Calcium Biofortification of Rocha Pear Fruits: Implications on Mineral Elements, Sugars and Fatty Acids Accumulation in Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Mineral Elements Content in Fruits
2.3. Sugar Content in Fruits
2.4. Lipid Content in Fruits
2.5. Statistic
3. Results
3.1. Mineral Quantification and Location in Rocha Pear Fruits
3.2. Sugar and Lipid Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shlisky, J.; Mandlik, R.; Askari, S.; Abrams, S.; Belizan, J.M.; Bourassa, M.W.; Cormick, G.; Driller-Colangelo, A.; Gomes, F.; Khadilkar, A.; et al. Calcium deficiency worldwide: Prevalence of inadequate intakes and associated health outcomes. Ann. N. Y. Acad. Sci. 2022, 1512, 1–19. [Google Scholar] [CrossRef] [PubMed]
- EFSA NDA Panel—European Food Safety Authority. Scientific opinion on dietary reference values for calcium. EFSA J. 2015, 13, 1–82. [Google Scholar] [CrossRef]
- IOF—International Osteoporosis Foundation. Facts & Statistics. Available online: https://www.osteoporosis.foundation/facts-statistics (accessed on 9 June 2022).
- NIH—National Institutes of Health. Calcium Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/ (accessed on 9 June 2022).
- Veronese, N.; Barbagallo, M. Magnesium and micro-elements in older persons. Nutrients 2021, 13, 847. [Google Scholar] [CrossRef] [PubMed]
- Cormick, G.; Belizán, J.M. Calcium intake and health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef]
- Ströhle, A.; Hadji, P.; Hahn, A. Calcium and bone health—Goodbye, calcium supplements? Climacteric 2015, 18, 702–714. [Google Scholar] [CrossRef]
- Huey, S.L.; Krisher, J.T.; Bhargava, A.; Friesen, V.M.; Konieczynski, E.M.; Mbuya, M.N.N.; Mehta, N.H.; Monterrosa, E.; Nyangaresi, A.M.; Mehta, S. Review of the impact pathways of biofortified foods and food products. Nutrients 2022, 14, 1200. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Dayod, M.; Tyerman, S.D.; Leigh, R.A.; Gilliham, M. Calcium storage in plants and the implications for calcium biofortification. Protoplasma 2010, 247, 215–231. [Google Scholar] [CrossRef]
- D`Imperio, M.; Renna, M.; Cardinali, A.; Buttaro, D.; Serio, F.; Santamaria, P. Calcium biofortification and bioaccessibility in soilless “baby leaf” vegetable production. Food Chem. 2016, 213, 149–156. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Tech. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Bloot, A.P.M.; Kalschne, D.L.; Amaral, J.A.S.; Baraldi, I.J.; Canan, C. A review of phytic acid sources, obtention, and applications. Food Rev. Int. 2021, 1–20. [Google Scholar] [CrossRef]
- St Joseph’s Healthcare Hamilton—Oxalate in Food. Available online: https://www.stjoes.ca/patients-visitors/patient-education/patient-education-k-o (accessed on 31 May 2022).
