Accumulated Training and Match Load in Football: A Systematic Review. Int. J. Environ. Res. Public. Health 2021, 18, 3906. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Ramirez-Campillo, R.; Arazi, H.; Saez de Villarreal, E. The Effects of Maturation on Jumping Ability and Sprint Adaptations to Plyometric Training in Youth Soccer Players. J. Sport. Sci. 2018, 36, 2405–2411. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Branquinho, L.; Silva, A.J.; Monteiro, A.M.; Barbosa, T.M. Integrating Physical and Tactical Factors in Football Using Positional Data: A Systematic Review. PeerJ 2022, 10, e14381. [Google Scholar] [CrossRef]
- Teixeira, J.; Forte, P.; Ferraz, R.; Branquinho, L.; Silva, A.; Barbosa, T.; Monteiro, A. Methodological Procedures for Non-Linear Analyses of Physiological and Behavioural Data in Football. In Exercise Physiology; IntechOpen: London, UK, 2022. [Google Scholar]
- Branquinho, L.C.; Ferraz, R.; Marques, M.C. The Continuous and Fractionated Game Format on the Training Load in Small Sided Games in Soccer. Open Sport. Sci. J. 2020, 13, 81–85. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Wolle, T. Football Analysis Using Spatio-Temporal Tools. Comput. Environ. Urban Syst. 2014, 47, 16–27. [Google Scholar] [CrossRef]
- Corsie, M.R. Collective Behaviour Monitoring in Football Using Spatial Temporal and Network Analysis: Application and Evaluations. Ph.D. Thesis, Robert Gordon University, Aberdeen, UK, 2022. [Google Scholar] [CrossRef]
- Shen, L.; Tan, Z.; Li, Z.; Li, Q.; Jiang, G. Tactics Analysis and Evaluation of Women Football Team Based on Convolutional Neural Network. Sci. Rep. 2024, 14, 255. [Google Scholar] [CrossRef] [PubMed]
- Kusmakar, S.; Shelyag, S.; Zhu, Y.; Dwyer, D.; Gastin, P.; Angelova, M. Machine Learning Enabled Team Performance Analysis in the Dynamical Environment of Soccer. IEEE Access 2020, 8, 90266–90279. [Google Scholar] [CrossRef]
- Malone, J.J.; Barrett, S.; Barnes, C.; Twist, C.; Drust, B. To Infinity and beyond: The Use of GPS Devices within the Football Codes. Sci. Med. Footb. 2020, 4, 82–84. [Google Scholar] [CrossRef]
- Herold, M.; Goes, F.; Nopp, S.; Bauer, P.; Thompson, C.; Meyer, T. Machine Learning in Men’s Professional Football: Current Applications and Future Directions for Improving Attacking Play. Int. J. Sport. Sci. Coach. 2019, 14, 798–817. [Google Scholar] [CrossRef]
- Cossich, V.R.A.; Carlgren, D.; Holash, R.J.; Katz, L. Technological Breakthroughs in Sport: Current Practice and Future Potential of Artificial Intelligence, Virtual Reality, Augmented Reality, and Modern Data Visualization in Performance Analysis. Appl. Sci. 2023, 13, 12965. [Google Scholar] [CrossRef]
- Haslwanter, T. An Introduction to Statistics with Python; Statistics and Computing; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-28315-9. [Google Scholar]
- Bauer, P. Automated Detection of Complex Tactical Patterns in Football—Using Machine Learning Techniques to Identify Tactical Behavior. Ph.D. Thesis, Universität Tübingen, Tübingen, Germany, 2022. [Google Scholar] [CrossRef]
