Comparison of Synchrotron and Laboratory X-ray Sources in Photoelectron Spectroscopy Experiments for the Study of Nitrogen-Doped Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isaacs, M.A.; Davies-Jones, J.; Davies, P.R.; Guan, S.; Lee, R.; Morgan, D.J.; Palgrave, R. Advanced XPS Characterization: XPS-Based Multi-Technique Analyses for Comprehensive Understanding of Functional Materials. Mater. Chem. Front. 2021, 5, 7931–7963. [Google Scholar] [CrossRef]
- Pagliara, P.; Chirizzi, D.; Guascito, M.R. Chemical Characterization of Red Cells from the Black Sea Urchin Arbacia Lixula by X-ray Photoelectron Spectroscopy. RSC Adv. 2021, 11, 27074–27083. [Google Scholar] [CrossRef]
- Shchukarev, A.; Backman, E.; Watts, S.; Salentinig, S.; Urban, C.F.; Ramstedt, M. Applying Cryo-X-ray Photoelectron Spectroscopy to Study the Surface Chemical Composition of Fungi and Viruses. Front. Chem. 2021, 9, 666853. [Google Scholar] [CrossRef] [PubMed]
- Andronowski, J.M.; Mundorff, A.Z.; Davis, R.A.; Price, E.W. Application of X-ray Photoelectron Spectroscopy to Examine Surface Chemistry of Cancellous Bone and Medullary Contents to Refine Bone Sample Selection for Nuclear DNA Analysis. J. Anal. Spectrom. 2019, 34, 2074–2082. [Google Scholar] [CrossRef]
- Chakraborty, D.; Sarkar, S.; Das, P.K. Blood Dots: Hemoglobin-Derived Carbon Dots as Hydrogen Peroxide Sensors and Pro-Drug Activators. ACS Sustain. Chem. Eng. 2018, 6, 4661–4670. [Google Scholar] [CrossRef]
- Wang, X.; Qin, X.; Wang, W.; Liu, Y.; Shi, X.; Sun, Y.; Liu, C.; Zhao, J.; Zhang, G.; Liu, H.; et al. Interface Chemistry and Surface Morphology Evolution Study for InAs/Al2O3 Stacks upon in Situ Ultrahigh Vacuum Annealing. Appl. Surf. Sci. 2018, 443, 567–574. [Google Scholar] [CrossRef]
- Feng, Z.; Peng, Y.; Liu, H.; Sun, Y.; Wang, Y.; Meng, M.; Liu, H.; Wang, J.; Wu, R.; Wang, X.; et al. The Band Structure Change of Hf0.5Zr0.5O2/Ge System upon Post Deposition Annealing. Appl. Surf. Sci. 2019, 488, 778–782. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Sun, Y.; Liu, C.; Wang, W.; Cheng, Y.; Wang, W.; Wang, J.; Cho, K.; Lu, F.; et al. Interface Chemistry Study of InSb/Al2O3 Stacks upon in Situ Post Deposition Annealing by Synchrotron Radiation Photoemission Spectroscopy. Appl. Surf. Sci. 2017, 425, 932–940. [Google Scholar] [CrossRef]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, R. NIST Standard Reference Database 20, Version 3.4 (Web Version); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Greczynski, G.; Hultman, L. X-ray Photoelectron Spectroscopy: Towards Reliable Binding Energy Referencing. Prog. Mater. Sci. 2020, 107, 100591. [Google Scholar] [CrossRef]
- Major, G.H.; Avval, T.G.; Moeini, B.; Pinto, G.; Shah, D.; Jain, V.; Carver, V.; Skinner, W.; Gengenbach, T.R.; Easton, C.D.; et al. Assessment of the Frequency and Nature of Erroneous X-ray Photoelectron Spectroscopy Analyses in the Scientific Literature. J. Vac. Sci. Technol. A 2020, 38, 061204. [Google Scholar] [CrossRef]
