A Critical Review of High and Very High-Resolution Remote Sensing Approaches for Detecting and Mapping Slums: Trends, Challenges and Emerging Opportunities
Abstract
:1. Introduction
2. From Surveys to Remote Sensing Data in Slum Mapping
3. Temporal Growth of Slums
4. Slum Mapping from Remote Sensing
- Detection—this step includes methods that locate features of interest in an image and is usually the first stage in image classification.
- Delineation—this step involves identifying the spatial extent of features.
- Characterization—in this step, features of interest are labeled as belonging to a specific class.
4.1. Multi-Scale Approaches
4.2. Image Texture Analysis
4.3. Landscape Analysis
4.4. Object-Based Image Analysis
4.5. Building Feature Extraction
4.6. Data Mining
4.7. Remote Sensing Data for Supporting Socio-Economic Assessment
5. Challenges and Opportunities
5.1. Spatial and Temporal Distribution of Slum Studies Using H/VH-R Remote Sensing Imagery
5.2. Limitations of Remote Sensing in Slum Detection and Mapping
5.3. Data Fusion of Remote Sensing and Auxiliary Data
5.4. Emerging Sources of Data on Slums
5.5. Geosensor Networks
6. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cohen, B. Urbanization in Developing Countries: Current Trends, Future Projections, and Key Challenges for Sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Montgomery, M.R. The Urban Transformation of the Developing World. Science 2008, 319, 761–764. [Google Scholar] [CrossRef] [PubMed]
- UN Habitat. Urbanization and Development: Emerging Futures. Available online: http://wcr.unhabitat.org/wp-content/uploads/2017/02/WCR-2016-Full-Report.pdf (accessed on 12 December 2016).
- United Nations. The Millennium Development Goals Report 2015. Available online: http://www.un.org/millenniumgoals/ (accessed on 12 December 2016).
- Bird, J.; Montebruno, P.; Regan, T. Life in a Slum: Understanding Living Conditions in Nairobi’s Slums across Time and Space. Oxf. Rev. Econ. Policy 2017, 33, 496–520. [Google Scholar] [CrossRef]
- Mahabir, R.; Crooks, A.; Croitoru, A.; Agouris, P. The Study of Slums as Social and Physical Constructs: Challenges and Emerging Research Opportunities. Reg. Stud. Reg. Sci. 2016, 3, 737–757. [Google Scholar] [CrossRef]
- Hacker, K.P.; Seto, K.C.; Costa, F.; Corburn, J.; Reis, M.G.; Ko, A.I.; Diuk-Wasser, M.A. Urban Slum Structure: Integrating Socioeconomic and Land Cover Data to Model Slum Evolution in Salvador, Brazil. Int. J. Health Geogr. 2013, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Pratomo, J.; Kuffer, M.; Martinez, J.; Kohli, D. Coupling Uncertainties with Accuracy Assessment in Object-Based Slum Detections, Case Study: Jakarta, Indonesia. Remote Sens. 2017, 9, 1164. [Google Scholar] [CrossRef]
- Huchzermeyer, M. Slum Upgrading in Nairobi within the Housing and Basic Services Market. A Housing Rights Concern. J. Asian Afr. Stud. 2008, 43, 19–39. [Google Scholar] [CrossRef]
- Hagen, E. Open Mapping from the Ground up: Learning from Map Kibera; Institute of Development Studies: Brighton, UK, 1998. [Google Scholar]
- United Nations. The Sustainable Development Goals Report 2017; United Nations: Nairobi, Kenya, 2017. [Google Scholar]
- Duque, J.C.; Patino, J.E.; Betancourt, A. Exploring the Potential of Machine Learning for Automatic Slum Identification from VHR Imagery. Remote Sens. 2017, 9, 895. [Google Scholar] [CrossRef]
- Moeller, M.S. Remote Sensing for the Monitoring of Urban Growth Patterns. In ISPRS Photogrammetry and Remote Sensing; Moeller, M., Wentz, E., Eds.; Arizona State University: Temple, TX, USA, 2005. [Google Scholar]
- Fugate, D.; Tarnavsky, E.; Stow, D. A Survey of the Evolution of Remote Sensing Imaging Systems and Urban Remote Sensing Applications. In Remote Sensing of Urban and Suburban Areas; Rashed, T., Carsten, J., Eds.; Springer: New York, NY, USA, 2010; Volume 10, pp. 119–139. ISBN 978-1-4020-4385-7. [Google Scholar]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R. Slums from Space-15 Years of Slum Mapping Using Remote Sensing. Remote Sens. 2016, 8, 455. [Google Scholar] [CrossRef]