- Yahia, E.M.; Gardea-Béjar, A.; Ornelas-Paz, J.J.; Maya-Meraz, I.O.; Rodríguez-Roque, M.J.; Rios-Velasco, C.; Ornelas-Paz, J.; Salas-Marina, M. Chapter 4—Preharvest factors affecting postharvest quality. In Postharvest Technology of Perishable Horticultural Commodities; Yahia, E.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 99–128. [Google Scholar]
- Sugar, D.; Righetti, T.L.; Sanchez, E.E.; Khemira, H. Management of nitrogen and calcium in pear trees for enhancement of fruit resistance to postharvest decay. HortTechnology 1992, 2, 382–387. [Google Scholar] [CrossRef]
- Gąstoł, M.; Domagała-Świątkiewicz, I. Mineral composition of “Conference” pears as affected by different foliar sprays. Pol. J. Environ. Stud. 2009, 18, 739–742. [Google Scholar]
- Wójcik, P.; Skorupińska, A.; Filipczak, J. Impacts of preharvest fall sprays of calcium chloride at high rates on quality and “Conference” pear storability. Sci. Hortic. 2014, 168, 51–57. [Google Scholar] [CrossRef]
- Wei, S.; Qin, G.; Zhang, H.; Tao, S.; Wu, J.; Wang, S.; Zhang, S. Calcium treatments promote the aroma volatiles emission of pear (Pyrus ussuriensis “Nanguoli”) fruit during post-harvest ripening process. Sci. Hortic. 2017, 215, 102–111. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Wang, Y.; Yang, S.; Qu, H. The changes of intracellular calcium concentration and distribution in the hard end pear (Pyrus pyrifolia cv. “Whangkeumbae”) fruit. Cell Calcium 2018, 71, 15–23. [Google Scholar] [CrossRef]
- Pessoa, C.C.; Lidon, C.F.; Coelho, A.R.F.; Caleiro, J.C.; Marques, A.C.; Luís, I.C.; Kullberg, J.C.; Legoinha, P.; Brito, M.G.; Ramalho, J.C.; et al. Calcium biofortification of Rocha pears, tissues accumulation and physicochemical implications in fresh and heat-treated fruits. Sci. Hortic. 2021, 277, 109834. [Google Scholar] [CrossRef]
- Pessoa, C.C.; Lidon, F.C.; Luís, I.C.; Marques, A.C.; Coelho, A.R.F.; Daccak, D.; Ramalho, J.C.; Silva, M.J.; Rodrigues, A.P.; Guerra, M.; et al. Under calcium spraying nutrients accumulation in the initial stages of fruits development is critical in “Rocha” pears. Emir. J. Food Agr. 2021, 33, 868–883. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, T.; Gao, W. Nutritional composition of pear cultivars (Pyrus spp.). In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 573–608. [Google Scholar] [CrossRef]
- PortFIR—Food Composition Pear. Available online: http://portfir.insa.pt/foodcomp/food?22189 (accessed on 9 June 2022).
- Qin, G.; Tao, S.; Zhang, H.; Huang, W.; Wu, J.; Xu, Y.; Zhang, S. Evolution of the aroma volatiles of pear fruits supplemented with fatty acid metabolic precursors. Molecules 2014, 19, 20183–20196. [Google Scholar] [CrossRef]
- Pedro, S.I.; Coelho, E.; Peres, F.; Machado, A.; Rodrigues, A.M.; Wessel, D.F.; Coimbra, M.A.; Anjos, O. Physicochemical fingerprint of “Pera Rocha do Oeste”. A PDO pear native from Portugal. Foods 2020, 9, 1209. [Google Scholar] [CrossRef]
- ANP—Associação Nacional de Produtores de Pera Rocha. Available online: https://perarocha.pt/pera-rocha/ (accessed on 30 May 2022).
- Yahia, E.M. Chapter 3—Classification of horticultural commodities. In Postharvest Technology of Perishable Horticultural Commodities; Yahia, E.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 71–97. [Google Scholar]
- Luís, I.C.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Coelho, A.R.F.; Simões, M.; Patanita, M.; Dôres, J.; Ramalho, J.C.; Silva, M.M.; et al. Zinc enrichment in two contrasting genotypes of Triticum aestivum L. grains: Interactions between edaphic conditions and foliar fertilizers. Plants 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Medlicott, A.; Thompson, A. Analysis of sugar and organic acids in ripening mango fruits (Mangifera indica L. var Keitt) by high performance liquid chromatography. J. Sci. Food Agr. 1985, 36, 561–566. [Google Scholar] [CrossRef]