- Linford, M.R.; Smentkowski, V.S.; Grant, J.T.; Brundle, C.R.; Sherwood, P.M.A.; Biesinger, M.C.; Terry, J.; Artyushkova, K.; Herrera-Gómez, A.; Tougaard, S.; et al. Proliferation of Faulty Materials Data Analysis in the Literature. Microsc. Microanal. 2020, 26, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalha, C.; Fernando, N.K.; Bhatt, P.; Johansson, F.O.L.; Lindblad, A.; Rensmo, H.; Medina, L.Z.; Lindblad, R.; Siol, S.; Jeurgens, L.P.H.; et al. Hard X-ray Photoelectron Spectroscopy: A Snapshot of the State-of-the-Art in 2020. J. Phys. Condens. Matter 2021, 33, 233001. [Google Scholar] [CrossRef]
- Murakami, R.; Kageyama, H.; Nakamura, K.; Tanaka, H.; Shinotsuka, H.; Yoshikawa, H.; Yoshihara, K. Background Estimation in X-ray Photoelectron Spectroscopy Data Using an Active Shirley Method with Automated Selection of the Analytical Range. E-J. Surf. Sci. Nanotechnol. 2019, 17, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Siol, S.; Mann, J.; Newman, J.; Miyayama, T.; Watanabe, K.; Schmutz, P.; Cancellieri, C.; Jeurgens, L.P.H. Concepts for Chemical State Analysis at Constant Probing Depth by Lab-based XPS/HAXPES Combining Soft and Hard X-ray Sources. Surf. Interface Anal. 2020, 52, 802–810. [Google Scholar] [CrossRef]
- Major, G.H.; Fairley, N.; Sherwood, P.M.A.; Linford, M.R.; Terry, J.; Fernandez, V.; Artyushkova, K. Practical Guide for Curve Fitting in X-ray Photoelectron Spectroscopy. J. Vac. Sci. Technol. A 2020, 38, 061203. [Google Scholar] [CrossRef]
- Baer, D.R.; Artyushkova, K.; Richard Brundle, C.; Castle, J.E.; Engelhard, M.H.; Gaskell, K.J.; Grant, J.T.; Haasch, R.T.; Linford, M.R.; Powell, C.J.; et al. Practical Guides for X-ray Photoelectron Spectroscopy: First Steps in Planning, Conducting, and Reporting XPS Measurements. J. Vac. Sci. Technol. A 2019, 37, 031401. [Google Scholar] [CrossRef]
- Faisal, S.N.; Haque, E.; Noorbehesht, N.; Zhang, W.; Harris, A.T.; Church, T.L.; Minett, A.I. Pyridinic and Graphitic Nitrogen-Rich Graphene for High-Performance Supercapacitors and Metal-Free Bifunctional Electrocatalysts for ORR and OER. RSC Adv. 2017, 7, 17950–17958. [Google Scholar] [CrossRef] [Green Version]
- Bianco, A.; Chen, Y.; Frackowiak, E.; Holzinger, M.; Koratkar, N.; Meunier, V.; Mikhailovsky, S.; Strano, M.; Tascon, J.M.D.; Terrones, M. Carbon Science Perspective in 2020: Current Research and Future Challenges. Carbon NY 2020, 161, 373–391. [Google Scholar] [CrossRef]
- Arkhipova, E.A.; Ivanov, A.S.; Strokova, N.E.; Chernyak, S.A.; Shumyantsev, A.V.; Maslakov, K.I.; Savilov, S.V.; Lunin, V.V. Structural Evolution of Nitrogen-Doped Carbon Nanotubes: From Synthesis and Oxidation to Thermal Defunctionalization. Carbon N. Y. 2017, 125, 20–31. [Google Scholar] [CrossRef]
- Bulyarskiy, S.V.; Bogdanova, D.A.; Gusarov, G.G.; Lakalin, A.V.; Pavlov, A.A.; Ryazanov, R.M. Nitrogen in Carbon Nanotubes. Diam. Relat. Mater. 2020, 109, 108042. [Google Scholar] [CrossRef]
- Yamada, Y.; Kim, J.; Matsuo, S.; Sato, S. Nitrogen-Containing Graphene Analyzed by X-ray Photoelectron Spectroscopy. Carbon N. Y. 2014, 70, 59–74. [Google Scholar] [CrossRef]
- Lee, W.J.; Maiti, U.N.; Lee, J.M.; Lim, J.; Han, T.H.; Kim, S.O. Nitrogen-Doped Carbon Nanotubes and Graphene Composite Structures for Energy and Catalytic Applications. Chem. Commun. 2014, 50, 6818–6830. [Google Scholar] [CrossRef] [PubMed]