- Hurskainen, P.; Pellikka, P. Change Detection of Informal Settlements Using Multi-Temporal Aerial Photographs—The Case of Voi, Se-Kenya. In Proceedings of the African Association of Remote Sensing of the Environment, Nairobi, Kenya, 17–22 October 2004. [Google Scholar]
- Kit, O.; Lüdeke, M. Automated Detection of Slum Area Change in Hyderabad, India Using Multitemporal Satellite Imagery. ISPRS J. Photogramm. Remote Sens. 2013, 83, 130–137. [Google Scholar] [CrossRef]
- Michael, X.; Jean, N.; Burke, M.; Lobell, D.; Ermon, S. Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 3929–3935. [Google Scholar]
- Kohli, D.; Sliuzas, R.; Kerle, N.; Stein, A. An Ontology of Slums for Image-Based Classification. Comput. Environ. Urban Syst. 2012, 36, 154–163. [Google Scholar] [CrossRef]
- Weeks, J.R.; Hill, A.; Ackerly, D.D.; Getis, A.; Fugate, D. Can We Spot a Neighborhood from the Air? Defining Neighborhood Structure in Accra, Ghana. GeoJournal 2007, 69, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Stow, D.; Lopez, A.; Lippitt, C.; Hinton, S.; Weeks, J. Object-Based Classification of Residential Land Use within Accra, Ghana Based on QuickBird Satellite Data. Int. J. Remote Sens. 2007, 28, 5167–5173. [Google Scholar] [CrossRef] [PubMed]
- Baud, I.S.A.; Pfeffer, K.; Sridharan, N.; Nainan, N. Matching Deprivation Mapping to Urban Governance in Three Indian Mega-Cities. Habitat Int. 2009, 33, 365–377. [Google Scholar] [CrossRef]
- Karanja, I. An Enumeration and Mapping of Informal Settlements in Kisumu, Kenya, Implemented by Their Inhabitants. Environ. Urban 2010, 22, 217–239. [Google Scholar] [CrossRef]
- Hall, B.G.; Malcolm, N.W.; Piwowar, J.M. Integration of Remote Sensing and GIS to Detect Pockets of Urban Poverty: The Case of Rosario, Argentina. Trans. GIS 2001, 5, 235–253. [Google Scholar] [CrossRef]
- Ebert, A.; Kerle, N.; Stein, A. Urban Social Vulnerability Assessment with Physical Proxies and Spatial Metrics Derived from Air- and Spaceborne Imagery and GIS Data. Nat. Hazards 2009, 48, 275–294. [Google Scholar] [CrossRef]
- Williams, E.; Hara, H. Inconsistencies in Census Data: The Case of Kenya’s North Eastern Province. In Proceedings of the Annual Meeting of the Population Association of America, Chicago, USA, 27–29 April 2017. [Google Scholar]
- Engstrom, R.; Newjouse, D.; Haldavanekar, V.; Copenhaver, A.; Hersh, J. Evaluating the Relationship between spatial and Spectral Features derived from High Spatial Resolution Satellite Data abd Urban Poverty in Colombo, Sri Lanka. In Proceedings of the Urban Remote Sensing Event, Dubao, UAE, 6–8 March 2017. [Google Scholar]
- Republic of the Union of Myanmar. Department of Population (DoP). The Population and Housing Census of Myanmar, Summary of the Provisional Result. Department of Population, Republic of Burma, 2014. Available online: http://www.dop.gov.mm/moip/ (accessed on 20 February 2017).
- Kattan, J.; Eid, R.; Kourie, H.R.; Farhat, F.; Ghosn, M.; Ghorra, C.; Tomb, R. Mesotheliomas in Lebanon: Witnessing a Change in Epidemiology. Asian Pac. J. Cancer Prev. 2016, 17, 4175–4179. [Google Scholar]
- Satterthwaite, D. The Scale of Urban Change Worldwide 1950–2000 and its Underpinnings. In Human Settlement Discussion-Urban Change; International Institute for Environment and Development: London, UK, 2002; ISBN 184369560X. [Google Scholar]
- Martínez, J. The Use of GIS and Indicators to Monitor Intra-Urban Inequalities. A Case Study in Rosario, Argentina. Habitat Int. 2009, 33, 387–396. [Google Scholar] [CrossRef]
- Kotkin, J. Welcome to the Billion-Man Slum. New Geography. 2014. Available online: http://www.newgeography.com/content/004491-welcome-billion-man-slum (accessed on 14 December 2014).
