Range of Flexion Improvement in Degenerative Stages of the First Metatarsophalangeal Joint (Hallux rigidus) with Cross-Linked Hyaluronic Acid: A Cadaveric Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Range of Flexion of the First MTP Joint
3.2. Plane-by-Plane Anatomical Dissection
3.3. Sectional Anatomy Analysis
4. Discussion
- Cohesiveness, understood as the ability of a material to maintain its stability due to the interaction of internal forces, is high. High-molecular-weight HA cannot pass through the pores of the cell wall. This prevents the HA from diffusing through adjacent structures during joint movement. With low-molecular-weight HA, the opposite occurs; it diffuses more easily through the effect of osmosis [26].
- The chemical structure of high-molecular-weight HA is a network of polymer chains intertwined with each other, forming a very large molecule, allowing it to remain localized on the injection surface, without penetrating deeper layers of the different tissues, thus providing more volume. Low-molecular-weight HA, on the other hand, is a smaller molecule with a very finely chopped linear polymer chain to facilitate its absorption and thus reach deeper layers of the dermis [27].
- An HA formula that lasts over time is needed. Enzymatic degradation depends on molecular weight. The union of intertwined polymer chains that form a mesh that high-molecular-weight HA also presents then protects it from the enzymes of the internal environment and gives it a longer shelf life, contrary to what happens with low-molecular-weight HA, which degrades rapidly in contact with enzymes [27].
- Mannitol is a natural antioxidant molecule that acts by eliminating the most aggressive hydroxyl radicals generated during infiltration, minimizing the degradation of HA, and acting as a thermal stabilizer, guaranteeing stability and physical-chemical properties throughout the product’s shelf life [29].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asunción Márquez, J.; Martín Oliva, X. Hallux rígidus: Aetiology, diagnosis, classification and treatment. Rev. Esp. Cir. Ortop. Traumatol. 2010, 54, 321–328. [Google Scholar] [CrossRef]
- Herrera-Pérez, M.; Andarcia-Bañuelos, C.; de Bergua-Domingo, J.; Paul, J.; Barg, A.; Valderrabano, V. Proposed global treatment algorithm for hallux rigidus according to evidence-based medicine. Rev. Esp. Cir. Ortop. Traumatol. 2014, 58, 377–386. [Google Scholar] [CrossRef]
- Lizano-Díez, X.; Cruz-Sánchez, M.; Gamba, C.; Frailé-Suari, A.; Pérez-Prieto, D.; Ginés-Cespedosa, A. Hallux rigidus: Reproductibility study of the Coughlin and Shurnas grading system. Rev. Pie Tobillo 2015, 29, 71–75. [Google Scholar] [CrossRef]
- Pons, M.; Alvarez, F.; Solana, J.; Viladot, R.; Varela, L. Sodium hyaluronate in the treatment of Hallux Rigidus.A single-blind randomized study. Foot Ankle Int. 2007, 28, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Caravelli, S.; Mosca, M.; Massimi, S.; Pungetti, C.; Russo, A.; Fuiano, M.; Catanese, G.; Zaffagnini, S. A comprehensive and narrative review of historical aspects and management of low-grade hallux rigidus: Conservative and surgical possibilities. Musculoskelet. Surg. 2018, 102, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Massimi, S.; Caravelli, S.; Fuiano, M.; Pungetti, C.; Mosca, M.; Zaffagnini, S. Management of high-grade hallux rigidus: A narrative review of the literature. Musculoskelet. Surg. 2020, 104, 237–243. [Google Scholar] [CrossRef]