- Beato, M.; Coratella, G.; Stiff, A.; Iacono, A.D. The Validity and Between-Unit Variability of GNSS Units (STATSports Apex 10 and 18 Hz) for Measuring Distance and Peak Speed in Team Sports. Front. Physiol. 2018, 9, 1288. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.B.; Carmona, C.D.G.; la cruz sánchez, E.D.; Ortega, J.P. Accuracy, Intra- and Inter-Unit Reliability, and Comparison between GPS and UWB-Based Position-Tracking Systems Used for Time–Motion Analyses in Soccer. Eur. J. Sport Sci. 2018, 18, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Crang, Z.L.; Duthie, G.; Cole, M.H.; Weakley, J.; Hewitt, A.; Johnston, R.D. The Validity and Reliability of Wearable Microtechnology for Intermittent Team Sports: A Systematic Review. Sport. Med. 2021, 51, 549–565. [Google Scholar] [CrossRef] [PubMed]
- Cabral, L.L.; Nakamura, F.Y.; Stefanello, J.M.F.; Pessoa, L.C.V.; Smirmaul, B.P.C.; Pereira, G. Initial Validity and Reliability of the Portuguese Borg Rating of Perceived Exertion 6–20 Scale. Meas. Phys. Educ. Exerc. Sci. 2020, 24, 103–114. [Google Scholar] [CrossRef]
- Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. Front. Neurosci. 2017, 11, 612. [Google Scholar] [CrossRef] [PubMed]
- Kenttä, G.; Hassmén, P. Overtraining and Recovery: A Conceptual Model. Sport. Med. 1998, 26, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, D.; Gonçalves, B.; Travassos, B.; Wong, D.P.; Coutts, A.J.; Sampaio, J.E. Mental Fatigue and Spatial References Impair Soccer Players’ Physical and Tactical Performances. Front. Psychol. 2017, 8, 283443. [Google Scholar] [CrossRef]
- Nobari, H.; Barjaste, A.; Haghighi, H.; Clemente, F.; Carlos-Vivas, J.; Perez-Gomez, J. Quantification of Training and Match Load in Elite Youth Soccer Players: A Full-Season Study. J. Sport. Med. Phys. Fit. 2021, 62, 448–456. [Google Scholar] [CrossRef]
- Scott, B.R.; Lockie, R.G.; Knight, T.J.; Clark, A.C.; Janse de Jonge, X.A.K. A Comparison of Methods to Quantify the In-Season Training Load of Professional Soccer Players. Int. J. Sport. Physiol. Perform. 2013, 8, 195–202. [Google Scholar] [CrossRef]
- Arede, J.; Cumming, S.; Johnson, D.; Leite, N. The Effects of Maturity Matched and Un-Matched Opposition on Physical Performance and Spatial Exploration Behavior during Youth Basketball Matches. PLoS ONE 2021, 16, e0249739. [Google Scholar] [CrossRef]
- Coutinho, D.; Gonçalves, B.; Travassos, B.; Folgado, H.; Figueira, B.; Sampaio, J. Different Marks in the Pitch Constraint Youth Players’ Performances during Football Small-Sided Games. Res. Q. Exerc. Sport 2020, 91, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sport. Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Cumming, S.P.; Lloyd, R.S.; Oliver, J.L.; Eisenmann, J.C.; Malina, R.M. Bio-Banding in Sport: Applications to Competition, Talent Identification, and Strength and Conditioning of Youth Athletes. Strength Cond. J. 2017, 39, 34–47. [Google Scholar] [CrossRef]
- Patel, R.; Nevill, A.; Cloak, R.; Smith, T.; Wyon, M. Relative Age, Maturation, Anthropometry and Physical Performance Characteristics of Players within an Elite Youth Football Academy. Int. J. Sport. Sci. Coach. 2019, 14, 714–725. [Google Scholar] [CrossRef]
- Cumming, S.P. A Game Plan for Growth: How Football Is Leading the Way in the Consideration of Biological Maturation in Young Male Athletes. Ann. Hum. Biol. 2018, 45, 373–375. [Google Scholar] [CrossRef]
- Malina, R.; Cumming, S.; Rogol, A.; Coelho-e-Silva, M.; Figueiredo, A.; Konarski, J.; Koziel, S. Bio-Banding in Youth Sports: Background, Concept, and Application. Sport. Med. 2019, 49, 1671–1685. [Google Scholar] [CrossRef]
- Hao, J.; Ho, T. Machine Learning Made Easy: A Review of Scikit-Learn Package in Python Programming Language. J. Educ. Behav. Stat. 2019, 44, 107699861983224. [Google Scholar] [CrossRef]