- Duque, J.C.; Vicente, R.; Norena, M. A Stepwise Procedure to Determine a Suitable Scale for the Spatial Delimitation of Urban Slums. In Defining the Spatial Scale in Modern Regional Analysis; Esteban, F.V., Fernando, R.M., Eds.; Springer: New York, NY, USA, 2012; pp. 237–254. [Google Scholar]
- Baud, I.; Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Karuppannan, S. Understanding Heterogeneity in Metropolitan India: The Added Value of Remote Sensing Data for Analyzing Sub-Standard Residential Areas. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 359–374. [Google Scholar] [CrossRef]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.C.; Morais, M.L.; Escuder, M.M.; Goldbaum, M.; Barros, M.B.; Cesar, C.L.; Carandina, L. Household Sampling in Slums in Surveys. Revista de Saúde Pública 2011, 45, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Galeon, F.A. Estimation of Population in Informal Settlement Communities Using High Resolution Satellite Image. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008; Volume XXXVII, pp. 1377–1382. [Google Scholar]
- Karekezi, S.; Kimani, J.; Onguru, O. Energy Access among the Urban Poor in Kenya. Energy Sustain. Dev. 2008, 12, 38–48. [Google Scholar] [CrossRef]
- Peszko, G.; Anjaparidze, D.; Dade, D.; Kapanadze, S.; Pedroso-Galinato, K.; Van den Berg, Y.; Yatimov, B. Monitoring What Matters: Tailoring Millennium Targets and Indicators of Environmental Sustainability to Local Conditions in ECA; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring Economic Growth from Outer Space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [PubMed]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Hoffer, R.M. Remote Sensing to Measure the Distribution and Structure of Vegetation. In The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing; Woodwell, G.M., Ed.; John Wiley and Sons Ltd.: New York, NY, USA, 1984; ISBN 0471920624. [Google Scholar]
- Mason, D.C.; Corr, D.G.; Cross, A.; Hogg, D.C.; Lawrence, D.H.; Petrou, M.; Tailor, A.M. The Use of Digital Map Data in the Segmentation and Classification of Remotely-Sensed Images. Int. J. Geogr. Inf. Syst. 1988, 2, 195–215. [Google Scholar] [CrossRef]
- Shamsi, U.M. Remote Sensing Applications. In GIS Applications for Water, Wastewater, and Stormwater Systems; CRC Press: Boca Raton, FL, USA, 2005; pp. 48–75. ISBN 9780849320972. [Google Scholar]
- Dees, M.; Straub, C.; Langar, P.; Koch, B. Remote Sensing Based Concepts Utilising SPOT 5 and LIDAR for Forest Habitat Mapping and Monitoring under the EU Habitat Directive. Part of the geoland project reporting dossier. In ONP 10 Test and BenchmarkReport; Lamb, A., Hill, R., Wilson, D., Bock, M., Ivits, E., Dees, M., Eds.; European Commission: Brussels, Belgium, 2006; Volume 10, pp. 53–78. [Google Scholar]
- Jacobsen, K.; Buyuksalih, G.; Baz, I. Mapping from Space for Developing Countries. In Proceedings of the EARSel Joing Workshop: Remote Sensing—New Challenges of High Resolution, Bochum, Germany, 5–7 March 2008. [Google Scholar]
- Black, R.; Bennett, S.R.G.; Thomas, S.M.; Beddington, J.R. Climate Change: Migration as Adaptation. Nature 2011, 478, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Crooks, A.; Koizumi, N. Slumulation: An Agent-Based Modeling Approach to Slum Formations. J. Artif. Soc. Soc. Simul. 2012, 15, 2. [Google Scholar] [CrossRef]
- Burgess, E.W. The Growth of the City: An Introduction to a Research Project; University of Chicago Press: Chicago, IL, USA, 1925; pp. 47–62. [Google Scholar]
- Martin, R.; Mathema, A. Clash of Civilisations: Reflections on the Problems of Upgrading Informal Setttlements: Experiences in Ethiopia, Kenya, Swaziland and Zambia. In Informal Settlements: A Perpetual Challenge; Huchzermeyer, M., Ed.; University Cape Town Press: Cape Town, South Africa, 2006; pp. 127–145. ISBN 9781919713946. [Google Scholar]
- Kit, O.; Lüdeke, M.; Reckien, D. Texture-Based Identification of Urban Slums in Hyderabad, India Using Remote Sensing Data. Appl. Geogr. 2012, 32, 660–667. [Google Scholar] [CrossRef]
- Turner, J.F. Uncontrolled Urban Settlement: Problems and Policies. In The City in Newly Developing Countries: Readings on Urbanism and Urbanization; Breese, G.W., Ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1969; pp. 507–534. [Google Scholar]
- Eyre, L.A. The Shantytowns of Montego Bay, Jamaica. Geogr. Rev. 1972, 62, 394–413. [Google Scholar] [CrossRef]
- Young, G.F.; Flacke, J. Agent-Based Model of the Growth of an Informal Settlement in Dar Es Salaam, Tanzania: An Empirically Informed Concept. Available online: https://scholarsarchive.byu.edu/iemssconference/2010/all/414/ (accessed on 23 January 2018).
