A Platform for Laser-Driven Ion Sources Generated with Nanosecond Laser Pulses in the Intensity Range of 1013–1015 W/cm2
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results
3.1. Laser Intensity Level of up to 6 × 1013 W/cm2
3.2. Laser Intensity Level of up to 2 × 1015 W/cm2
3.3. Ion Diagnostic Benchmark
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Peacock, N.J.; Pease, R.S. Sources of highly stripped ions. J. Phys. D Appl. Phys. 1969, 2, 1705. [Google Scholar] [CrossRef]
- Nuckolls, J.; Wood, L.; Thiessen, A.; Zimmerman, G. Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications. Nature 1972, 239, 139–142. [Google Scholar] [CrossRef]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 56, 447–449. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.C.-F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Khoroshkov, V.S. Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 2002, 28, 5. [Google Scholar] [CrossRef]
- Yogo, A.; Maeda, T.; Hori, T.; Sakaki, H.; Ogura, K.; Nishiuchi, M.; Sagisaka, A.; Kiriyama, H.; Okada, H.; Kanazawa, S.; et al. Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasi mono energetic proton beamline. Appl. Phys. Lett. 2011, 98, 053701. [Google Scholar] [CrossRef]
- Zylstra, A.B.; Hurricane, O.A.; Callahan, D.A.; Kritcher, A.L.; Ralph, J.E.; Robey, H.F.; Ross, J.S.; Young, C.V.; Baker, K.L.; Casey, D.T.; et al. Burning plasma achieved in inertial fusion. Nature 2022, 601, 542–548. [Google Scholar] [CrossRef]
- Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage. Sci. Rep. 2017, 7, 40415. [Google Scholar] [CrossRef]
- Morrison, J.T.; Feister, S.; Frische, K.D.; Austin, D.R.; Ngirmang, G.K.; Murphy, N.R.; Orban, C.; Chowdhury, E.A.; Roquemore, W.M. MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction. New J. Phys. 2018, 20, 022001. [Google Scholar] [CrossRef]
- Levy, D.; Andriyash, I.A.; Haessler, S.; Ouillé, M.; Kaur, J.; Flacco, A.; Kroupp, E.; Malka, V.; Lopez-Martens, R. Low-divergence MeV-class proton beams from kHz-driven laser-solid interactions. Phys. Rev. Accel. Beams 2022, 25, 093402. [Google Scholar] [CrossRef]
- Torrisi, L.; Caridi, F.; Giuffrida, L. Comparison of Pd plasmas produced at 532 nm and 1064 nm by a Nd:YAG laser ablation. Nucl. Instrum. Methods Phys. Res. B 2010, 268, 13. [Google Scholar]
- Kashiwagi, H.; Hattori, T.; Hayashizaki, N.; Yamamoto, K.; Takahashi, Y.; Hata, T.; Okamura, M.; Jameson, R.A.; Katayama, T.; Mescheryakov, N. Nd–YAG laser ion source for direct injection scheme. Rev. Sci. Instrum. 2004, 75, 5. [Google Scholar] [CrossRef]
- Rosinski, M.; Giuffrida, L.; Parys, P.; Gasior, P.; Fazio, E.; Mezzasalma, A.M.; Torrisi, L.; Ando, L.; Wolowski, J. Laser produced streams of Ge ions accelerated and optimized in the electric fields for implantation into SiO2 substrates. Rev. Sci. Instrum. 2012, 83, 02B305. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, W.; Zhang, W.; Li, L.; Zhao, R.; Liu, Q.; Li, L.; Wang, H.; Yang, H. Manipulating redox reaction during pulsed laser deposition. J. Appl. Phys. 2015, 118, 185305. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Michalakou, A.; Skevis, G.; Couris, S. Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames. Spectrochim. Acta Part B 2004, 59, 1885. [Google Scholar] [CrossRef]
- Mangione, A.; Torrisi, L.; Picciotto, A.; Caridi, F.; Margarone, D.; Fazio, E.; La Mantia, A.; Di Marco, G. Carbon nanocrystals produced by pulsed laser ablation of carbon. Radiat. Eff. Defects Solids 2005, 160, 655–662. [Google Scholar] [CrossRef]
- Giuffrida, L.; Torrisi, L.; Calcagnile, L.; Rosinski, M. Ge Post-Acceleration from laser-generated plasma. Nucl. Instrum. Methods A 2010, 623, 716–719. [Google Scholar] [CrossRef]
- Kanesue, T.; Fuwa, Y.; Kondo, K.; Okamura, M. Laser ion source with solenoid field. Appl. Phys. Lett. 2014, 105, 193506. [Google Scholar] [CrossRef]
- Jungwirth, K. Recent highlights of the PALS research program. Laser Part. Beams 2005, 23, 2. [Google Scholar] [CrossRef]
- Láska, L.; Jungwirth, K.; Krása, J.; Pfeifer, M.; Rohlena, K.; Ullschmied, J.; Badziak, J.; Parys, P.; Wolowski, J.; Gammino, S.; et al. Charge-state and energy enhancement of laser-produced ions due to nonlinear processes in preformed plasma. Appl. Phys. Lett. 2005, 86, 081502. [Google Scholar] [CrossRef]
- Navratil, P.; Slezak, O.; Pilar, J.; Ertel, K.G.; Hanus, M.; Banerjee, S.; Phillips, P.J.; Smith, J.; De Vido, M.; Lucianetti, A.; et al. Characterization of Bivoj/DiPOLE 100: HiLASE 100-J/10-Hz diode pumped solid state laser. In Proceedings SPIE 10511, Solid State Lasers XXVII: Technology and Devices; SPIE: San Francisco, CA, USA, 2018; Volume 105110X. [Google Scholar] [CrossRef]