- Vidigal, P.; Duarte, B.; Cavaco, A.R.; Caçador, I.; Figueiredo, A.; Matos, A.R.; Viegas, W.; Monteiro, F. Preliminary diversity assessment of an undervalued tropical bean (Lablab purpureus (L.) Sweet) through fatty acid profiling. Plant Physiol. Bioch. 2018, 132, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Mazliak, P. Plant membrane lipids: Changes and alterations during aging and senescence. In Post-Harvest Physiology and Crop Preservation; Lieberman, M., Ed.; Springer: Boston, MA, USA, 1983; Volume 46, pp. 123–140. [Google Scholar] [CrossRef]
- Raese, J.T.; Drake, S.R. Effect of calcium sprays, time of harvest, cold storage, and ripeness on fruit quality of ‘Anjou’ pears. J. Plant Nutr. 2000, 23, 843–853. [Google Scholar] [CrossRef]
- Reboredo, F.H.; Sánchez, C.; Santos, M.; Ramos, P.; Rodrigues, C.; Ribeiro, V.; Pessoa, M.F.; Lidon, F.C. Calcium biofortification of apples: Implications on fruit quality parameters. In Proceedings of the COST Action Project FA 0905 Mineral-Improved Crop Production for Healthy Food and Feed, Final Conference Agronomic, Molecular Genetics and Human Nutrition Approaches for Improving the Nutricional Quality and Safety of Food Crops, Ela Quality Resort, Antalya-Belek, Turkey, 17–19 March 2014; pp. 52–53. [Google Scholar]
- Domagała-Świątkiewicz, I.; Błaszczyk, J. Effect of calcium nitrate spraying on mineral contents and storability of ‘Elise’ apples. Pol. J. Environ. Stud. 2009, 18, 971–976. [Google Scholar]
- Flis, S. Calcium: Improved plant health and nutrition through 4R management. Crops Soils 2019, 52, 28–30. [Google Scholar] [CrossRef]
- Almeida, D. Managing calcium in the soil-plant-fruit system. In Crops: Growth, Quality and Biotechnology; Dris, R., Ed.; WFL Publisher: Helsinki, Finland, 2005; pp. 448–459. [Google Scholar]
- Soares, J.; Silva, A.; Marques, H. Capítulo IV—Nutrição da Pereira Rocha; da Pera Rocha, O.L., de Produtores, A.N., de Pera, R., Eds.; ANP: Cadaval, Portugal, 2003; Volume 2, pp. 129–171. [Google Scholar]
- Tokala, V.Y.; Mahajan, B.V.C. Calcium: An indispensable element effecting postharvest life of fruits and vegetables. In Emerging Postharvest Treatment of Fruits and Vegetables, 1st ed.; Barman, K., Sharma, S., Siddiqui, M.W., Eds.; Apple Academic Press: New York, NY, USA, 2018; pp. 59–83. [Google Scholar] [CrossRef]
- PortFIR—Food Composition Pear, Dehydrated. Available online: http://portfir.insa.pt/foodcomp/food?22613 (accessed on 23 June 2022).
- Mendes, R.D.B. Pools de Nutrients em Pomares e sua Relação Com a Incidência de Acastanhamentos Internos em Pera Rocha. Master’s Thesis, School of Agriculture, Technical University of Lisbon, Lisbon, Portugal, 2017. Available online: http://hdl.handle.net/10400.5/14841 (accessed on 31 May 2022).
- Saquet, A.A.; Streif, J.; Almeida, D.P.F. Mineral composition and distribution within ‘Rocha’ pear in relation to internal storage disorders. Postharvest Biol. Technol. 2019, 158, 111002. [Google Scholar] [CrossRef]
- Pagani, A.; Sawyer, J.E.; Mallarino, A. Site-specific nutrient management: For nutrient management planning to improve crop production, environmental quality, and economic return. Ext. Outreach Publ. 2013, 116. Available online: http://lib.dr.iastate.edu/extension_pubs/116 (accessed on 31 May 2022).
- Atkinson, R.G.; Brummell, D.A.; Burdon, J.N.; Patterson, K.J.; Schaffer, R.J. Chapter 11—Fruit growth, ripening and post-harvest physiology. In Plants in Action, 2nd ed.; Brummel, D.A., Ed.; Australian Society of Plant Scientists: Melbourne, Australia, 2017; Available online: http://plantsinaction.science.uq.edu.au (accessed on 31 May 2022).
- Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Kadir, S.A. Fruit quality at harvest of “Jonathan” apple treated with foliarly-applied calcium chloride. J. Plant Nutr. 2005, 27, 1991–2006. [Google Scholar] [CrossRef]
- Lidon, F.C.; Ribeiro, V.; Reboredo, F.H.; Pessoa, M.F.; Santos, M.; Ramos, P.; Sánchez, C. Calcium biofortification of apples- Interaction with macronutrients. In Proceedings of the COST Action Project FA 0905 Mineral-Improved Crop Production for Healthy Food and Feed, Final Conference Agronomic, Molecular Genetics and Human Nutrition Approaches for Improving the Nutricional Quality and Safety of Food Crops, Ela Quality Resort, Antalya-Belek, Turkey, 17–19 March 2014; pp. 102–103. [Google Scholar]
- Coelho, A.R.F.; Ramalho, J.C.; Lidon, F.C.; Marques, A.C.; Daccak, D.; Pessoa, C.C.; Luís, I.C.; Guerra, M.; Leitão, R.G.; Semedo, J.M.N.; et al. Foliar spraying of Solanum tuberosum L. with CaCl2 and Ca(NO3)2: Interactions with nutrients accumulation in tubers. Plants 2022, 11, 1725. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2002; p. 623. [Google Scholar]
- Daccak, D.; Lidon, F.C.; Pessoa, C.C.; Luís, I.C.; Coelho, A.R.F.; Marques, A.C.; Ramalho, J.C.; Silva, M.J.; Rodrigues, A.P.; Guerra, M.; et al. Enrichment of grapes with zinc-efficiency of foliar fertilization with ZnSO4 and ZnO and implications on winemaking. Plants 2022, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.R.F.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Luís, I.C.; Caleiro, J.C.; Simões, M.; Kullberg, J.; Legoinha, P.; Brito, G.; et al. Can foliar pulverization with CaCl2 and Ca(NO3)2 trigger Ca enrichment in Solanum Tuberosum L. tubers? Plants 2021, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Lidon, F.C.; Ribeiro, V.; Reboredo, F.H.; Pessoa, M.F.; Santos, M.; Ramos, P.; Sánchez, C. Calcium biofortification of apples- Interaction with micronutrients. In Proceedings of the COST Action Project FA 0905 Mineral-Improved Crop Production for Healthy Food and Feed, Final Conference Agronomic, Molecular Genetics and Human Nutrition Approaches for Improving the Nutricional Quality and Safety of Food Crops, Ela Quality Resort, Antalya-Belek, Turkey, 17–19 March 2014; pp. 104–105. [Google Scholar]
- Akšić, M.F.; Tosti, T.; Sredojević, M.; Milivojević, J.; Meland, M.; Natić, M. Comparison of sugar profile between leaves and fruits of blueberry and strawberry cultivars grown in organic and integrated production system. Plants 2019, 8, 205. [Google Scholar] [CrossRef] [PubMed]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugar and sweetness of horticultural products-A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Yahia, E.M.; Carrilo-López, A.; Bello-Perez, L.A. Chapter 9—Carbohydrates. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 175–205. [Google Scholar] [CrossRef]
- Hudina, M.; Štampar, F. Sugars and organic acids contents of European (Pyrus communis L.) and Asian (Pyrus serotina REHD.) pear cultivars. Acta Alimentar. Hung 2000, 29, 217–230. [Google Scholar] [CrossRef]
- Siddiqui, M.W. Preharvest Modulation of Postharvest Fruit and Vegetable Quality, 1st ed.; AcademicPress: San Diego, CA, USA, 2018; pp. 1–516. [Google Scholar]
- Hudina, M.; Stampar, F. Free sugar and sorbitol content in pear (Pyrus communis L.) CV. Williams during fruit development using different treatments. Acta Hortic. 2000, 514, 269–274. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; González-Aguilar, G.A. Chapter 13- Lipids. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 273–292. [Google Scholar] [CrossRef]
- Hussain, S.; Masud, T.; Bano, R.; Wang, H.; Ali, S.; Ali, A. Comparative study of two pear (Pyrus communis L.) cultivars in terms of nutritional composition. Food Sci. Qual. Manag. 2015, 36, 48–54. [Google Scholar]
- Duroňová, K.; Márová, I.; Čertík, M.; Obruča, S. Changes in lipid composition of apple surface layer during long-term storage in controlled atmosphere. Chem. Pap. 2012, 66, 940–948. [Google Scholar] [CrossRef]
- Brizzolara, S.; Manganaris, G.A.; Fotopoulos, V.; Watkins, C.B.; Tonutti, P. Primary metabolism in fresh fruits during storage. Front. Plant Sci. 2020, 11, 80. [Google Scholar] [CrossRef]
- Deng, X. Mechanisms of Calcium-Induced Firmness in Fruits, Vegetables, and Mushrooms. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2008. Available online: https://trace.tennessee.edu/utk_gradthes/3647/ (accessed on 2 June 2022).