- Augustijn-Beckers, E.; Flacke, J.; Retsios, B. Simulating Informal Settlement Growth in Dar Es Salaam, Tanzania: An Agent-Based Housing Model. Comput. Environ. Urban Syst. 2011, 35, 93–103. [Google Scholar] [CrossRef]
- Barros, J. Exploring Urban Dynamics in Latin American Cities Using an Agent-Based Simulation Approach. In Agent-Based Models of Geographical Systems; Heppenstall, A.J., Crooks, A.T., See, L.M., Batty, M., Eds.; Springer: New York, NY, USA, 2012; pp. 571–589. [Google Scholar]
- Sliuzas, R. Diversity of Global Slum Conditions—Is a Universal Spatial Definition of Slums Feasible? Presented at the Expert Group Meeting on Slum Mapping, Enschede, The Netherlands, 21–32 May 2008. [Google Scholar]
- Fekade, W. Deficits of formal urban land management and informal responses under rapid urban growth, an international perspective. Habitat Int. 2000, 24, 127–150. [Google Scholar] [CrossRef]
- Gruebner, O.; Sachs, J.; Nockert, A.; Frings, M.; Khan, M.M.; Lakes, T.; Hostert, P. Mapping the Slums of Dhaka from 2006 to 2010. Dataset Pap. Sci. 2014, 2014, 7. [Google Scholar] [CrossRef]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Baud, I. Extraction of Slum Areas from VHR Imagery Using GLCM Variance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1830–1840. [Google Scholar] [CrossRef]
- UN Habitat. The Challenge of Slums-Global Report on Human Settlements; Earthscan: London, UK, 2003. [Google Scholar]
- Patel, A.; Koizumi, N.; Crooks, A. Measuring Slum Severity in Mumbai and Kolkata: A Household-Based Approach. Habitat Int. 2014, 41, 300–306. [Google Scholar] [CrossRef]
- Filho, M.N.B.; Sobreira, F.J.A. Accuracy of Lacunarity Algorithms in Texture Classification of High Spatial Resolution Images from Urban Areas. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008; Jun, C., Jie, J., Förstne, W., Eds.; 2008; Volume XXXVII, pp. 417–422. [Google Scholar]
- Leao, S.; Leao, D. Targeting Housing Problems through Urban Texture Analysis. In Proceedings of the 12th International Conference on Computers in Urban Planning and Urban Management, Lake Louise, AB, Canada, 5–8 July 2011. [Google Scholar]
- Stasolla, M.; Gamba, P. Spatial Indexes for the Extraction of Formal and Informal Human Settlements From High-Resolution SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 98–106. [Google Scholar] [CrossRef]
- Pesaresi, M.; Ehrlich, D. A Methodology to Quantify Built-Up Structures from Optical VHR Imagery. In Global Mapping of Human Settlement: Experiences, Datasets, and Prospects; Gamba, P., Herold, M., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 27–58. [Google Scholar]
- Kuffer, M.; Barros, J.; Sliuzas, R.V. The Development of a Morphological Unplanned Settlement Index Using Very-High-Resolution (VHR) Imagery. Comput. Environ. Urban Syst. 2014, 48, 138–152. [Google Scholar] [CrossRef]
- Owen, K. Settlement Indicators of Wellbeing and Economic Status—Lacunarity and Vegetation. Available online: http://www.asprs.org/pecora18/proceedings/Owen.pdf (accessed on 23 January 2018).
- Hofmann, P. Detecting Informal Settlements from Ikonos Image Data Using Methods of Object Oriented Image Analysis: An Example from Cape Town (South Africa). In Proceedings of the Remote Sensing of Urban Areas/Regensburger Geographische Schriften, Regensburg, Germany, 12–14 September 2001; pp. 107–118. [Google Scholar]
- Veljanovski, T.; Kanjir, U.; Pehani, P.; Otir, K.; Kovai, P. Object-Based Image Analysis of VHR Satellite Imagery for Population Estimation in Informal Settlement Kibera-Nairobi, Kenya. In Remote Sensing-Applications; Escalante-Ramirez, B., Ed.; InTech: London, UK, 2012; pp. 407–434. ISBN 978-953-51-0651-7. [Google Scholar]
- Novack, T.; Kux, H.J.H. Urban Land Cover and Land Use Classification of an Informal Settlement Area Using the Open-Source Knowledge-Based System InterIMAGE. J. Spat. Sci. 2010, 55, 23–41. [Google Scholar] [CrossRef]
- Mason, S.O.; Baltsavias, E.P.; Bishop, I. Spatial Decision Support Systems for the Management of Informal Settlements. Comput. Environ. Urban Syst. 1997, 21, 189–208. [Google Scholar] [CrossRef]
- Li, J.; Chapman, M.; Ruther, H. Small Format Digital Imaging for Informal Settlement Mapping. Photogramm. Eng. Remote Sens. 2005, 71, 435–442. [Google Scholar] [CrossRef]