- Unpingco, J. Machine Learning. In Python for Probability, Statistics, and Machine Learning; Unpingco, J., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 237–379. ISBN 978-3-030-18545-9. [Google Scholar]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Morgans, R.; Rhodes, D.; Teixeira, J.; Modric, T.; Versic, S.; Oliveira, R. Quantification of Training Load across Two Competitive Seasons in Elite Senior and Youth Male Soccer Players from an English Premiership Club. Biol. Sport 2023, 40, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, D.; Gonçalves, B.; Santos, S.; Travassos, B.; Schöllhorn, W.; Sampaio, J. The Effects of Individual and Collective Variability on Youth Players’ Movement Behaviours during Football Small-Sided Games. Res. Sport. Med. 2022, 31, 756–771. [Google Scholar] [CrossRef]
- Branquinho, L.; Forte, P.; Thomatieli-Santos, R.; De França, E.; Marinho, D.; Teixeira, J.; Ferraz, R. Perspectives on Player Performance during FIFA World Cup Qatar 2022: A Brief Report. Sports 2023, 11, 174. [Google Scholar] [CrossRef]
- Morgans, R.; Rhodes, D.; Bezuglov, E.; Etemad, O.; Di Michele, R.; Teixeira, J.; Modric, T.; Versic, S.; Oliveira, R. The Impact of Injury on Match Running Performance Following the Return to Competitive Match-Play over Two Consecutive Seasons in Elite European Soccer Players. J. Phys. Educ. Sport 2023, 23, 1142–1149. [Google Scholar] [CrossRef]
- Stival, L.; Pinto, A.; de Andrade, F.d.S.P.; Santiago, P.R.P.; Biermann, H.; da Silva Torres, R.; Dias, U. Using Machine Learning Pipeline to Predict Entry into the Attack Zone in Football. PLoS ONE 2023, 18, e0265372. [Google Scholar] [CrossRef] [PubMed]
- de Souza Campos, F.; Borszcz, F.K.; Forner Flores, L.J.; Barazetti, L.K.; Teixeira, A.S.; Hartmann Nunes, R.F.; Antonacci Guglielmo, L.G. HIIT Models in Addition to Training Load and Heart Rate Variability Are Related with Physiological and Performance Adaptations after 10-Weeks of Training in Young Futsal Players. Front. Psychol. 2021, 12, 636153. [Google Scholar] [CrossRef]
- Link, D.; Lang, S.; Seidenschwarz, P. Real Time Quantification of Dangerousity in Football Using Spatiotemporal Tracking Data. PLoS ONE 2016, 11, e0168768. [Google Scholar] [CrossRef]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Branquinho, L.; Morgans, R.; Silva, A.J.; Monteiro, A.M.; Barbosa, T.M. Resultant Equations for Training Load Monitoring during a Standard Microcycle in Sub-Elite Youth Football: A Principal Components Approach. PeerJ 2023, 11, e15806. [Google Scholar] [CrossRef]
- Lucey, P.; Oliver, D.; Carr, P.; Roth, J.; Matthews, I. Assessing Team Strategy Using Spatiotemporal Data. In Proceedings of the Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 1366–1374. [Google Scholar]
- Sapienza, A.; Goyal, P.; Ferrara, E. Deep Neural Networks for Optimal Team Composition. Front. Big Data 2019, 2, 14. [Google Scholar] [CrossRef]
- Ferraz, R.; Forte, P.; Branquinho, L.; Teixeira, J.; Neiva, H.; Marinho, D.; Marques, M. The Performance during the Exercise: Legitimizing the Psychophysiological Approach. In Exercise Physiology; IntechOpen: London, UK, 2022. [Google Scholar]
- Teixeira, J.; Forte, P.; Ferraz, R.; Leal, M.; Ribeiro, J.; Silva, A.; Barbosa, T.; Monteiro, A. The Association between External Training Load, Perceived Exertion and Total Quality Recovery in Sub-Elite Youth Football. Open Sport. Sci. J. 2022, 15, 1–9. [Google Scholar] [CrossRef]