- Poovaiah, B.W.; Glenn, G.M.; Reddy, A.S.N. Calcium and fruit softening: Physiology and biochemistry. In Horticultural Reviews; Janick, J., Ed.; Timber Press: Portland, OR, USA, 1998; Volume 10, pp. 107–152. [Google Scholar] [CrossRef]
Minerals | Regions | 5 Months Storage | Rate (5 Months Storage/Harvest) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ctr | T0.1 | T0.6 | T0.8 | T1.6 | Ctr | T0.1 | T0.6 | T0.8 | T1.6 | ||
Ca (%) | 1 | 0.100a ± 0.005 | 0.374b ± 0.000 | 0.460ab ± 0.000 | 0.197ab ± 0.000 | 0.478ab ± 0.000 | 0.9 | 1.6 | 1.5 | 1.4 | 3.4 |
2 | 0.060a ± 0.003 | 0.284b ± 0.000 | 0.209bc ± 0.000 | 0.188ab ± 0.000 | 0.304b ± 0.000 | 0.9 | 1.1 | 1.1 | 1.3 | 3.7 | |
3 | 0.052a ± 0.003 | 0.248b ± 0.000 | 0.245bc ± 0.000 | 0.205ab ± 0.000 | 0.312b ± 0.000 | 0.8 | 1.8 | 1.6 | 1.6 | 3.8 | |
4 | 0.049a ± 0.002 | 0.214b ± 0.000 | 0.131c ± 0.000 | 0.115b ± 0.000 | 0.228b ± 0.000 | 0.8 | 1.4 | 1.1 | 0.6 | 2.5 | |
5 | 0.327a ± 0.016 | 1.135a ± 0.001 | 0.985a ± 0.001 | 0.384a ± 0.000 | 1.670a ± 0.002 | 3.4 | 2.7 | 2.5 | 1.4 | 3.4 | |
K (%) | 1 | 5.36a ± 0.01 | 4.78a ± 0.01 | 6.71a ± 0.01 | 3.99a ± 0.00 | 5.15a ± 0.01 | 2.4 | 2.6 | 1.3 | 2.1 | 2.3 |
2 | 5.53a ± 0.01 | 4.91a ± 0.01 | 4.96ab ± 0.01 | 3.58a ± 0.00 | 4.57a ± 0.01 | 3.0 | 2.5 | 1.1 | 1.8 | 3.2 | |
3 | 2.76ab ± 0.00 | 3.55a ± 0.00 | 5.31ab ± 0.01 | 4.17a ± 0.01 | 4.34a ± 0.01 | 1.4 | 2.1 | 1.6 | 2.2 | 3.7 | |
4 | 1.66b ± 0.00 | 2.96a ± 0.00 | 2.60b ± 0.00 | 2.52a ± 0.00 | 3.17a ± 0.00 | 1.0 | 1.2 | 1.1 | 1.1 | 2.5 | |
5 | 4.21a ± 0.01 | 4.11a ± 0.01 | 5.21ab ± 0.01 | 4.29a ± 0.01 | 5.14a ± 0.00 | 2.6 | 1.7 | 2.1 | 1.9 | 1.0 | |
Mn (ppm) | 1 | 18.3ab ± 0.0 | 15.5b ± 0.0 | 15.2b ± 0.0 | 9.5b ± 0.0 | 14.7b ± 0.0 | 5.6 | 4.9 | 0.9 | 1.8 | 4.6 |
2 | 11.1b ± 0.0 | 16.9b ± 0.0 | 12.8b ± 0.0 | 14.6b ± 0.0 | 11.8b ± 0.0 | 4.5 | 3.4 | 1.9 | 3.8 | 3.8 | |
3 | 8.5b ± 0.0 | 10.3b ± 0.0 | 19.1b ± 0.0 | 11.7b ± 0.0 | 10.7b ± 0.0 | 7.6 | 1.9 | 2.8 | 5.1 | 3.0 | |
4 | 8.2b ± 0.0 | 12.0b ± 0.0 | 10.1b ± 0.0 | 9.9b ± 0.0 | 10.0b ± 0.0 | 5.1 | 1.0 | 6.5 | 0.9 | 4.7 | |
5 | 44.5a ± 0.0 | 49.5a ± 0.0 | 66.3a ± 0.0 | 110.2a ± 0.0 | 122.1a ± 0.0 | 8.5 | 0.3 | 5.5 | 28.6 | 182.1 | |