- Chagovets, T.; Stanček, S.; Giuffrida, L.; Velyhan, A.; Tryus, M.; Grepl, F.; Istokskaia, V.; Kantarelou, V.; Wiste, T.; Martin, J.C.H.; et al. Automation of Target Delivery and Diagnostic Systems for High Repetition Rate Laser-Plasma Acceleration. Appl. Sci. 2021, 11, 1680. [Google Scholar] [CrossRef]
- Margarone, D.; Krása, J.; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, A.; Prokůpek, J.; Láska, L.; et al. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors. J. Appl. Phys. 2011, 109, 103302. [Google Scholar] [CrossRef]
- Eliezer, S. The Interaction of High-Power Lasers with Plasmas; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Krása, J.; Velyhan, A.; Jungwirth, K.; Krouský, E.; Láska, L.; Rohlena, K.; Pfeifer, M.; Ullschmied, J. Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma. Laser Part. Beams 2009, 27, 171–178. [Google Scholar] [CrossRef]
- Picciotto, A.; Krása, J.; Láska, L.; Rohlena, K.; Torrisi, L.; Gammino, S.; Mezzasalma, A.; Caridi, F. Plasma temperature and ion current analysis of gold ablation at different laser power rates. Nucl. Instrum. Methods B 2006, 247, 261–267. [Google Scholar] [CrossRef]
- Rosinski, M.; Gasior, P.; Fazio, E.; Ando, L.; Giuffrida, L.; Torrisi, L.; Parys, P.; Mezzasalma, A.; Wolowski, J. Laser generated Ge ions accelerated by additional electrostatic field for implantation technology. Appl. Surf. Sci. 2013, 272, 109–113. [Google Scholar] [CrossRef]
- Krása, J.; Láska, L.; Rohlena, K.; Peřina, V.; Hnatowicz, V. Energy spectra of Ag, Au, Sn, and Pb ions emitted from laser-created plasmas determined from their implantation depth profile in a metallic substrate. Laser Part. Beams 2002, 20, 109–112. [Google Scholar] [CrossRef]
- Liska, R.; Kuchařík, M.; Limpouch, J.; Renner, O.; Váchal, P.; Bednárik, L.; Velechovský, J. ALE Method for Simulations of Laser-Produced Plasmas. In Finite Volumes for Complex Applications VI Problems & Perspectives; Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F., Eds.; Springer Proceedings in Mathematics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 4. [Google Scholar] [CrossRef]
- Available online: www.srim.org (accessed on 8 January 2024).
- Maffini, A.; Pazzaglia, A.; Dellasega, D.; Russo, V.; Passoni, M. Production of Carbon Nanofoam by Pulsed Laser Deposition on Flexible Substrates. Carbon Mater. Chem. Phys. 2022, 11, 135–157. [Google Scholar] [CrossRef]
- Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy. Rev. Sci. Instrum. 2016, 87, 02C109. [Google Scholar] [CrossRef]
- Okamura, M.; Takeuchi, T.; Jameson, R.A.; Kondrashev, S.; Kashiwagi, H.; Sakakibara, K.; Kanesue, T.; Tamura, J.; Hattori, T. Direct plasma injection scheme in accelerators. Rev. Sci. Instrum. 2008, 79, 02B314. [Google Scholar] [CrossRef]
- Romano, L.; Impellizzeri, G.; Tomasello, M.V.; Giannazzo, F.; Spinella, C.; Grimaldi, M.G. Nanostructuring in Ge by self-ion implantation. J. Appl. Phys. 2010, 107, 084314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuffrida, L.; Istokskaia, V.; Picciotto, A.; Kantarelou, V.; Barozzi, M.; Dell`Anna, R.; Divoky, M.; Denk, O.; Giubertoni, D.; Grepl, F.; et al. A Platform for Laser-Driven Ion Sources Generated with Nanosecond Laser Pulses in the Intensity Range of 1013–1015 W/cm2. Quantum Beam Sci. 2024, 8, 5. https://doi.org/10.3390/qubs8010005
Giuffrida L, Istokskaia V, Picciotto A, Kantarelou V, Barozzi M, Dell`Anna R, Divoky M, Denk O, Giubertoni D, Grepl F, et al. A Platform for Laser-Driven Ion Sources Generated with Nanosecond Laser Pulses in the Intensity Range of 1013–1015 W/cm2. Quantum Beam Science. 2024; 8(1):5. https://doi.org/10.3390/qubs8010005
Chicago/Turabian StyleGiuffrida, L., V. Istokskaia, A. Picciotto, V. Kantarelou, M. Barozzi, R. Dell`Anna, M. Divoky, O. Denk, D. Giubertoni, F. Grepl, and et al. 2024. "A Platform for Laser-Driven Ion Sources Generated with Nanosecond Laser Pulses in the Intensity Range of 1013–1015 W/cm2" Quantum Beam Science 8, no. 1: 5. https://doi.org/10.3390/qubs8010005
APA StyleGiuffrida, L., Istokskaia, V., Picciotto, A., Kantarelou, V., Barozzi, M., Dell`Anna, R., Divoky, M., Denk, O., Giubertoni, D., Grepl, F., Hadjikyriacou, A., Hanus, M., Krasa, J., Kucharik, M., Levato, T., Navratil, P., Pilar, J., Schillaci, F., Stancek, S., ... Margarone, D. (2024). A Platform for Laser-Driven Ion Sources Generated with Nanosecond Laser Pulses in the Intensity Range of 1013–1015 W/cm2. Quantum Beam Science, 8(1), 5. https://doi.org/10.3390/qubs8010005