- Acker, A.S.; Mendes de Carvalho, K.A.; Hanselman, A.E. Hallux Rigidus: Update on Conservative Management. Foot Ankle Clin. 2024, 29, 405–415. [Google Scholar] [CrossRef]
- Butler, J.J.; Shimozono, Y.; Gianakos, A.L.; Kennedy, J.G. Interpositional Arthroplasty in the Treatment of Hallux Rigidus: A Systematic Review. J. Foot Ankle Surg. 2022, 61, 657–662. [Google Scholar] [CrossRef]
- Momoh, E.O.; Anderson, J.G. Hallux rigidus; current concepts in surgical treatment. Current Orthop. Pract. 2009, 20, 136–139. [Google Scholar] [CrossRef]
- Sánchez Guzmán, J.; Gallo Oropeza, R.; Reyes Donado, M.; Martin Oliva, X.; Díaz Sánchez, T. Arthrodesis vs arthroplasty for moderate and severe Hallux rigidus: Systematic review. Foot Ankle Surg. 2024, 30, 174–180. [Google Scholar] [CrossRef]
- Artioli, E.; Mazzotti, A.; Zielli, S.; Bonelli, S.; Arceri, A.; Geraci, G.; Faldini, C. Keller’s arthroplasty for hallux rigidus: A systematic review. Foot Ankle Surg. 2022, 28, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Galois, L.; Coillard, J.Y.; Porterie, J.; Melac-Ducamp, S.; Conrozier, T. Open-Label Pilot Study of a Single Intra-Articular Injection of Mannitol-Modified Cross-Linked Hyaluronic Acid (HANOX-M-XL) for the Treatment of the First Metatarsophalangeal Osteoarthritis (Hallux Rigidus): The REPAR Trial. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2022, 15, 11795441211055882. [Google Scholar] [CrossRef] [PubMed]
- Maher, A.; Price, M. An audit of the use of sodium hyaluronate 1% (ostenil mini) therapy for the conservative treatment of hallux rigidus. Br. J. Podiatry 2007, 10, 47–51. [Google Scholar]
- Munteanu, S.E.; Zammit, G.V.; Menz, H.B.; Landorf, K.B.; Handley, C.J.; Elzarka, A.; Deluca, J. Effectiveness of intra-articular hyaluronan (Synvisc, hylan G-F 20) for the treatment of first metatarsophalangeal joint osteoarthritis: A randomised placebo-controlled trial. Ann. Rheum. Dis. 2011, 70, 1838–1841. [Google Scholar] [CrossRef] [PubMed]
- Petrella, R.J.; Cogliano, A. Intra-articular Hyaluronic Acid Treatment for Golfer’s Toe: Keeping Older Golfers on Course. Phys. Sportsmed. 2004, 32, 41–45. [Google Scholar] [CrossRef]
- González-Isaza, P.; Sánchez-Prieto, M.; Sánchez-Borrego, R. Chronic vulvar fissure: Approach with cross-linked hyaluronic acid. Int. Urogynecol. J. 2023, 34, 1495–1499. [Google Scholar] [CrossRef]
- Coughlin, M.J.; Shurnas, P.S. Hallux rigidus: Demographics, etiology, and radiographic assessment. Foot Ankle Int. 2003, 24, 731–743. [Google Scholar] [CrossRef]
- Malagelada, F.; Dalmau-Pastor, M.; Fargues, B.; Manzanares-Céspedes, M.C.; Peña, F.; Vega, J. Increasing the safety of minimally invasive hallux surgery-An anatomical study introducing the clock method. Foot Ankle Surg. 2018, 24, 40–44. [Google Scholar] [CrossRef]
- Senga, Y.; Nishimura, A.; Ito, N.; Kitaura, Y.; Sudo, A. Prevalence of and risk factors for hallux rigidus: A cross-sectional study in Japan. BMC Musculoskelet. Disord. 2021, 22, 786. [Google Scholar] [CrossRef]
- Iturriaga, V.; Vásquez, B.; Manterola, C.; Del Sol, M. Role of hyaluronic acid in the homeostasis and therapeutics of temporomandibular joint osteoarthritis. Int. J. Morphol. 2017, 35, 870–876. [Google Scholar] [CrossRef]
- Martín, S.; Berme, P. Protectores del cartílago articular. Farm Prof. 2008, 22, 48–53. [Google Scholar]