Fe (ppm) | 1 | 37.9b ± 0.0 | 35.0b ± 0.0 | 46.3ab ± 0.0 | 43.0b ± 0.0 | 28.3b ± 0.0 | 2.6 | 1.6 | 1.2 | 2.4 | 1.4 |
2 | 32.4b ± 0.0 | 30.3b ± 0.0 | 25.5b ± 0.0 | 55.7ab ± 0.0 | 21.3b ± 0.0 | 3.1 | 1.8 | 0.8 | 3.4 | 1.1 | |
3 | 17.4b ± 0.0 | 22.8b ± 0.0 | 38.2b ± 0.0 | 37.8b ± 0.0 | 30.5b ± 0.0 | 1.3 | 1.6 | 1.6 | 2.1 | 2.3 | |
4 | 18.8b ± 0.0 | 23.3b ± 0.0 | 23.5b ± 0.0 | 22.4b ± 0.0 | 24.7b ± 0.0 | 1.6 | 1.3 | 0.5 | 0.7 | 2.4 | |
5 | 112.2a ± 0.0 | 274.2a ± 0.0 | 111.4a ± 0.0 | 124.8a ± 0.0 | 151.6a ± 0.0 | 11.0 | 0.7 | 2.1 | 3.0 | 1.4 | |
Zn (ppm) | 1 | 26.9ab ± 0.0 | 24.8ab ± 0.0 | 26.1ab ± 0.0 | 27.6ab ± 0.0 | 15.6b ± 0.0 | 2.9 | 1.6 | 1.0 | 2.2 | 1.4 |
2 | 17.7ab ± 0.0 | 22.3ab ± 0.0 | 11.9b ± 0.0 | 24.8ab ± 0.0 | 14.1b ± 0.0 | 2.7 | 1.5 | 0.5 | 2.3 | 2.0 | |
3 | 11.4b ± 0.0 | 14.9b ± 0.0 | 20.0ab ± 0.0 | 28.2ab ± 0.0 | 16.5b ± 0.0 | 1.5 | 1.4 | 1.4 | 2.3 | 3.1 | |
4 | 11.2b ± 0.0 | 19.9ab ± 0.0 | 14.7b ± 0.0 | 22.8b ± 0.0 | 15.4b ± 0.0 | 1.6 | 1.5 | 1.0 | 1.2 | 2.2 | |
5 | 42.2a ± 0.0 | 45.2a ± 0.0 | 42.8a ± 0.0 | 59.3a ± 0.0 | 59.3a ± 0.0 | 6.0 | 2.0 | 2.0 | 1.8 | 1.4 | |
Cu (ppm) | 1 | 23.6a ± 0.0 | 22.3a ± 0.0 | 20.3ab ± 0.0 | 18.4a ± 0.0 | 17.9a ± 0.0 | 3.3 | 2.1 | 0.9 | 3.0 | 2.4 |
2 | 27.2a ± 0.0 | 23.4a ± 0.0 | 12.7ab ± 0.0 | 16.3a ± 0.0 | 21.4a ± 0.0 | 6.1 | 2.1 | 0.8 | 3.3 | 6.5 | |
3 | 13.4ab ± 0.0 | 14.0a ± 0.0 | 17.7ab ± 0.0 | 21.4a ± 0.0 | 16.8a ± 0.0 | 3.1 | 1.6 | 1.6 | 3.4 | 6.0 | |
4 | 7.4b ± 0.0 | 12.3a ± 0.0 | 10.7b ± 0.0 | 16.4a ± 0.0 | 13.0a ± 0.0 | 1.9 | 1.4 | 1.2 | 1.3 | 3.4 | |
5 | 25.9a ± 0.0 | 24.7a ± 0.0 | 27.8a ± 0.0 | 32.2a ± 0.0 | 27.3a ± 0.0 | 6.1 | 1.4 | 1.8 | 0.5 | 3.0 |
Treatments | Sucrose | Glucose | Fructose | Sorbitol | Total |
---|---|---|---|---|---|
Harvest (g/100 g FW) | |||||
Ctr | 2.59aA ± 0.40 | 1.67aA ± 0.37 | 6.63aA ± 1.10 | 2.23aA ± 0.33 | 13.12aA ± 0.95 |
T0.1 | 2.42aA ± 0.27 | 1.20aB ± 0.15 | 8.44aB ± 0.92 | 2.43aB ± 0.29 | 14.49aB ± 1.62 |
T0.6 | 3.38aA ± 0.44 | 1.46aA ± 0.19 | 9.95aA ± 1.05 | 3.09aA ± 0.33 | 17.88aA ± 1.98 |
T0.8 | 2.64aA ± 0.30 | 1.51aA ± 0.06 | 10.66aA ± 0.62 | 3.32aA ± 0.19 | 18.12aA ± 0.85 |
