Local Ancestry and Selection in the Genomes of Russian Black Pied Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.2. Scans for Selection Signatures
2.3. Local Ancestry Inference (LAI)
2.4. Functional Annotation of Genome Regions and Gene Sets
3. Results
3.1. Scans for Selection Signatures
3.2. Local Ancestry Inference (LAI)
3.3. Functional Annotation of Gene Sets
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yearbook on Breeding Work in Dairy Cattle Breeding in the Farms of the Russian Federation (2023); All-Russian Research Institute of Animal Breeding: Moscow, Russia, 2024.
- Yearbook on Breeding Work in Beef Cattle Breeding in the Farms of the Russian Federation (2023); All-Russian Research Institute of Animal Breeding: Moscow, Russia, 2024.
- Ernst, L.K.; Dmitriev, N.G.; Paronyan, I.A. Genetic Resources of Farm Animals in Russia and Neighboring Countries; VNIIGRZH: St. Petersburg, Russia, 1994. [Google Scholar]
- Kostomakhin, N.M.; Voronkova, O.A.; Gabedava, M.A. Improvement of Black Pied Cattle of Various Origins: Monograph; RSAU-MTAA: Kaluga, Russia, 2023. [Google Scholar]
- Abdelmanova, A.S.; Volkova, V.V.; Dotsev, A.V.; Zinovieva, N.A. Characterization of the Genetic Diversity of Modern and Archival Populations of Black-and-White Cattle Using Microsatellite Markers. Dostizheniya Nauk. I Tekhniki APK 2020, 34, 34–38. [Google Scholar]
- Yurchenko, A.; Yudin, N.; Aitnazarov, R.; Plyusnina, A.; Brukhin, V.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Paronyan, I.A.; Plemyashov, K.V.; et al. Genome-Wide Genotyping Uncovers Genetic Profiles and History of the Russian Cattle Breeds. Heredity 2018, 120, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Kadralieva, B.T.; Kosilov, V.I.; Babicheva, I.A.; Mironova, I.V.; Khabibullin, I.M. Indicators of the Development of the Hair Cover of Primary Cows of Different Genotypes by Seasons of the Year. Izv. Orenbg. State Agrar. Univ. 2023, 100, 244–249. [Google Scholar]
- Salakhov, F.D. Comparative Characteristics of Economically Useful Traits and Adaptive Qualities of Holstein and Brown Swiss Cows in the Industrial Technology of Milk Production. Ph.D. Thesis, Bashkir State Agrarian University, Ufa, Russia, 2017. [Google Scholar]
- Lazebnaya, I.V. Resistance to Bovine Leukemia Virus in Holstein and Russian Black-and-White Breeds Based on BOLA-DRB3 Gene Alleles. Sci. Eur. 2022, 86, 8–10. [Google Scholar]
- Saravanan, K.A.; Panigrahi, M.; Kumar, H.; Bhushan, B.; Dutt, T.; Mishra, B.P. Selection Signatures in Livestock Genome: A Review of Concepts, Approaches and Applications. Livest. Sci. 2020, 241, 104257. [Google Scholar] [CrossRef]
- Buggiotti, L.; Yurchenko, A.A.; Yudin, N.S.; Vander Jagt, C.J.; Vorobieva, N.V.; Kusliy, M.A.; Vasiliev, S.K.; Rodionov, A.N.; Boronetskaya, O.I.; Zinovieva, N.A.; et al. Demographic History, Adaptation, and NRAP Convergent Evolution at Amino Acid Residue 100 in the World Northernmost Cattle from Siberia. Mol. Biol. Evol. 2021, 38, 3093–3110. [Google Scholar] [CrossRef] [PubMed]