- Ruther, H.; Msrtine, H.M.; Mtalo, E.G. Application of Snakes and Dynamic Programming Optimization technique in Modeling of Buildings in Informal Settlement Areas. ISPRS J. Photogramm. Remote Sens. 2002, 56, 269–282. [Google Scholar] [CrossRef]
- Graesser, J.; Cheriyadat, A.; Vatsavai, R.R.; Chandola, V.; Long, J.; Bright, E. Image Based Characterization of Formal and Informal Neighborhoods in an Urban Landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1164–1176. [Google Scholar] [CrossRef]
- Vatsavai, R.R. Gaussian Multiple Instance Learning Approach for Mapping the Slums of the World Using Very High Resolution Imagery. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 1419–1426. [Google Scholar] [CrossRef]
- Busgeeth, K.; van den Bergh, F.; Whisken, J.; Brits, A. Potential Application of Remote Sensing in Monitoring Informal Settlements in South Africa Where Complimentary Data Does Not Exist. In Proceedings of the Planning Africa, Johannesburg, South Africa, 14–16 April 2008; Volume 7, pp. 1470B–71470B. [Google Scholar]
- Niebergall, S.; Loew, A.; Mauser, W. Integrative Assessment of Informal Settlements Using VHR Remote Sensing Data: The Delhi Case Study. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 193–205. [Google Scholar] [CrossRef]
- Avelar, S.; Zah, R.; Tavares-Corrêa, C. Linking Socioeconomic Classes and Land Cover Data in Lima, Peru: Assessment through the Application of Remote Sensing and GIS. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 27–37. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Avelar, S.; Tavares-Correa, C.; Zah, R. Deriving Fine-Scale Socioeconomic Information of Urban Areas Using Very High-Resolution Satellite Imagery. Int. J. Remote Sens. 2011, 32, 6437–6456. [Google Scholar] [CrossRef]
- Filho, M.B.; Sobreira, F. Assessing Texture Pattern in Slum across Scales: An Unsupervised Approach. In Center for Advanced Spatial Analysis; University College London: London, UK, 2005. [Google Scholar]
- McAdams, M. Fractal Analysis and the Urban Morphology of a City in a Developing Country: A Case Study of Istanbul. Marmara Geogr. Rev. 2007, 15, 147–170. [Google Scholar]
- Batty, M.; Longley, P. Fractal Cities: A Geometry of Form and Function; Academic Press: San Diego, CA, USA, 1994; ISBN 978-0124555709. [Google Scholar]
- Galeon, F. Determining Formalities of Settlement Clusters Using Fractal Dimensions. In Proceedings of the Federation Internationale des Geometres (FIG), Marrakech, Morocco, 18–22 May 2011. [Google Scholar]
- Sun, W.; Xu, G.; Gong, P.; Liang, S. Fractal Analysis of Remotely Sensed Images: A Review of Methods and Applications. Int. J. Remote Sens. 2006, 27, 4963–4990. [Google Scholar] [CrossRef]
- Owen, K.K.; Wong, D.W. An Approach to Differentiate Informal Settlements Using Spectral, Texture, Geomorphology and Road Accessibility Metrics. Appl. Geogr. 2013, 38, 107–118. [Google Scholar] [CrossRef]
- Thomas, I.; Tannier, C.; Frankhauser, P. Is There a Link between Fractal Dimension and Residential Environment at a Regional Level? Eur. J. Geogr. 2008, 413, 2659–2663. [Google Scholar] [CrossRef]
- Su, J.; Hu, Q. Fast Residential Area Extraction Algorithm in High Resolution Remote Sensing Image Based on Texture Analysis. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Valous, N.A.; Sun, D.; Allen, P.; Mendoza, F. The Use of Lacunarity for Visual Texture Characterization of Pre-Sliced Cooked Pork Ham Surface Intensities. Food Res. Int. 2010, 43, 387–395. [Google Scholar] [CrossRef]
- Materka, A.; Strzelecki, M. Texture Analysis Methods—A Review; COST B11 Report; Technical University of Lodz, Institute of Electronics: Brussels, Russia, 1998. [Google Scholar]
- Aptoula, E.; Lefèvre, S. Morphological Texture Description of Grayscale and Color Images. In Advances in Imaging and Electron Physics; Academic Press: Burlington, VT, USA, 2011. [Google Scholar]
- Ioannidis, C.; Psaltis, C.; Potsiou, C.; Ioannidis, Charalabos, Christodoulos Psaltis, and Chryssy Potsiou. Towards a Strategy for Control of Suburban Informal Buildings through Automatic Change Detection. Comput. Environ. Urban Syst. 2009, 33, 64–74. [Google Scholar] [CrossRef]