T1.6 | 2.60aA ± 0.65 | 1.32aA ± 0.21 | 7.33aA ± 1.48 | 2.20aA ± 0.44 | 13.45aA ± 2.47 |
5 Months storage (g/100 g FW) | |||||
Ctr | 0.44cB ± 0.05 | 1.04bA ± 0.05 | 6.51bA ± 0.69 | 1.71bA ± 0.20 | 9.70cA ± 0.97 |
T0.1 | 1.81aA ± 0.14 | 3.02aA ± 0.08 | 18.14aA ± 0.29 | 5.07aA ± 0.01 | 28.04aA ± 0.20 |
T0.6 | 1.21bB ± 0.11 | 1.35bA ± 0.19 | 8.34bA ± 1.35 | 2.42abA ± 0.32 | 13.32bcA ± 1.92 |
T0.8 | 0.75bcB ± 0.17 | 1.23bA ± 0.22 | 7.44bA ± 1.32 | 2.09bB ± 0.37 | 11.51bcB ± 1.83 |
T1.6 | 0.92bcA ± 0.04 | 1.51bA ± 0.26 | 9.59bA ± 1.94 | 5.29aA ± 1.30 | 17.31bA ± 0.88 |
Ratio (5 Months storage/Harvest) | |||||
Ctr | 0.17 | 0.62 | 0.98 | 0.77 | 0.74 |
T0.1 | 0.75 | 2.52 | 2.15 | 2.08 | 1.94 |
T0.6 | 0.36 | 0.92 | 0.84 | 0.78 | 0.74 |
T0.8 | 0.28 | 0.81 | 0.70 | 0.63 | 0.63 |
T1.6 | 0.35 | 1.14 | 1.31 | 2.40 | 1.29 |
Treatment | TFA | <C16:0 | C16:0 | C18:0 | C18:1 | C18:2 | C18:3 | DBI |
---|---|---|---|---|---|---|---|---|
g/100 g FW | Harvest (mol %) | |||||||
Ctr | 0.67aA ± 0.09 | 0.32bcA ± 0.08 | 13.56abB ± 1.54 | 5.68aA ± 0.80 | 24.68aA ± 0.77 | 49.44aA ± 2.49 | 6.32bB ± 0.31 | 7.62abA ± 0.88 |
T0.1 | 0.71aA ± 0.05 | 0.24cB ± 0.03 | 9.34bB ± 0.69 | 6.35aA ± 0.64 | 26.10aA ± 0.81 | 50.56aA ± 0.88 | 7.41bB ± 0.23 | 9.50aA ± 0.32 |
T0.6 | 0.68aA ± 0.10 | 0.44abcA ± 0.04 | 11.50abB ± 2.12 | 6.78aA ± 1.03 | 26.91aA ± 1.08 | 49.00aA ± 1.40 | 5.38bB ± 0.32 | 8.05abA ± 1.12 |
T0.8 | 0.51aA ± 0.02 | 0.64aA ± 0.09 | 17.65aB ± 0.66 | 5.57aA ± 0.48 | 17.85bA ± 0.96 | 50.08aA ± 1.08 | 8.21abA ± 1.07 | 6.00bA ± 0.29 |
T1.6 | 0.51aA ± 0.06 | 0.59abA ± 0.06 | 13.93abB ± 1.76 | 5.19aA ± 0.71 | 17.17bA ± 0.61 | 52.01aB ± 1.32 | 11.11aA ± 1.31 | 8.09abA ± 0.87 |
g/100 g FW | 5 Months storage (mol%) | |||||||
Ctr | 0.40aB ± 0.01 | 0.47aA ± 0.06 | 19.71aA ± 1.56 | 2.84aB ± 0.22 | 3.22aB ± 0.11 | 51.18bA ± 1.80 | 22.57aA ± 3.13 | 7.72aA ± 0.84 |
T0.1 | 0.35aB ± 0.02 | 0.77aA ± 0.09 | 22.73aA ± 0.42 | 3.02aB ± 0.24 | 2.99aB ± 0.48 | 49.66bA ± 2.47 | 20.84aA ± 1.90 | 6.30aB ± 0.18 |
T0.6 | 0.38aB ± 0.05 | 0.77aA ± 0.16 | 22.47aA ± 0.80 | 2.59aB ± 0.40 | 3.10aB ± 0.35 | 49.41bA ± 1.02 | 21.66aA ± 1.03 | 6.53aA ± 0.30 |