- Igoshin, A.V.; Romashov, G.A.; Yurchenko, A.A.; Yudin, N.S.; Larkin, D.M. Scans for Signatures of Selection in Genomes of Wagyu and Buryat Cattle Breeds Reveal Candidate Genes and Genetic Variants for Adaptive Phenotypes and Production Traits. Anim. Open Access J. 2024, 14, 2059. [Google Scholar] [CrossRef]
- Shi, L.; Hu, M.; Lai, W.; Yi, W.; Liu, Z.; Sun, H.; Li, F.; Yan, S. Detection of Genomic Variations and Selection Signatures in Wagyu Using Whole-Genome Sequencing Data. Anim. Genet. 2023, 54, 808–812. [Google Scholar] [CrossRef]
- Souilmi, Y.; Tobler, R.; Johar, A.; Williams, M.; Grey, S.T.; Schmidt, J.; Teixeira, J.C.; Rohrlach, A.; Tuke, J.; Johnson, O.; et al. Admixture Has Obscured Signals of Historical Hard Sweeps in Humans. Nat. Ecol. Evol. 2022, 6, 2003–2015. [Google Scholar] [CrossRef]
- Lohmueller, K.E.; Bustamante, C.D.; Clark, A.G. Detecting Directional Selection in the Presence of Recent Admixture in African-Americans. Genetics 2011, 187, 823–835. [Google Scholar] [CrossRef]
- Seldin, M.F.; Pasaniuc, B.; Price, A.L. New Approaches to Disease Mapping in Admixed Populations. Nat. Rev. Genet. 2011, 12, 523–528. [Google Scholar] [CrossRef]
- Bisschop, J.H.R. Parent Stock and Derived Types of African Cattle, with Particular Reference to the Importance of Conformational Characteristics in the Study of Their Origin. S. Afr. J. Sci. 1937, 33, 852–870. Available online: https://hdl.handle.net/10520/AJA00382353_8188 (accessed on 11 January 2025).
- Stormont, C.J.; Morris, B.G.; Suzuki, Y.; Dodd, J. Blood Typing Beefalo Cattle. In Proceedings of the 3rd World Congress on Genetics Applied to Livestock Production, Lincoln, NE, USA, 16–22 July 1986. [Google Scholar]
- Shapiro, B.; Oppenheimer, J.; Heaton, M.P.; Kuhn, K.L.; Green, R.E.; Blackburn, H.D.; Smith, T.P.L. Most Beefalo Cattle Have No Detectable Bison Genetic Ancestry. eLife 2024, 13, RP102750. [Google Scholar] [CrossRef]
- Lawson, D.J.; van Dorp, L.; Falush, D. A Tutorial on How Not to Over-Interpret STRUCTURE and ADMIXTURE Bar Plots. Nat. Commun. 2018, 9, 3258. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kwon, T.; Dessie, T.; Yoo, D.; Mwai, O.A.; Jang, J.; Sung, S.; Lee, S.; Salim, B.; Jung, J.; et al. The Mosaic Genome of Indigenous African Cattle as a Unique Genetic Resource for African Pastoralism. Nat. Genet. 2020, 52, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Karimi, K.; Strucken, E.M.; Moghaddar, N.; Ferdosi, M.H.; Esmailizadeh, A.; Gondro, C. Local and Global Patterns of Admixture and Population Structure in Iranian Native Cattle. BMC Genet. 2016, 17, 108. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Wang, J.; Zhang, L.; Hu, J.; Ma, M.; Xu, L.; Chen, Y.; Zhu, B.; Wang, Z.; et al. Genetic Origin and Introgression Pattern of Pingliang Red Cattle Revealed Using Genome-Wide SNP Analyses. Genes 2023, 14, 2198. [Google Scholar] [CrossRef]
- Dixit, S.P.; Bhatia, A.K.; Ganguly, I.; Singh, S.; Dash, S.; Sharma, A.; Anandkumar, N.; Dang, A.K.; Jayakumar, S. Genome Analyses Revealed Genetic Admixture and Selection Signatures in Bos Indicus. Sci. Rep. 2021, 11, 21924. [Google Scholar] [CrossRef]
- Neumann, G.B.; Korkuć, P.; Arends, D.; Wolf, M.J.; May, K.; König, S.; Brockmann, G.A. Genomic Diversity and Relationship Analyses of Endangered German Black Pied Cattle (DSN) to 68 Other Taurine Breeds Based on Whole-Genome Sequencing. Front. Genet. 2022, 13, 993959. [Google Scholar] [CrossRef]