- Sulik, J.J.; Edwards, S. Feature Extraction for Darfur: Geospatial Applications in the Documentation of Human Rights Abuses. Int. J. Remote Sens. 2010, 31, 2521–2533. [Google Scholar] [CrossRef]
- Rhinane, H.; Hilali, A.; Berrada, A.; Hakdaoui, M. Detecting Slums from SPOT Data in Casablanca Morocco Using an Object Based Approach. J. Geogr. Inf. Syst. 2011, 3, 217. [Google Scholar] [CrossRef]
- Pesaresi, M.; Benediktsson, J.A. New Approach for the Morphological Segmentation of High-Resolution Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Kuffer, M.; Sliuzas, R.; Pfeffer, K.; Baud, I. The Utility of the Co-Occurrence Matrix to Extract Slum Areas from VHR Imagery. In Proceedings of the Joint Urban Remote Sensing Event, Lausanne, Switzerland, 30 March–1 April 2015. [Google Scholar]
- Lisini, G.; Gamba, P.; Dell’Acqua, F. A Novel Extension of the Anisotropic Rotation-Invariant Built-up Presence Index to SAR Data. Eur. J. Remote Sens. 2012, 45, 189–199. [Google Scholar] [CrossRef]
- Kleynhans, W.; Salmon, B.P.; Olivier, J.C. Detecting Settlement Expansion in South Africa Using a Hyper-Temporal SAR Change Detection Approach. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 142–149. [Google Scholar] [CrossRef]
- Wurm, M.; Taubenböck, H.; Weigand, M.; Schmitt, A. Slum Mapping in Polarimetric SAR Data Using Spatial Features. Remote Sens. Environ. 2017, 194, 190–204. [Google Scholar] [CrossRef]
- Soille, P.; Pesaresi, M. Advances in Mathematical Morphology Applied to Geoscience and Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2042–2055. [Google Scholar] [CrossRef]
- Schmitt, A.; Sieg, T.; Wurm, M.; Taubenböck, H. Investigation on the separability of slums by multi-aspect TerraSAR-X dual-co-polarized high resolution spotlight images based on the multi-scale evaluation of local distributions. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 181–198. [Google Scholar] [CrossRef]
- Gholoobi, M.; Kumar, L. Using Object-Based Hierarchical Classification to Extract Land Use Land Cover Classes from High-Resolution Satellite Imagery in a Complex Urban Area. J. Appl. Remote Sens. 2015, 9, 096052. [Google Scholar] [CrossRef]
- Wurm, M.; Weigand, M.; Schmitt, A.; Geiß, C.; Taubenböck, H. Exploitation of Textural and Morphological Image Features in Sentinel-2A Data for Slum Mapping. In Proceedings of the Urban Remote Sensing Event, Dubai, UAE, 6–8 March 2017. [Google Scholar]
- Amorim, L.; Filho, M.N.B.; Cruz, D. Urban Texture and Space Configuration: An Essay on Integrating Socio-Spatial Analytical Techniques. Cities 2014, 39, 58–67. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Kouyate, F.; Brisco, B.; Williams, T.H.L. Textural Infornation in SAR Images. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 235–245. [Google Scholar] [CrossRef]
- Herold, M.; Scepan, J.; Clarke, K.C. The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses. Environ. Plan. A 2002, 34, 1443–1458. [Google Scholar] [CrossRef]
- Mesev, V. Classification of Urban Areas: Inferring Land Use from the Interpretation of Land Cover. In Remote Sensing of Urban and Suburban Areas; Rashed, T., Jurgens, C., Eds.; Springer: New York, NY, USA, 2010; ISBN 1402043716. [Google Scholar]
- Liu, X.; Clarke, K.; Herold, M. Population Density and Image Texture. Photogramm. Eng. Remote Sens. 2006, 72, 187–196. [Google Scholar] [CrossRef]
- McGarigal, K. Landscape Pattern Metrics. Encycl. Environ. 2002, 21, 1. [Google Scholar] [CrossRef]
- Huang, J.; Lu, X.X.; Sellers, J.M. A Global Comparative Analysis of Urban Form: Applying Spatial Metrics and Remote Sensing. Landsc. Urban Plan. 2007, 82, 184–197. [Google Scholar] [CrossRef]
- Liu, X.; Herold, M. Of Patterns and Processes: Spatial Metrics and Geostatistics in Urban Analysis. In Integration of GIS and Remote Sensing; Mesev, V., Ed.; John Wiley & Sons: Chichester, UK, 2007; ISBN 9780470864111. [Google Scholar]
- Giada, S.; De Groeve, T.; Ehrlich, D.; Soille, P. Information Extraction from Very High Resolution Satellite Imagery over Lukole Refugee Camp, Tanzania. Int. J. Remote Sens. 2003, 24, 4251–4266. [Google Scholar] [CrossRef]
- Baatz, M.; Benz, U.; Dehghani, S.; Heynen, M.; Holtje, A.; Hofmann, P.; Lingenfelder, I. eCognition User Guide; Trimble: Munich, Germany, 2004. [Google Scholar]
