Multi-Source Information Fusion-Based Rock-Grade Hybrid Model for Tunnel Construction Process
Abstract
1. Introduction
- (1)
- The poor quality of actual advanced geological forecasting exploration data;
- (2)
- The complexity of actual geological conditions, leading to limitations in single forecasting methods for rock grade prediction.
2. Analysis of Rock Grade Characteristics During Tunnel Excavation Process
3. Intelligent Forecasting Model for Tunnel Rock Grade
3.1. The Model Framework
3.2. Preprocessing of TSP Detection Data
3.2.1. Feature Extraction Technique for TSP Detection Data
3.2.2. Spatial Registration Technique for TSP Detection Data
3.2.3. Techniques for Outlier Detection in TSP Detection Data
4. Simulation Experiments and Results Analysis
4.1. Simulation Experiments on Rock Grade
4.1.1. Construction of Rock Grade Sub-Model
4.1.2. Rock Grade Classification Decision Fusion Model
4.2. Analysis of Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Nomenclature | Key Terms |
WF | Working Face |
TSP | Tunnel Seismic Prediction |
RG | Rock Grade |
IRM | Intact Rock Mass |
HR | Hard Rock |
FRM | Fractured Rock Mass |
SR | Soft Rock |
TF | Tectonic Forces |
EFR | Exhibiting Fragmented Rock |
AG | Angular Gravel |
SC | Soil-like Characteristic |
Vp | P-wave velocity |
Vs | Shear Wave Velocity |
Vp/Vs | P-wave to S-wave Velocity Ratio Data |
Nu | Poisson’s ratio |
E | Dynamic Young’s Modulus |
References
- Chen, G.; Wu, Z.-Z.; Wang, F.-J.; Ma, Y.-L. Study on the application of a comprehensive technique for geological prediction in tunneling. Environ. Earth Sci. 2011, 62, 1667–1671. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Z. Combination and application of advanced geological prediction technology in tunnel construction. Transp. Energy Conserv. Environ. Prot. 2024, 20, 217–220+248. [Google Scholar]
- Zhao, D.; He, Y.; Chen, X.; Wang, J.; Liu, Y.; Zhang, Q.; Bai, J.; Liu, R. Data-driven intelligent prediction of TBM surrounding rock and personalized evaluation of disaster-inducing factors. Tunn. Undergr. Space Technol. 2024, 148, 105768. [Google Scholar] [CrossRef]
- Yuan, Z.; An, Z.; Ma, W.; Ma, C.; Wang, Y.; Chang, K. Exploration of an Intelligent Grading Method for Tunnel Surrounding Rock Integrating Multi-source Heterogeneous Information. Tunn. Constr. 2023, 43, 429–440. [Google Scholar]
- Li, Z.; Xue, Y.; Li, S.; Qiu, D.; Su, M.; Zhao, Y.; Zhou, B. An analytical model for surrounding rock classification during underground water-sealed caverns construction: A case study from eastern China. Environ. Earth Sci. 2019, 78, 602. [Google Scholar] [CrossRef]
- Barton, N. Some new Q-value correlations to assist in site characterisation and tunnel design. Int. J. Rock Mech. Min. Sci. 2002, 39, 185–216. [Google Scholar] [CrossRef]
- Warren, S.N.; Kallu, R.R.; Barnard, C.K. Correlation of the Rock Mass Rating (RMR) System with the Unified Soil Classification System (USCS): Introduction of the Weak Rock Mass Rating System (W-RMR). Rock Mech. Rock Eng. 2016, 49, 4507–4518. [Google Scholar] [CrossRef]
- Song, Y.; Xue, H.; Meng, X. Evaluation method of slope stability based on the Q slope system and BQ method. Bull. Eng. Geol. Environ. 2019, 78, 4865–4873. [Google Scholar] [CrossRef]
- Ma, J.; Li, T.; Yang, G.; Dai, K.; Ma, C.; Tang, H.; Wang, G.; Wang, J.; Xiao, B.; Meng, L. A real-time intelligent classification model using machine learning for tunnel surrounding rock and its application. Georisk 2023, 17, 148–168. [Google Scholar] [CrossRef]
- Jalalifar, H.; Mojedifar, S.; Sahebi, A.A.; Nezamabadi-pour, H. Application of the adaptive neuro-fuzzy inference system for prediction of a rock engineering classification system. Comput. Geotech. 2011, 38, 783–790. [Google Scholar] [CrossRef]