- Chen, N.; Cai, Y.; Chen, Q.; Li, R.; Wang, K.; Huang, Y.; Hu, S.; Huang, S.; Zhang, H.; Zheng, Z.; et al. Whole-Genome Resequencing Reveals World-Wide Ancestry and Adaptive Introgression Events of Domesticated Cattle in East Asia. Nat. Commun. 2018, 9, 2337. [Google Scholar] [CrossRef]
- Tang, H.; Coram, M.; Wang, P.; Zhu, X.; Risch, N. Reconstructing Genetic Ancestry Blocks in Admixed Individuals. Am. J. Hum. Genet. 2006, 79, 1–12. [Google Scholar] [CrossRef]
- Maples, B.K.; Gravel, S.; Kenny, E.E.; Bustamante, C.D. RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference. Am. J. Hum. Genet. 2013, 93, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xu, L.; Zhang, M.; Zhang, T.; Yan, M.; Zhai, M.; Huang, X. Whole Genome Resequencing Reveals the Genetic Contribution of Kazakh and Swiss Brown Cattle to a Population of Xinjiang Brown Cattle. Gene 2022, 839, 146725. [Google Scholar] [CrossRef]
- Goszczynski, D.E.; Corbi-Botto, C.M.; Durand, H.M.; Rogberg-Muñoz, A.; Munilla, S.; Peral-Garcia, P.; Cantet, R.J.C.; Giovambattista, G. Evidence of Positive Selection towards Zebuine Haplotypes in the BoLA Region of Brangus Cattle. Animal 2018, 12, 215–223. [Google Scholar] [CrossRef] [PubMed]
- McHugo, G.P.; Ward, J.A.; Ng’ang’a, S.I.; Frantz, L.A.F.; Salter-Townshend, M.; Hill, E.W.; O’Gorman, G.M.; Meade, K.G.; Hall, T.J.; MacHugh, D.E. Genome-Wide Local Ancestry and the Functional Consequences of Admixture in African and European Cattle Populations. Heredity 2025, 134, 49–63. [Google Scholar] [CrossRef]
- Lyu, Y.; Ren, Y.; Qu, K.; Quji, S.; Zhuzha, B.; Lei, C.; Chen, N. Local Ancestry and Selection in Admixed Sanjiang Cattle. Stress Biol. 2023, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.A.; McHugo, G.P.; Dover, M.J.; Hall, T.J.; Ng’ang’a, S.I.; Sonstegard, T.S.; Bradley, D.G.; Frantz, L.A.F.; Salter-Townshend, M.; MacHugh, D.E. Genome-Wide Local Ancestry and Evidence for Mitonuclear Coadaptation in African Hybrid Cattle Populations. iScience 2022, 25, 104672. [Google Scholar] [CrossRef]
- Natri, H.M.; Hudjashov, G.; Jacobs, G.; Kusuma, P.; Saag, L.; Darusallam, C.C.; Metspalu, M.; Sudoyo, H.; Cox, M.P.; Gallego Romero, I.; et al. Genetic Architecture of Gene Regulation in Indonesian Populations Identifies QTLs Associated with Global and Local Ancestries. Am. J. Hum. Genet. 2022, 109, 50–65. [Google Scholar] [CrossRef]
- Ni, X.; Zhou, M.; Wang, H.; He, K.Y.; Broeckel, U.; Hanis, C.; Kardia, S.; Redline, S.; Cooper, R.S.; Tang, H.; et al. Detecting Fitness Epistasis in Recently Admixed Populations with Genome-Wide Data. BMC Genom. 2020, 21, 476. [Google Scholar] [CrossRef]
- Thornton, T.A.; Bermejo, J.L. Local and Global Ancestry Inference and Applications to Genetic Association Analysis for Admixed Populations. Genet. Epidemiol. 2014, 38 (Suppl. 1), S5–S12. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- 1000 Bull Genomes Project. In 1000 Bulls GATK Fastq to GVCF Guidelines (GATKv3.8); 2019; Available online: https://hal.science/hal-04787725v1/file/12711_2024_942_MOESM1_ESM.pdf (accessed on 7 August 2021).