- Podyacheva, O.Y.; Suboch, A.N.; Yashnik, S.A.; Salnikov, A.V.; Cherepanova, S.V.; Kibis, L.S.; Simenyuk, G.Y.; Romanenko, A.I.; Ismagilov, Z.R. Effect of Structure and Surface State of Nitrogen Doped Carbon Nanotubes on Their Functional and Catalytic Properties. J. Struct. Chem. 2021, 62, 771–781. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Zhang, J.; Li, M.; Bi, X.; Liu, T.; He, T.; Cheng, J.; Zhang, F.; Li, Y.; et al. Bamboo-Like Nitrogen-Doped Carbon Nanotube Forests as Durable Metal-Free Catalysts for Self-Powered Flexible Li–CO2 Batteries. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.; Senga, R.; Suga, Y.; Totani, K.; Maki, T.; Itoh, H.; Shinokura, K.; Suenaga, K.; Watanabe, T. Structural Analysis and Oxygen Reduction Reaction Activity in Bamboo-like Nitrogen-Doped Carbon Nanotubes Containing Localized Nitrogen in Nodal Regions. Carbon 2017, 123, 99–105. [Google Scholar] [CrossRef]
- Sánchez-Salas, R.; Kashina, S.; Galindo, R.; Cuentas-Gallegos, A.K.; Rayón-López, N.; Miranda-Hernández, M.; Fuentes-Ramírez, R.; López-Urías, F.; Muñoz-Sandoval, E. Effect of Pyrrolic-N Defects on the Capacitance and Magnetization of Nitrogen-Doped Multiwalled Carbon Nanotubes. Carbon N. Y. 2021, 183, 743–762. [Google Scholar] [CrossRef]
- Ombaka, L.M.; Ndungu, P.G.; Nyamori, V.O. Pyrrolic Nitrogen-Doped Carbon Nanotubes: Physicochemical Properties, Interactions with Pd and Their Role in the Selective Hydrogenation of Nitrobenzophenone. RSC Adv. 2015, 5, 109–122. [Google Scholar] [CrossRef]
- Liang, L.; Xiao, M.; Zhu, J.; Ge, J.; Liu, C.; Xing, W. Low-Temperature Synthesis of Nitrogen Doped Carbon Nanotubes as Promising Catalyst Support for Methanol Oxidation. J. Energy Chem. 2019, 28, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Dong, X.; Huang, H.; Qi, M. Rich Nitrogen-Doped Carbon on Carbon Nanotubes for High-Performance Sodium-Ion Supercapacitors. J. Power Sources 2020, 459, 228104. [Google Scholar] [CrossRef]
- Sumpter, B.G.; Meunier, V.; Romo-Herrera, J.M.; Cruz-Silva, E.; Cullen, D.A.; Terrones, H.; Smith, D.J.; Terrones, M. Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity, Bundle Dispersability, and Bamboo-like Structure Formation. ACS Nano 2007, 1, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Louchev, O.A. Formation Mechanism of Pentagonal Defects and Bamboo-like Structures in Carbon Nanotube Growth Mediated by Surface Diffusion. Phys. Status Solidi A Appl. Res. 2002, 193, 585–596. [Google Scholar] [CrossRef]
- Il’ina, M.V.; Il’in, O.I.; Guryanov, A.V.; Osotova, O.I.; Blinov, Y.F.; Fedotov, A.A.; Ageev, O.A. Anomalous Piezoelectricity and Conductivity in Aligned Carbon Nanotubes. J. Mater. Chem. C Mater. 2021, 9, 6014–6021. [Google Scholar] [CrossRef]
- Il’ina, M.; Il’in, O.; Osotova, O.; Khubezhov, S.; Rudyk, N.; Pankov, I.; Fedotov, A.; Ageev, O. Pyrrole-like Defects as Origin of Piezoelectric Effect in Nitrogen-Doped Carbon Nanotubes. Carbon 2022, 190, 348–358. [Google Scholar] [CrossRef]
- Il’ina, M.V.; Soboleva, O.I.; Khubezov, S.A.; Smirnov, V.A.; Il’in, O.I. Study of Nitrogen-Doped Carbon Nanotubes for Creation of Piezoelectric Nanogenerator. J. Low Power Electron. Appl. 2023, 13, 11. [Google Scholar] [CrossRef]