- Petropoulos, G.P.; Kalaitzidis, C.; Vadrevu, K.P. Support Vector Machines and Object-Based Classification for Obtaining Land-Use/Cover Cartography from Hyperion Hyperspectral Imagery. Comput. Geosci. 2012, 41, 99–107. [Google Scholar] [CrossRef]
- Hay, G.J.; Blaschke, T.; Marceau, D.J.; Bouchard, A. A Comparison of Three Image-Object Methods for the Multiscale Analysis of Landscape Structure. ISPRS J. Photogramm. Remote Sens. 2003, 57, 327–345. [Google Scholar] [CrossRef]
- Blaschke, T.; Strobl, J. What’s Wrong with Pixels? Some Recent Developments Interfacing Remote Sensing and GIS. GIS Zeitschrift Für Geoinformationssysteme 2001, 6, 12–17. [Google Scholar]
- Hofmann, P.; Strobl, J.; Kux, H. Detecting informal settlements from QuickBird data in Rio de Janeiro using an object based approach. In Object-Based Image Analysis Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Lang, S., Hay, G.J., Eds.; Spinger: Berlin/Heidelberg, Germany, 2008; pp. 531–553. [Google Scholar]
- Khelifa, D.; Mimoun, M. Object-Based Image Analysis and Data Mining for Building Ontology of Informal Urban Settlements. In Proceedings of the Image and Signal Processing for Remote Sensing, Edinburgh, UK, 24–27 September 2012; Volume XVII, pp. 853711–853724. [Google Scholar] [CrossRef]
- Shekhar, S. Slum Modelling by Using Ontology and Geoinformatics: Case Study of Gulbarga. Int. J. Geoinf. 2013, 9, 53–60. [Google Scholar]
- Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and Local Spatial Statistics for the Object-oriented Classification of Urban Areas Using High Resolution Imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Zhu, H.; Cai, L.; Liu, H.; Huang, W. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters. PLoS ONE 2016, 11, e0158585. [Google Scholar] [CrossRef] [PubMed]
- Temba, P.; Nero, M.A.; Botelho, L.M.R.; Lopes, M.E.C. Building Vectorization inside a Favela Utilizing Lidar Spot Elevation. In Proceedings of the Earth Observing Systems, San Diego, CA, USA, 8 September 2015. [Google Scholar]
- Henderson, J.V.; Regan, T.; Venables, A.J. Building the City: Sunk Capital, Sequencing, and Institutional Frictions; SERC Discussion Papers; SERCDP0196; Spatial Economics Research Centre: London, UK, 2016. [Google Scholar]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active Contour Models. Int. J. Comput. Vis. 1988, 1, 321–331. [Google Scholar] [CrossRef]
- Agouris, P.; Stefanidis, A.; Gyftakis, S. Differential Snakes for Change Detection in Road Segments. Photogramm. Eng. Remote Sens. 2001, 67, 1391–1400. [Google Scholar]
- Mayunda, S.D.; Coleman, D.J.; Zhang, Y. Semi-Automatic Building Extraction in Dense Urban Settlement Areas from High-Resolution Satellite Images. Surv. Rev. 2010, 42, 50–61. [Google Scholar] [CrossRef]
- Theng, L.B. Automatic Building Extraction from Satellite Imagery. Eng. Lett. 2006, 13, 3–15. [Google Scholar]
- Wang, C.; Stefanidis, A.; Croitoru, A.; Agouris, P. Map Registration of Image Sequences Using Linear Features. Photogramm. Eng. Remote Sens. 2008, 74, 25–38. [Google Scholar] [CrossRef]
- Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. From Data Mining to Knowledge Discovery in Databases. AI Mag. 1996, 17, 37–54. [Google Scholar]
- Du, S.; Zhang, F.; Zhang, X. Semantic Classification of Urban Buildings Combining VHR Image and GIS Data: An Improved Random Forest Approach. ISPRS J. Photogramm. Remote Sens. 2015, 105, 107–119. [Google Scholar] [CrossRef]
- Dahmani, R.; Fora, A.A.; Sbihi, A. Extracting Slums from High-Resolution Satellite Images. Int. J. Eng. Res. Dev. 2014, 10, 1–10. [Google Scholar]
- Gevaert, C.M.; Persello, C.; Sliuzas, R.; Vosselman, G. Classification of Informal Settlements through the Integration of 2D and 3D Features Extracted from UAV Data. In Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; Volume 3, pp. 317–324. [Google Scholar]
- Belgiu, M.; Lampoltshammer, T.J.; Hofer, B. An Extension of an Ontology-Based Land Cover Designation Approach for Fuzzy Rules. In GI_Forum 2013. Creating the GISociety; Car, A., Jekel, T., Strobl, J., Eds.; Austrian Academy of Sciences Press: Vienna, Austria, 2013; pp. 59–70. [Google Scholar]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining Satellite Imagery and Machine Learning to Predict Poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Uzun, B.; Cete, M. A Model for Solving Informal Settlement Issues in Developing Countries. In Proceedings of the Planning, Valuation and the Environment, Athens, Greece, 22–27 May 2004. [Google Scholar]