- Hayes, B.J.; Daetwyler, H.D. 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annu. Rev. Anim. Biosci. 2019, 7, 89–102. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.G.; Hubisz, M.J.; Bustamante, C.D.; Williamson, S.H.; Nielsen, R. Ascertainment Bias in Studies of Human Genome-Wide Polymorphism. Genome Res. 2005, 15, 1496–1502. [Google Scholar] [CrossRef]
- Hard-Filtering Germline Short Variants. Available online: https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants (accessed on 6 March 2024).
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A Framework for Variation Discovery and Genotyping Using Next-Generation DNA Sequencing Data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Lefouili, M.; Nam, K. The Evaluation of Bcftools Mpileup and GATK HaplotypeCaller for Variant Calling in Non-Human Species. Sci. Rep. 2022, 12, 11331. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast Model-Based Estimation of Ancestry in Unrelated Individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Hudson, R.R.; Slatkin, M.; Maddison, W.P. Estimation of Levels of Gene Flow from DNA Sequence Data. Genetics 1992, 132, 583–589. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal Components Analysis Corrects for Stratification in Genome-Wide Association Studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Katz, K.; Shutov, O.; Lapoint, R.; Kimelman, M.; Brister, J.R.; O’Sullivan, C. The Sequence Read Archive: A Decade More of Explosive Growth. Nucleic Acids Res. 2022, 50, D387–D390. [Google Scholar] [CrossRef] [PubMed]
- Scheet, P.; Stephens, M. A Fast and Flexible Statistical Model for Large-Scale Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase. Am. J. Hum. Genet. 2006, 78, 629–644. [Google Scholar] [CrossRef] [PubMed]
- Fariello, M.I.; Boitard, S.; Naya, H.; SanCristobal, M.; Servin, B. Detecting Signatures of Selection through Haplotype Differentiation among Hierarchically Structured Populations. Genetics 2013, 193, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D. Package “MASS.” Cran R. 2024. Available online: https://CRAN.R-project.org/package=MASS (accessed on 25 May 2024).
- Storey, J.D.; Bass, A.J.; Dabney, A.; Robinson, D. Qvalue: Q-Value Estimation for False Discovery Rate Control. R Packag. Version 2.24.0. 2020. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila Melanogaster Strain W1118; Iso-2; Iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Karunarathne, P.; Zhou, Q.; Schliep, K.; Milesi, P. A Comprehensive Framework for Detecting Copy Number Variants from Single Nucleotide Polymorphism Data: “RCNV”, a Versatile r Package for Paralogue and CNV Detection. Mol. Ecol. Resour. 2023, 23, 1772–1789. [Google Scholar] [CrossRef]
- McKinney, G.J.; Waples, R.K.; Seeb, L.W.; Seeb, J.E. Paralogs Are Revealed by Proportion of Heterozygotes and Deviations in Read Ratios in Genotyping-by-Sequencing Data from Natural Populations. Mol. Ecol. Resour. 2017, 17, 656–669. [Google Scholar] [CrossRef]
- Klambauer, G.; Schwarzbauer, K.; Mayr, A.; Clevert, D.-A.; Mitterecker, A.; Bodenhofer, U.; Hochreiter, S. Cn.MOPS: Mixture of Poissons for Discovering Copy Number Variations in next-Generation Sequencing Data with a Low False Discovery Rate. Nucleic Acids Res. 2012, 40, e69. [Google Scholar] [CrossRef]