- Il’ina, M.V.; Osotova, O.I.; Rudyk, N.N.; Khubezhov, S.A.; Pankov, I.V.; Ageev, O.A.; Il’in, O.I. Sublayer Material as a Critical Factor of Piezoelectric Response in Nitrogen-Doped Carbon Nanotubes. Diam. Relat. Mater. 2022, 126, 109069. [Google Scholar] [CrossRef]
- Molodtsov, S.L.; Fedoseenko, S.I.; Vyalikh, D.V.; Iossifov, I.E.; Follath, R.; Gorovikov, S.A.; Brzhezinskaya, M.M.; Dedkov, Y.S.; Püttner, R.; Schmidt, J.-S.; et al. High-Resolution Russian–German Beamline at BESSY. Appl. Phys. A 2009, 94, 501–505. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater Subshell Photoionization Cross-Sections at 1254 and 1487 EV. J. Electron. Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Seah, M.P. Calibration of electron spectrometer energy scales for AES and XPS. J. Surf. Anal. 2022, 28, S30–S32. [Google Scholar] [CrossRef]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of Electron Inelastic Mean Free Paths. V. Data for 14 Organic Compounds over the 50–2000 EV Range. Surf. Interface Anal. 1994, 21, 165–176. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.C.; McIntyre, N.S. New Interpretations of XPS Spectra of Nickel Metal and Oxides. Surf. Sci. 2006, 600, 1771–1779. [Google Scholar] [CrossRef]
- Yeh, J.J.; Lindau, I. Atomic Subshell Photoionization Cross Sections and Asymmetry Parameters: 1 ≤ Z ≤ 103. Data Nucl. Data Tables 1985, 32, 1–55. [Google Scholar] [CrossRef]
- Sanjinés, R.; Wiemer, C.; Almeida, J.; Lévy, F. Valence Band Photoemission Study of the Ti-Mo-N System. Thin Solid Film. 1996, 290–291, 334–338. [Google Scholar] [CrossRef]
- Schrader, G. In Situ Laser Raman Spectroscopy of the Sulfiding of Mo/Al2O3 Catalysts. J. Catal. 1983, 80, 369–385. [Google Scholar] [CrossRef]
- Anwar, M.; Hogarth, C.A.; Bulpett, R. An XPS Study of Amorphous MoO3/SiO Films Deposited by Co-Evaporation. J. Mater. Sci. 1990, 25, 1784–1788. [Google Scholar] [CrossRef]
- Okamoto, Y. Surface Structure and Catalytic Activity of Sulfided MoO3/Al2O3 Catalysts: Hydrodesulfurization and Hydrogenation Activities. J. Catal. 1980, 66, 93–100. [Google Scholar] [CrossRef]
- Bianco, G.V.; Sacchetti, A.; Grande, M.; D’Orazio, A.; Milella, A.; Bruno, G. Effective Hole Conductivity in Nitrogen-Doped CVD-Graphene by Singlet Oxygen Treatment under Photoactivation Conditions. Sci. Rep. 2022, 12, 8703. [Google Scholar] [CrossRef]
- Il’ina, M.; Il’in, O.; Blinov, Y.; Konshin, A.; Konoplev, B.; Ageev, O. Piezoelectric Response of Multi-Walled Carbon Nanotubes. Materials 2018, 11, 638. [Google Scholar] [CrossRef] [Green Version]
- Kundalwal, S.I.; Meguid, S.A.; Weng, G.J. Strain Gradient Polarization in Graphene. Carbon 2017, 117, 462–472. [Google Scholar] [CrossRef]
Sample | D, nm | L, μm | C1s, % | O1s, % | N1s, % | Mo3d, % |
---|---|---|---|---|---|---|
S1 | 117 ± 33 | 1.96 ± 0.4 | 40.14 | 21.77 | 25.25 | 12.84 |
S1 | 92 ± 41 | 1.81 ± 0.12 | 37.93 | 16.33 | 36.64 | 9.1 |
Parameters | MoO2 | MoO3 | MoN | SiO2 | Ni | Ni(OH)2 | N5 * | N6 * | NG * | CO2 |
---|---|---|---|---|---|---|---|---|---|---|
Density, g/cm3 | 6.48 | 4.69 | 9.06 | 2.65 | 8.90 | 5.20 | 0.97 | 0.98 | 1.02 | 1.76 |
Bandgap, eV | 2.53 | 3.30 | 0.00 | 8.60 | 0.00 | 4.10 | 0.59 | 0.41 | 0.21 | 6.63 |