T0.8 | 0.38aB ± 0.03 | 0.60aA ± 0.04 | 21.29aA ± 0.52 | 2.94aB ± 0.32 | 2.09aB ± 0.18 | 58.73abA ± 3.70 | 14.34abA ± 3.32 | 6.60aA ± 0.25 |
T1.6 | 0.34aB ± 0.02 | 0.73aA ± 0.17 | 20.39aA ± 1.52 | 3.67aA ± 0.58 | 2.33aB ± 0.12 | 64.84aA ± 1.88 | 8.03bA ± 0.46 | 6.56aA ± 0.79 |
Ratio (5 Months storage(mol%)/Harvest(mol%)) | ||||||||
Ctr | 0.60 | 1.47 | 1.45 | 0.50 | 0.13 | 1.04 | 3.57 | 1.01 |
T0.1 | 0.49 | 3.21 | 2.43 | 0.48 | 0.11 | 0.98 | 2.81 | 0.66 |
T0.6 | 0.56 | 1.75 | 1.95 | 0.38 | 0.12 | 1.01 | 4.03 | 0.81 |
T0.8 | 0.75 | 0.94 | 1.21 | 0.53 | 0.12 | 1.17 | 1.75 | 1.10 |
T1.6 | 0.67 | 1.24 | 1.46 | 0.71 | 0.14 | 1.25 | 0.72 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, C.C.; Lidon, F.C.; Daccak, D.; Luís, I.C.; Marques, A.C.; Coelho, A.R.F.; Legoinha, P.; Ramalho, J.C.; Leitão, A.E.; Guerra, M.; et al. Calcium Biofortification of Rocha Pear Fruits: Implications on Mineral Elements, Sugars and Fatty Acids Accumulation in Tissues. Sci 2022, 4, 35. https://doi.org/10.3390/sci4040035
Pessoa CC, Lidon FC, Daccak D, Luís IC, Marques AC, Coelho ARF, Legoinha P, Ramalho JC, Leitão AE, Guerra M, et al. Calcium Biofortification of Rocha Pear Fruits: Implications on Mineral Elements, Sugars and Fatty Acids Accumulation in Tissues. Sci. 2022; 4(4):35. https://doi.org/10.3390/sci4040035
Chicago/Turabian StylePessoa, Cláudia Campos, Fernando C. Lidon, Diana Daccak, Inês Carmo Luís, Ana Coelho Marques, Ana Rita F. Coelho, Paulo Legoinha, José Cochicho Ramalho, António E. Leitão, Mauro Guerra, and et al. 2022. "Calcium Biofortification of Rocha Pear Fruits: Implications on Mineral Elements, Sugars and Fatty Acids Accumulation in Tissues" Sci 4, no. 4: 35. https://doi.org/10.3390/sci4040035
APA StylePessoa, C. C., Lidon, F. C., Daccak, D., Luís, I. C., Marques, A. C., Coelho, A. R. F., Legoinha, P., Ramalho, J. C., Leitão, A. E., Guerra, M., Leitão, R. G., Campos, P. S., Pais, I. P., Silva, M. M., Reboredo, F. H., Pessoa, M. F., & Simões, M. (2022). Calcium Biofortification of Rocha Pear Fruits: Implications on Mineral Elements, Sugars and Fatty Acids Accumulation in Tissues. Sci, 4(4), 35. https://doi.org/10.3390/sci4040035