- Monfort, J.; Benito, P. Hyaluronic acid in the treatment of osteoarthritis. Reumatol. Clin. 2006, 2, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Carro, G.; Villanueva-Blaya, P. Clinical application and therapeutic effects of viscosupplementation in knee arthrosis. Rev. Ortop. Traumatol. 2002, 5, 458–464. [Google Scholar]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic Acid in the Third Millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef]
- Sánchez Lázaro, J.A.; Granado, P.C.; Del Sol, M.G.; Medina, A.G.; Gállego, L.D.; Sandoval, D.G.-A.; Fernández, J.G.P. The role of different hyaluronic acids in the articular cartilage of rabbit. Open Orthop. J. 2010, 4, 44–47. [Google Scholar] [CrossRef]
- Bachelier, J.; Dewandre, L.; Peyronnet, B. DERMYAL® Relleno de Acido Hialurónico Posicionamiento y Estudio Clínico. J. Méd. Chir. 2009, 1, 1–7. [Google Scholar]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers 2020, 12, 1800. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L.; Brauner, P.; Kolar, J. Hyaluronic acid (hyaluronan): A review. Vet. Med. 2008, 53, 397–411. [Google Scholar] [CrossRef]
- Mendoza, G.; Alvarez, A.I.; Pulido, M.M.; Molina, A.J.; Merino, G.; Real, R.; Fernandes, P.; Prieto, J.G. Inhibitory effects of different antioxidants on hyaluronan depolymerization. Carbohydr. Res. 2007, 342, 96–102. [Google Scholar] [CrossRef]
- Pifarré-San Agustín, F.; Prats, T.; Pifarré Prats, V. Aplicación del ácido hialurónico en el tratamiento de las úlceras en el pie. Rev. Esp. Pod. 2022, 33, 77–78. [Google Scholar] [CrossRef]
- Viana Garcia, A.; Palomo López, P. Ácido hialurónico como tratamiento en úlcera neuropática: A propósito de un caso. Rev. Int. Cienc. Podol. 2017, 11, 45–49. [Google Scholar] [CrossRef]
- Lee, K.; Hwang, I.Y.; Ryu, C.H.; Lee, J.W.; Kang, S.W. Ultrasound-Guided Hyaluronic Acid Injection for the Management of Morton’s Neuroma. Foot Ankle Int. 2018, 39, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.F.; Chou, Y.J.; Hsu, C.W.; Hwang, C.W.; Hsu, P.T.; Wang, J.L.; Hsu, Y.W.; Chou, M.C. Efficacy of intra-articular hyaluronic acid in patients with osteoarthritis of the ankle: A prospective study. Osteoarthr. Cartil. 2006, 14, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.; Pérez, A. Evidencia de la eficacia del ácido hialurónico intraarticular en el tratamiento de la artrosis de rodilla. Rev. Soc. Val. Reuma. 2007, 2, 61–62. [Google Scholar]
- Couceiro, J.M.; Cotón, F.; Fernández, A.; Collado, A.; Usabiaga, J.; Coronel, P.; Llorens, M.A. Multicenter clinical trial on the efficacy of intra-articular hyaluronic acid (Adant®) in osteoarthritis of the knee. Rev. Esp. Reumatol. 2003, 30, 57–65. [Google Scholar]
- Conrozier, T.; Bozgan, A.M.; Bossert, M.; Sondag, M.; Lohse-Walliser, A.; Balblanc, J.C. Standardized Follow-up of Patients with Symptomatic Knee Osteoarthritis Treated with a Single Intra-articular Injection of a Combination of Cross-Linked Hyaluronic Acid and Mannitol. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2016, 25, 175–179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berreni, N.; Salerno, J.; Chevalier, T.; Alonso, S.; Mares, P. Evaluation of the effect of multipoint intra-mucosal vaginal injection of a specific cross-linked hyaluronic acid for vulvovaginal atrophy: A prospective bi-centric pilot study. BMC Womens Health 2021, 21, 322. [Google Scholar] [CrossRef]