- Basnet, P.M.S.; Mahtab, S.; Jin, A. A comprehensive review of intelligent machine learning based predicting methods in long-term and short-term rock burst prediction. Tunn. Undergr. Space Technol. 2023, 142, 105434. [Google Scholar] [CrossRef]
- Ma, J.; Ma, C.; Li, T.; Yan, W.; Faradonbeh, R.S.; Long, H.; Dai, K. Real-time classification model for tunnel surrounding rocks based on high-resolution neural network and structure-optimizer hyperparameter optimization. Comput. Geotech. 2024, 168, 106155. [Google Scholar] [CrossRef]
- Li, Y.; Ruan, H.; Zhu, Z.; Chen, Y. Classification of surrounding rock for underground engineering based on improved BP neural network. Renmin Huanghe 2014, 36, 130–133. [Google Scholar]
- Xu, B.; Wang, J.; Qian, Y.; Zhang, Z.; Zhu, R.; Ge, X. Research on intelligent surrounding rock grading method based on fuzzy reasoning. J. Railw. Eng. Soc. 2022, 39, 24–29. [Google Scholar]
- Qiu, D.; Li, S.; Zhang, L.; Xu, Y.; Su, M. Rock Classification Prediction Ahead of Construction Based on TSP203 System and GA-SVM. Chin. J. Rock Mech. Eng. 2010, 29, 3221–3226. [Google Scholar]
- Wen, J.; Li, H.; Jiang, F.; Yu, Z.; Ma, H.; Yang, X. Rock burst risk evaluation based on equivalent surrounding rock strength. Int. J. Min. Sci. Technol. 2019, 29, 571–576. [Google Scholar] [CrossRef]
- Q/CR 9217-2015; Technical Specidication for Geology Forecast of Railway Tunnel. China Railway Publishing House Co., Ltd.: Beijing, China, 2015.
- Gan, L.; Zhu, C.; He, M.; Zuo, Y.; Gong, F.; Xue, Y.; Feng, G. Intelligent method for parameters optimization of cable in soft rock tunnel base on longitudinal wave velocity. Tunn. Undergr. Space Technol. 2023, 133, 104905. [Google Scholar] [CrossRef]
- Lin, C.J.; Li, S.C. Tunnel Seismic Prediction (TSP) and its Application in Tunnel Engineering. Appl. Mech. Mater. 2014, 2974, 1779–1782. [Google Scholar]
- Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. Remote Sens. 2017, 9, 498. [Google Scholar] [CrossRef]
- Riedel, P.; Reichert, M.; Von Schwerin, R.; Hafner, A.; Schaudt, D.; Singh, G. Performance Analysis of Federated Learning Algorithms for Multilingual Protest News Detection Using Pre-Trained DistilBERT and BERT. IEEE Access 2023, 11, 134009–134022. [Google Scholar] [CrossRef]
Grade | Rock Mass Characteristics |
---|---|
I | Extremely HR, IRM |
II | Extremely HR, Relatively IRM; HR, IRM |
III | Extremely HR, Moderately FRM; HR or Intermittent HR Layers, IRM; Relatively SR, IRM |
IV | Extremely HR, FRM; HR, Moderately FRM; Relatively SRM, Moderately FRM; SR, Moderately IRM |
V | SR, Extremely FRM; Extremely SR and FRM |
VI | Fault Zone Severely Affected by TF, EFR, AG, Powder, and SC |
Grade | Precision | Recall | F1 | Acc |
---|---|---|---|---|
III | 62.50% | 76.09% | 72.73% | 64% |
IV | 76.92% | 79.55% | 53.33% | 71% |
III and IV | 66.95% | 66.46% | 66.46% | 67.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Fu, W.; Hu, X.; Han, S. Multi-Source Information Fusion-Based Rock-Grade Hybrid Model for Tunnel Construction Process. Infrastructures 2025, 10, 217. https://doi.org/10.3390/infrastructures10080217
Huang Y, Fu W, Hu X, Han S. Multi-Source Information Fusion-Based Rock-Grade Hybrid Model for Tunnel Construction Process. Infrastructures. 2025; 10(8):217. https://doi.org/10.3390/infrastructures10080217
Chicago/Turabian StyleHuang, Yong, Wei Fu, Xiewen Hu, and Songli Han. 2025. "Multi-Source Information Fusion-Based Rock-Grade Hybrid Model for Tunnel Construction Process" Infrastructures 10, no. 8: 217. https://doi.org/10.3390/infrastructures10080217
APA StyleHuang, Y., Fu, W., Hu, X., & Han, S. (2025). Multi-Source Information Fusion-Based Rock-Grade Hybrid Model for Tunnel Construction Process. Infrastructures, 10(8), 217. https://doi.org/10.3390/infrastructures10080217