- Díaz-García, J.; González-Ponce, I.; Ponce-Bordón, J.C.; López-Gajardo, M.Á.; Ramírez-Bravo, I.; Rubio-Morales, A.; García-Calvo, T. Mental Load and Fatigue Assessment Instruments: A Systematic Review. Int. J. Environ. Res. Public. Health 2022, 19, 419. [Google Scholar] [CrossRef]
- Lamas, L.; Senatore, J.V.; Fellingham, G. Two Steps for Scoring a Point: Creating and Converting Opportunities in Invasion Team Sports. PLoS ONE 2020, 15, e0240419. [Google Scholar] [CrossRef] [PubMed]
- Rein, R.; Raabe, D.; Memmert, D. “Which Pass Is Better?” Novel Approaches to Assess Passing Effectiveness in Elite Soccer. Hum. Mov. Sci. 2017, 55, 172–181. [Google Scholar] [CrossRef] [PubMed]
- González-Rodenas, J.; Aranda-Malavés, R.; Tudela-Desantes, A.; Calabuig Moreno, F.; Casal, C.A.; Aranda, R. Effect of Match Location, Team Ranking, Match Status and Tactical Dimensions on the Offensive Performance in Spanish “La Liga” Soccer Matches. Front. Psychol. 2019, 10, 2089. [Google Scholar] [CrossRef] [PubMed]
- Gréhaigne, J.F.; Bouthier, D.; David, B. Dynamic-System Analysis of Opponent Relationships in Collective Actions in Soccer. J. Sports Sci. 1997, 15, 137–149. [Google Scholar] [CrossRef]
- Memmert, D. Match Analysis: How to Use Data in Professional Sport; Routledge: London, UK, 2021; ISBN 978-1-00-046377-4. [Google Scholar]
- Low, B.; Boas, G.V.; Meyer, L.; Lizaso, E.; Hoitz, F.; Leite, N.; Gonçalves, B.; Low, B.; Boas, G.V.; Meyer, L.; et al. Exploring the Effects of Deep-Defending vs. High-Press on Footballers’ Tactical Behaviour, Physical and Physiological Performance: A Pilot Study. Mot. Rev. Educ. Física 2018, 24, e1018171. [Google Scholar] [CrossRef]
- Chawla, S.; Estephan, J.; Gudmundsson, J.; Horton, M. Classification of Passes in Football Matches Using Spatiotemporal Data. ACM Trans. Spat. Algorithms Syst. 2017, 3, 6. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Chung, D.; Lee, J.; Yoon, J.; Ko, S.-K. 6MapNet: Representing Soccer Players from Tracking Data by a Triplet Network. In Proceedings of the Machine Learning and Data Mining for Sports Analytics, Virtual, 13 September 2021; Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 3–14. [Google Scholar]
- Fernando, T.; Wei, X.; Fookes, C.; Sridharan, S.; Lucey, P. Discovering Methods of Scoring in Soccer Using Tracking Data. In Proceedings of the 2015 KDD Workshop on Large-Scale Sports Analytics, Sydney, Australia, 10–13 August 2015. [Google Scholar]
- Gama, J.; Passos, P.; Davids, K.; Relvas, H.; Ribeiro, J.; Vaz, V.; Dias, G. Network Analysis and Intra-Team Activity in Attacking Phases of Professional Football. Int. J. Perform. Anal. Sport 2014, 14, 692–708. [Google Scholar] [CrossRef]
- Pena, J.L.; Touchette, H. A Network Theory Analysis of Football Strategies. arXiv 2012, arXiv:1206.6904. [Google Scholar]
- Pons, E.; García-Calvo, T.; Cos, F.; Resta, R.; Blanco, H.; López del Campo, R.; Díaz-García, J.; Pulido-González, J.J. Integrating Video Tracking and GPS to Quantify Accelerations and Decelerations in Elite Soccer. Sci. Rep. 2021, 11, 18531. [Google Scholar] [CrossRef]
- Meng, T.; Yang, J.Y.; Huang, D.Y. Intervention of Football Players’ Training Effect Based on Machine Learning. In Proceedings of the 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 14–16 January 2022; pp. 592–595. [Google Scholar]