- Capell Morera, A.; De Planell-Mas, E.; Pérez Palma, L.; Manzanares Céspedes, M.C. Good Short- and Mid-term Outcome After Cross-Linked Hyaluronic Acid Infiltration for Hallux Rigidus: A Case Report. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2024, 17, 1–6. [Google Scholar] [CrossRef]
Total Sample Size: n = 10 | |
---|---|
Sex, n (%) | |
Female | 6 (60%) |
Male | 4 (40%) |
Age in years, mean [Q1; Q3] | 87.5 [75.8; 92.5] |
Degree of arthrosis involvement, n (%): | |
High (grade IV) | 2 (20.0%) |
Moderate–High (grade III) | 6 (60.0%) |
Moderate (grade II) | 2 (20.0%) |
Sample Number | Sex | Degree of Joint Involvement | Before Injection Hyaluronic Acid | After Injection Hyaluronic Acid | Before Injection Hyaluronic Acid | After Injection Hyaluronic Acid | Before Injection Hyaluronic Acid | After injection Hyaluronic Acid |
---|---|---|---|---|---|---|---|---|
Degrees of Unloaded Plantarflexion | Degrees of Unloaded Plantarflexion | Degrees of Loaded Dorsiflexion | Degrees of Loaded Dorsiflexion | Degrees of Unloaded Dorsiflexion | Degrees of Unloaded Dorsiflexion | |||
1 | M-H | 12 | 15 | 36 | 42 | 50 | 68 | |
2 | M-H | 25 | 36 | 32 | 48 | 40 | 60 | |
3 | M-H | 10 | 16 | 50 | 90 | 64 | 72 | |
4 | M-H | 22 | 30 | 40 | 52 | 40 | 50 | |
5 | M-H | 40 | 52 | 50 | 68 | 52 | 70 | |
6 | H | 16 | 34 | 56 | 70 | 24 | 52 | |
7 | M-H | 2 | 6 | 44 | 58 | 40 | 56 | |
8 | M | 8 | 10 | 52 | 58 | 42 | 54 | |
9 | H | 16 | 24 | 22 | 46 | 24 | 42 | |
10 | M | 12 | 14 | 54 | 76 | 62 | 62 |
n | Before Infiltration | After Infiltration | ||||
---|---|---|---|---|---|---|
Means | [Q1; Q3] | Means | [Q1; Q3] | p-Value | ||
Degrees of loaded dorsiflexion | 10 | 47 | [22–56] | 58 | [42–90] | 0.006 * |
Degrees of unloaded dorsiflexion | 10 | 41 | [24–64] | 58 | [42–72] | 0.009 * |
Degrees of unloaded plantarflexion | 10 | 14 | [2–40] | 16 | [6–52] | 0.083 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capell Morera, A.; de Planell Mas, E.; Perez Palma, L.; Manzanares-Céspedes, M.C. Range of Flexion Improvement in Degenerative Stages of the First Metatarsophalangeal Joint (Hallux rigidus) with Cross-Linked Hyaluronic Acid: A Cadaveric Study. J. Funct. Morphol. Kinesiol. 2024, 9, 259. https://doi.org/10.3390/jfmk9040259
Capell Morera A, de Planell Mas E, Perez Palma L, Manzanares-Céspedes MC. Range of Flexion Improvement in Degenerative Stages of the First Metatarsophalangeal Joint (Hallux rigidus) with Cross-Linked Hyaluronic Acid: A Cadaveric Study. Journal of Functional Morphology and Kinesiology. 2024; 9(4):259. https://doi.org/10.3390/jfmk9040259
Chicago/Turabian StyleCapell Morera, Annabel, Elena de Planell Mas, Laura Perez Palma, and Maria Cristina Manzanares-Céspedes. 2024. "Range of Flexion Improvement in Degenerative Stages of the First Metatarsophalangeal Joint (Hallux rigidus) with Cross-Linked Hyaluronic Acid: A Cadaveric Study" Journal of Functional Morphology and Kinesiology 9, no. 4: 259. https://doi.org/10.3390/jfmk9040259
APA StyleCapell Morera, A., de Planell Mas, E., Perez Palma, L., & Manzanares-Céspedes, M. C. (2024). Range of Flexion Improvement in Degenerative Stages of the First Metatarsophalangeal Joint (Hallux rigidus) with Cross-Linked Hyaluronic Acid: A Cadaveric Study. Journal of Functional Morphology and Kinesiology, 9(4), 259. https://doi.org/10.3390/jfmk9040259