- Hilmarsson, H.; Kumar, A.S.; Rastogi, R.; Bustamante, C.D.; Montserrat, D.M.; Ioannidis, A.G. High Resolution Ancestry Deconvolution for Next Generation Genomic Data. bioRxiv 2021. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, C.; Yuan, K.; Ni, X.; Pan, Y.; Xu, S. AdmixSim 2: A Forward-Time Simulator for Modeling Complex Population Admixture. BMC Bioinform. 2021, 22, 506. [Google Scholar] [CrossRef]
- Neumann, G.B.; Korkuć, P.; Arends, D.; Wolf, M.J.; May, K.; Reißmann, M.; Elzaki, S.; König, S.; Brockmann, G.A. Design and Performance of a Bovine 200 k SNP Chip Developed for Endangered German Black Pied Cattle (DSN). BMC Genom. 2021, 22, 905. [Google Scholar] [CrossRef] [PubMed]
- Browning, B.L.; Tian, X.; Zhou, Y.; Browning, S.R. Fast Two-Stage Phasing of Large-Scale Sequence Data. Am. J. Hum. Genet. 2021, 108, 1880–1890. [Google Scholar] [CrossRef]
- Qanbari, S.; Wittenburg, D. Male Recombination Map of the Autosomal Genome in German Holstein. Genet. Sel. Evol. 2020, 52, 73. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-L.; Park, C.A.; Wu, X.-L.; Reecy, J.M. Animal QTLdb: An Improved Database Tool for Livestock Animal QTL/Association Data Dissemination in the Post-Genome Era. Nucleic Acids Res. 2013, 41, D871–D879. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Zhu, Y.; Wei, J.; Zhang, C.; Kong, Q.; Nie, X.; Zhang, Q.; Wang, Z. Genome-Wide Association Analysis of Milk Production, Somatic Cell Score, and Body Conformation Traits in Holstein Cows. Front. Vet. Sci. 2022, 9, 932034. [Google Scholar] [CrossRef]
- Zhao, W.; Shahzad, K.; Jiang, M.; Graugnard, D.E.; Rodriguez-Zas, S.L.; Luo, J.; Loor, J.J.; Hurley, W.L. Bioinformatics and Gene Network Analyses of the Swine Mammary Gland Transcriptome during Late Gestation. Bioinform. Biol. Insights 2013, 7, 193–216. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.J.; Yin, T.; Neumann, G.B.; Korkuć, P.; Brockmann, G.A.; König, S.; May, K. Genome-Wide Association Study Using Whole-Genome Sequence Data for Fertility, Health Indicator, and Endoparasite Infection Traits in German Black Pied Cattle. Genes 2021, 12, 1163. [Google Scholar] [CrossRef]
- Canive, M.; González-Recio, O.; Fernández, A.; Vázquez, P.; Badia-Bringué, G.; Lavín, J.L.; Garrido, J.M.; Juste, R.A.; Alonso-Hearn, M. Identification of Loci Associated with Susceptibility to Mycobacterium Avium Subsp. Paratuberculosis Infection in Holstein Cattle Using Combinations of Diagnostic Tests and Imputed Whole-Genome Sequence Data. PLoS ONE 2021, 16, e0256091. [Google Scholar] [CrossRef]
- Cao, T.; Racz, P.; Szauter, K.M.; Groma, G.; Nakamatsu, G.Y.; Fogelgren, B.; Pankotai, E.; He, Q.-P.; Csiszar, K. Mutation in Mpzl3, a Novel [Corrected] Gene Encoding a Predicted [Corrected] Adhesion Protein, in the Rough Coat (Rc) Mice with Severe Skin and Hair Abnormalities. J. Investig. Dermatol. 2007, 127, 1375–1386. [Google Scholar] [CrossRef]
- Leiva, A.G.; Chen, A.L.; Devarajan, P.; Chen, Z.; Damanpour, S.; Hall, J.A.; Bianco, A.C.; Li, J.; Badiavas, E.V.; Zaias, J.; et al. Loss of Mpzl3 Function Causes Various Skin Abnormalities and Greatly Reduced Adipose Depots. J. Investig. Dermatol. 2014, 134, 1817–1827. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Bao, P.; Zhang, X.; Guo, X.; Liang, C.; Chu, M.; Wu, X.; Yan, P. Genome-Wide Detection of RNA Editing Events during the Hair Follicles Cycle of Tianzhu White Yak. BMC Genom. 2022, 23, 737. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-T.; Xia, T.; Wu, J.-Q.; Hong, H.; Sun, Z.-L.; Wang, M.; Ding, F.-R.; Wang, J.; Jiang, S.; Li, J.; et al. De Novo Genome Assembly Depicts the Immune Genomic Characteristics of Cattle. Nat. Commun. 2023, 14, 6601. [Google Scholar] [CrossRef]