- Reyaz, N.; Ahamad, G.; Khan, N.J.; Naseem, M. Machine Learning in Sports Talent Identification: A Systematic Review. In Proceedings of the 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 24–25 June 2022; pp. 1–6. [Google Scholar]
- Kelly, A.L.; Williams, C.A.; Cook, R.; Sáiz, S.L.J.; Wilson, M.R. A Multidisciplinary Investigation into the Talent Development Processes at an English Football Academy: A Machine Learning Approach. Sports 2022, 10, 159. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Azarian, S.; Saedmocheshi, S.; Valdés-Badilla, P.; García Calvo, T. Narrative Review: The Role of Circadian Rhythm on Sports Performance, Hormonal Regulation, Immune System Function, and Injury Prevention in Athletes. Heliyon 2023, 9, e19636. [Google Scholar] [CrossRef] [PubMed]
- Fialho, G.; Manhães, A.; Teixeira, J.P. Predicting Sports Results with Artificial Intelligence—A Proposal Framework for Soccer Games. Procedia Comput. Sci. 2019, 164, 131–136. [Google Scholar] [CrossRef]
- Drew, M.K.; Blanch, P.; Purdam, C.; Gabbett, T.J. Yes, Rolling Averages Are a Good Way to Assess Training Load for Injury Prevention. Is There a Better Way? Probably, but We Have Not Seen the Evidence. Br. J. Sport. Med. 2017, 51, 618–619. [Google Scholar] [CrossRef]
- Drew, M.K.; Finch, C.F. The Relationship Between Training Load and Injury, Illness and Soreness: A Systematic and Literature Review. Sport. Med. 2016, 46, 861–883. [Google Scholar] [CrossRef]
Algorithm | MSE | RMSE | R2 |
---|---|---|---|
Extreme boosting regression (XGboost) | 3.52 | 1.87 | −0.32 |
Bayesian regression (BR) | 2.58 | 1.60 | 0.02 |
Linear regression (LR) | 2.57 | 1.60 | 0.034 |
Ridge regression (RR) | 2.57 | 1.60 | 0.034 |
Decision tree (DT) regression | 4.76 | 2.18 | −0.78 |
Random forest (RF) regression | 2.77 | 1.66 | −0.04 |
Support vector regression (VMR) | 2.47 | 1.57 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, J.E.; Encarnação, S.; Branquinho, L.; Morgans, R.; Afonso, P.; Rocha, J.; Graça, F.; Barbosa, T.M.; Monteiro, A.M.; Ferraz, R.; et al. Data Mining Paths for Standard Weekly Training Load in Sub-Elite Young Football Players: A Machine Learning Approach. J. Funct. Morphol. Kinesiol. 2024, 9, 114. https://doi.org/10.3390/jfmk9030114
Teixeira JE, Encarnação S, Branquinho L, Morgans R, Afonso P, Rocha J, Graça F, Barbosa TM, Monteiro AM, Ferraz R, et al. Data Mining Paths for Standard Weekly Training Load in Sub-Elite Young Football Players: A Machine Learning Approach. Journal of Functional Morphology and Kinesiology. 2024; 9(3):114. https://doi.org/10.3390/jfmk9030114
Chicago/Turabian StyleTeixeira, José E., Samuel Encarnação, Luís Branquinho, Ryland Morgans, Pedro Afonso, João Rocha, Francisco Graça, Tiago M. Barbosa, António M. Monteiro, Ricardo Ferraz, and et al. 2024. "Data Mining Paths for Standard Weekly Training Load in Sub-Elite Young Football Players: A Machine Learning Approach" Journal of Functional Morphology and Kinesiology 9, no. 3: 114. https://doi.org/10.3390/jfmk9030114
APA StyleTeixeira, J. E., Encarnação, S., Branquinho, L., Morgans, R., Afonso, P., Rocha, J., Graça, F., Barbosa, T. M., Monteiro, A. M., Ferraz, R., & Forte, P. (2024). Data Mining Paths for Standard Weekly Training Load in Sub-Elite Young Football Players: A Machine Learning Approach. Journal of Functional Morphology and Kinesiology, 9(3), 114. https://doi.org/10.3390/jfmk9030114