Valence electrons | 18 | 24 | 9 | 16 | 2 | 16 | 19 | 23 | 63.00 | 18 |
Sample | Mo3d5/2 Binding Energy, eV | N1s Binding Energy, eV | |||||||
---|---|---|---|---|---|---|---|---|---|
MoN | MoO2 | MoOx | MoO3 | N5 * | N6 * | NG * | NP * | N-Mo * | |
S1 | 229.0 | 229.44 | 231.24 | 232.75 | 399.81 | 398.49 | 400.81 | 402.20 | 396.80 |
S2 | 229.0 | 229.47 | 231.70 | 232.86 | 399.80 | 399.0 | 401.20 | 402.85 | 397.16 |
Lit. | 228.95 [43] | 229.4 [44] | 231.90 [45] | 232.70 [46] | 399.80 [47] | 398.80 [47] | 401.50 [47] | 402.3 [47] | 397.05 [43] |
Sample | MoO3 (5/2), % | MoOx (5/2), % | MoO2 (5/2), % | MoN (5/2), % |
---|---|---|---|---|
S1 | 48.33 | 4.87 | 33.32 | 13.48 |
S2 | 58.34 | 24.16 | 15.30 | 2.17 |
Components | Sample S1, Al Kα (1486.6 eV) | Sample S2, Synchrotron Source (850 eV) | ||||||
---|---|---|---|---|---|---|---|---|
BE, eV | Peak Intensity | FWHM, eV | Peak Area | BE, eV | Peak Intensity | FWHM, eV | Peak Area | |
MoO2 3p(3/2) | 395.02 | 2394.99 | 2.21 | 5739.58 | 394.5 | 502.41 | 1.68 | 874.7 |
MoO3 3p(3/2) | 398.2 | 3877.06 | 1.98 | 8322.4 | 398.03 | 1809.46 | 1.61 | 3335.36 |
MoOx 3p(3/2) | 395.92 | 350.09 | 2.21 | 838.98 | 396.2 | 794.27 | 1.68 | 1383.95 |
N6 | 398.49 | 625.04 | 1.66 | 1124.25 | 399 | 634.57 | 1.44 | 992.73 |
N5 | 399.81 | 1125.1 | 1.66 | 2023.69 | 399.79 | 1208.29 | 1.44 | 1890.25 |
NG | 400.81 | 756.54 | 1.66 | 1360.78 | 401.2 | 864.42 | 1.44 | 1352.3 |
NP | 402.2 | 365.61 | 1.86 | 657.61 | 402.85 | 221.56 | 1.64 | 346.38 |
MoN 3p(3/2) | 394.83 | 970.04 | 2.21 | 2324.69 | 393.4 | 119.07 | 1.53 | 124.21 |
N-Mo | 396.8 | 1239.85 | 1.66 | 2230.1 | 397.16 | 671.08 | 1.44 | 1049.84 |
Sample | C1s, % | O1s, % | Mo3d, % | N1s, % | N-Mo, % | N5, % | N6, % | NG, % | NP, % |
---|---|---|---|---|---|---|---|---|---|
S1 | 77.46 | 11.01 | 5.07 | 6.47 | 1.95 | 1.77 | 0.98 | 1.19 | 0.58 |
S2 | 81.43 | 9.33 | 3.33 | 5.91 | 0.77 | 2.05 | 1.22 | 1.46 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Il’ina, M.V.; Khubezhov, S.A.; Polyvianova, M.R.; Il’in, O.I.; Dedkov, Y. Comparison of Synchrotron and Laboratory X-ray Sources in Photoelectron Spectroscopy Experiments for the Study of Nitrogen-Doped Carbon Nanotubes. Quantum Beam Sci. 2023, 7, 25. https://doi.org/10.3390/qubs7030025
Il’ina MV, Khubezhov SA, Polyvianova MR, Il’in OI, Dedkov Y. Comparison of Synchrotron and Laboratory X-ray Sources in Photoelectron Spectroscopy Experiments for the Study of Nitrogen-Doped Carbon Nanotubes. Quantum Beam Science. 2023; 7(3):25. https://doi.org/10.3390/qubs7030025
Chicago/Turabian StyleIl’ina, Marina V., Soslan A. Khubezhov, Maria R. Polyvianova, Oleg I. Il’in, and Yuriy Dedkov. 2023. "Comparison of Synchrotron and Laboratory X-ray Sources in Photoelectron Spectroscopy Experiments for the Study of Nitrogen-Doped Carbon Nanotubes" Quantum Beam Science 7, no. 3: 25. https://doi.org/10.3390/qubs7030025
APA StyleIl’ina, M. V., Khubezhov, S. A., Polyvianova, M. R., Il’in, O. I., & Dedkov, Y. (2023). Comparison of Synchrotron and Laboratory X-ray Sources in Photoelectron Spectroscopy Experiments for the Study of Nitrogen-Doped Carbon Nanotubes. Quantum Beam Science, 7(3), 25. https://doi.org/10.3390/qubs7030025