- Connelley, T.K.; Degnan, K.; Longhi, C.W.; Morrison, W.I. Genomic Analysis Offers Insights into the Evolution of the Bovine TRA/TRD Locus. BMC Genom. 2014, 15, 994. [Google Scholar] [CrossRef]
- Nakatsuchi, A.; Watanuki, S.; Borjigin, L.; Sato, H.; Bai, L.; Matsuura, R.; Kuroda, M.; Murakami, H.; Sato, R.; Asaji, S.; et al. BoLA-DRB3 Polymorphism Controls Proviral Load and Infectivity of Bovine Leukemia Virus (BLV) in Milk. Pathogens 2022, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Maezawa, M.; Fujii, Y.; Akagami, M.; Kawakami, J.; Inokuma, H. BoLA-DRB3*15:01 Allele Is Associated with Susceptibility to Early Enzootic Bovine Leukosis Onset in Holstein-Friesian and Japanese Black Cattle. Vet. Microbiol. 2023, 284, 109829. [Google Scholar] [CrossRef]
- Lo, C.-W.; Takeshima, S.-N.; Okada, K.; Saitou, E.; Fujita, T.; Matsumoto, Y.; Wada, S.; Inoko, H.; Aida, Y. Association of Bovine Leukemia Virus-Induced Lymphoma with BoLA-DRB3 Polymorphisms at DNA, Amino Acid, and Binding Pocket Property Levels. Pathogens 2021, 10, 437. [Google Scholar] [CrossRef]
- Xu, A.; van Eijk, M.J.; Park, C.; Lewin, H.A. Polymorphism in BoLA-DRB3 Exon 2 Correlates with Resistance to Persistent Lymphocytosis Caused by Bovine Leukemia Virus. J. Immunol. 1993, 151, 6977–6985. [Google Scholar] [CrossRef]
- Order of the Ministry of Agriculture of the Russian Federation No. 156 dated March 24, 2021, On the Approval of Veterinary Rules for the Implementation of Preventive, Diagnostic, Restrictive, and Other Measures, the Establishment and Lifting of Quarantin. Available online: https://base.garant.ru/400714035/ (accessed on 15 January 2025).
- Colombi, D.; Perini, F.; Bettini, S.; Mastrangelo, S.; Abeni, F.; Conte, G.; Marletta, D.; Cassandro, M.; Bernabucci, U.; Ciampolini, R.; et al. Genomic Responses to Climatic Challenges in Beef Cattle: A Review. Anim. Genet. 2024, 55, 854–870. [Google Scholar] [CrossRef]
- Picard, K.; Thomas, D.W.; Festa-Bianchet, M.; Belleville, F.; Laneville, A. Differences in the Thermal Conductance of Tropical and Temperate Bovid Horns. Écoscience 1999, 6, 148–158. [Google Scholar] [CrossRef]
- Buggiotti, L.; Yudin, N.S.; Larkin, D.M. Copy Number Variants in Two Northernmost Cattle Breeds Are Related to Their Adaptive Phenotypes. Genes 2022, 13, 1595. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.W.; Maloney, S.K. A Review of Thermal Stress in Cattle. Aust. Vet. J. 2023, 101, 417–429. [Google Scholar] [CrossRef]
- Jiang, Q.; Sherlock, D.N.; Guyader, J.; Loor, J.J. Abundance of Amino Acid Transporters and MTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals 2023, 13, 1189. [Google Scholar] [CrossRef]
- Erasmus, L.J.; Botha, P.M.; Cruywagen, C.W.; Meissner, H.H. Amino Acid Profile and Intestinal Digestibility in Dairy Cows of Rumen-Undegradable Protein from Various Feedstuffs. J. Dairy Sci. 1994, 77, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Cerón, J.J.; Ortín-Bustillo, A.; López-Martínez, M.J.; Martínez-Subiela, S.; Eckersall, P.D.; Tecles, F.; Tvarijonaviciute, A.; Muñoz-Prieto, A. S-100 Proteins: Basics and Applications as Biomarkers in Animals with Special Focus on Calgranulins (S100A8, A9, and A12). Biology 2023, 12, 881. [Google Scholar] [CrossRef]
- Smolenski, G.A.; Cursons, R.T.; Hine, B.C.; Wheeler, T.T. Keratin and S100 Calcium-Binding Proteins Are Major Constituents of the Bovine Teat Canal Lining. Vet. Res. 2015, 46, 113. [Google Scholar] [CrossRef] [PubMed]
- Bykowska, O.; Gontier, C.; Sax, A.-L.; Jia, D.W.; Montero, M.L.; Bird, A.D.; Houghton, C.; Pfister, J.-P.; Costa, R.P. Model-Based Inference of Synaptic Transmission. Front. Synaptic Neurosci. 2019, 11, 21. [Google Scholar] [CrossRef]
- Durov, A.S.; Deeva, V.S. Evaluation of Breeding Groups by Living Weight of Over-Age Cows Depending on Breeding. Innov. Food Saf. 2021, 1, 89–97. [Google Scholar] [CrossRef]
- Gong, J.; Liu, J.; Ronan, E.A.; He, F.; Cai, W.; Fatima, M.; Zhang, W.; Lee, H.; Li, Z.; Kim, G.-H.; et al. A Cold-Sensing Receptor Encoded by a Glutamate Receptor Gene. Cell 2019, 178, 1375–1386.e11. [Google Scholar] [CrossRef]
- Xu, J.; Hu, Z.; Dai, L.; Yadav, A.; Jiang, Y.; Bröer, A.; Gardiner, M.G.; McLeod, M.; Yan, R.; Bröer, S. Molecular Basis of Inhibition of the Amino Acid Transporter B(0)AT1 (SLC6A19). Nat. Commun. 2024, 15, 7224. [Google Scholar] [CrossRef]
- Cheng, Q.; Shah, N.; Bröer, A.; Fairweather, S.; Jiang, Y.; Schmoll, D.; Corry, B.; Bröer, S. Identification of Novel Inhibitors of the Amino Acid Transporter B(0) AT1 (SLC6A19), a Potential Target to Induce Protein Restriction and to Treat Type 2 Diabetes. Br. J. Pharmacol. 2017, 174, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, A.A.; Daetwyler, H.D.; Yudin, N.; Schnabel, R.D.; Vander Jagt, C.J.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Taylor, J.F.; Larkin, D.M. Scans for Signatures of Selection in Russian Cattle Breed Genomes Reveal New Candidate Genes for Environmental Adaptation and Acclimation. Sci. Rep. 2018, 8, 12984. [Google Scholar] [CrossRef]
- Ruvinskiy, D.; Igoshin, A.; Yurchenko, A.; Ilina, A.V.; Larkin, D.M. Resequencing the Yaroslavl Cattle Genomes Reveals Signatures of Selection and a Rare Haplotype on BTA28 Likely to Be Related to Breed Phenotypes. Anim. Genet. 2022, 53, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Schrider, D.R.; Kern, A.D. Soft Sweeps Are the Dominant Mode of Adaptation in the Human Genome. Mol. Biol. Evol. 2017, 34, 1863–1877. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-T.; Yeung, C.K.L.; Omland, K.E.; Pang, E.-L.; Hao, Y.; Liao, B.-Y.; Cao, H.-F.; Zhang, B.-W.; Yeh, C.-F.; Hung, C.-M.; et al. Standing Genetic Variation as the Predominant Source for Adaptation of a Songbird. Proc. Natl. Acad. Sci. USA 2019, 116, 2152–2157. [Google Scholar] [CrossRef]
- Ryan, K.; Greenway, R.; Landers, J.; Arias-Rodriguez, L.; Tobler, M.; Kelley, J.L. Selection on Standing Genetic Variation Mediates Convergent Evolution in Extremophile Fish. Mol. Ecol. 2023, 32, 5042–5054. [Google Scholar] [CrossRef]
- Gao, Z.; Przeworski, M.; Sella, G. Footprints of Ancient-Balanced Polymorphisms in Genetic Variation Data from Closely Related Species. Evolution 2015, 69, 431–446. [Google Scholar] [CrossRef]
- Matuszewski, S.; Hermisson, J.; Kopp, M. Catch Me If You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum. Genetics 2015, 200, 1255–1274. [Google Scholar] [CrossRef]
- Gibson, G. Rare and Common Variants: Twenty Arguments. Nat. Rev. Genet. 2012, 13, 135–145. [Google Scholar] [CrossRef]
- Gonzalez-Recio, O.; Daetwyler, H.D.; MacLeod, I.M.; Pryce, J.E.; Bowman, P.J.; Hayes, B.J.; Goddard, M.E. Rare Variants in Transcript and Potential Regulatory Regions Explain a Small Percentage of the Missing Heritability of Complex Traits in Cattle. PLoS ONE 2015, 10, e0143945. [Google Scholar] [CrossRef]
- Barton, N.H. How Does Epistasis Influence the Response to Selection? Heredity 2017, 118, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Sevillano, C.A.; Ten Napel, J.; Guimarães, S.E.F.; Silva, F.F.; Calus, M.P.L. Effects of Alleles in Crossbred Pigs Estimated for Genomic Prediction Depend on Their Breed-of-Origin. BMC Genom. 2018, 19, 740. [Google Scholar] [CrossRef] [PubMed]
- Fragomeni, B.O.; Lourenco, D.A.L.; Masuda, Y.; Legarra, A.; Misztal, I. Incorporation of Causative Quantitative Trait Nucleotides in Single-Step GBLUP. Genet. Sel. Evol. 2017, 49, 59. [Google Scholar] [CrossRef] [PubMed]
Region (BTA) | Method | Position (BTA) | Ref/Alt Allele | Gene | Amino Acid Change | FST | Alternative Allele Frequency | ||
---|---|---|---|---|---|---|---|---|---|
RBP | Close Breeds | 1KBGP | |||||||
2:131125001-131200000 | FST | 2:131164309 | C/T | RAP1GAP | Ala704Val | 0.445 | 0.417 | 0.06 | 0.059 |
2:131164365 | C/T | RAP1GAP | Pro723Ser | 0.445 | 0.417 | 0.06 | 0.054 | ||
2:131165149 | T/C | RAP1GAP | Leu751Pro | 0.445 | 0.417 | 0.06 | 0.067 | ||
2:131165157 | C/G | RAP1GAP | Pro754Ala | 0.445 | 0.417 | 0.06 | 0.066 | ||
2:131164249 | T/C | RAP1GAP | Leu684Pro | 0.426 | 0.417 | 0.065 | 0.136 | ||
2:131165166 | G/C | RAP1GAP | Asp757His | 0.425 | 0.417 | 0.065 | 0.065 | ||
2:133015733-133049432 | hapFLK | 2:133035362 | C/A | HTR6 | Gly6Val | 0.426 | 0.542 | 0.113 | 0.145 |
13:65900001-66125000 | FST | 13:65971107 | G/A | SAMHD1 | His89Tyr | 0.436 | 0.292 | 0.025 | 0.047 |
13:67075001-67125000 | FST, hapFLK | 13:67108721 | T/C | KIAA1755 | Lys432Glu | 0.548 | 0.792 | 0.18 | 0.209 |
14:75434681-75456117 | FST, hapFLK | 14:75438515 | T/G | CNBD1 | Asn275His | 0.466 | 0.708 | 0.18 | 0.297 |
15:28900001-28975000 | FST | 15:28919395 | G/A | MPZL3 | Leu218Phe | 0.561 | 0.375 | 0.025 | 0.064 |
15:28940819 | C/A | MPZL3 | Ala13Ser | 0.561 | 0.375 | 0.025 | 0.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igoshin, A.V.; Yurchenko, A.A.; Yudin, N.S.; Larkin, D.M. Local Ancestry and Selection in the Genomes of Russian Black Pied Cattle. Sci 2025, 7, 51. https://doi.org/10.3390/sci7020051
Igoshin AV, Yurchenko AA, Yudin NS, Larkin DM. Local Ancestry and Selection in the Genomes of Russian Black Pied Cattle. Sci. 2025; 7(2):51. https://doi.org/10.3390/sci7020051
Chicago/Turabian StyleIgoshin, Alexander V., Andrey A. Yurchenko, Nikolay S. Yudin, and Denis M. Larkin. 2025. "Local Ancestry and Selection in the Genomes of Russian Black Pied Cattle" Sci 7, no. 2: 51. https://doi.org/10.3390/sci7020051
APA StyleIgoshin, A. V., Yurchenko, A. A., Yudin, N. S., & Larkin, D. M. (2025). Local Ancestry and Selection in the Genomes of Russian Black Pied Cattle. Sci, 7(2), 51. https://doi.org/10.3390/sci7020051