- Satori, G.; Nembrini, G.; Stauffer, F. Monitoring of Urban Growth of Informal Settlements (IS) and Population Estimation from Aerial Photography and Satellite Imaging; Occasional Paper 6; Geneva Foundation: Geneva, Switzerland, 2002. [Google Scholar]
- Checchi, F.; Stewart, B.T.; Palmer, J.J.; Grundy, C. Validity and Feasibility of a Satellite Imagery-Based Method for Rapid Estimation of Displaced Populations. Int. J. Health Geogr. 2013, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Sliuzas, R.; Kuffer, M. Analysing the Spatial Heterogeneity of Poverty Using Remote Sensing: Typology of Poverty Areas Using Selected RS Based Indicators. In Analysing the Spatial Heterogeneity of Poverty Using Remote Sensing: Typology of Poverty Areas Using Selected RS Based Indicators-Remote Sensing: New Challenges of High Resolution; Jurgens, C., Ed.; EARSeL: Bochum, Germany, 2008; pp. 158–167. [Google Scholar]
- Deroin, J.P.; Téreygeol, F.; Cruz, P.; Guillot, I.; Méaudre, J. Integrated Non-Invasive Remote-Sensing Techniques and Field Survey for the Geoarchaeological Study of the Sud Lípez Mining District, Bolivia. J. Geophys. Eng. 2012, 9, S40. [Google Scholar] [CrossRef]
- United Nations Statistics Division (UNSD). Millenium Development Goal Indicators. United Nations Statistics Division, United Nations, 2012. Available online: http://mdgs.un.org/unsd/mdg/Default.aspx (accessed on 17 June 2017).
- Global Urban Observatory. Urban Population Countries. Available online: http://urbandata.unhabitat.org (accessed on 26 July 2017).
- United Nations Database. Slum Population in Urban Areas (Thousands). Available online: http://data.un.org (accessed on 23 March 2017).
- Riley, L.W.; Ko, AI.; Unger, A.; Reis, M.G. Slum Health: Diseases of Neglected Populations. BMC Int. Health Hum. Rights 2007, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.C.N.; Taddei, A.A.C.; Diniz-Santos, D.R.; Vieira, C.; Carneiro, N.B.; Melo, R.F.; Silva, L.R. Incidence of Diarrhea in Children Living in Urban Slums in Salvador, Brazil. Braz. J. Infect. Dis. 2008, 12, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.B.; Ribeiro, G.S.; Felzemburgh, R.D.; Santana, F.S.; Mohr, S.; Melendez, A.X.; Queiroz, A.; Santos, A.C.; Ravines, R.R.; Tassinari, W.S. Impact of Environment and Social Gradient on Leptospira Infection in Urban Slums. PLoS Negl. Trop. Dis. 2008, 2, e228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.D.L.; Diez-Roux, A.; César, C.C.; Proietti, F.A. A Case-Control Study of Microenvironmental Risk Factors for Urban Visceral Leishmaniasis in a Large City in Brazil, 1999–2000. Revista Panamericana de Salud Pública 2006, 20, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Government of India. Census of India. Available online: http://www.censusindia.gov.in (accessed on 21 April 2017).
- MHUPA. Mumbai Human Development Report 2009; Oxford Universtiy Press: New Delhi, India, 2010. Available online: http://mhupa.gov.in/writereaddata/Mumbai%20HDR%20Complete.pdf (accessed on 24 August 2017).
- Kit, O.; Lüdeke, M.; Reckien, D. Defining the Bull’s Eye: Satellite Imagery-assisted Slum Population Assessment in Hyderabad, India. Urban Geogr. 2012, 34, 413–424. [Google Scholar] [CrossRef]
- Kohli, D.; Sliuzas, R.; Stein, A. Urban Slum Detection using Texture and Spatial Metrics derived from Satellite Imagery. J. Spat. Sci. 2016, 61, 405–426. [Google Scholar] [CrossRef]
- Yadav, S.; Rizvi, I.; Kadam, S. Comparative Study of Object Based Image Analysis on High Resolution Satellite Images for Urban Development. Int. J. Tech. Res. Appl. 2015, 31, 105–110. [Google Scholar]
- Shekhar, S. Detecting slums from Quick Bird data in Pune using an object oriented approach. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 25 August–1 September 2012. [Google Scholar]
- Kuffer, M.; Barros, J. Urban Morphology of Unplanned Settlements: The use of Spatial Metrics in VHR remotely sensed images. Procedia Environ. Sci. 2011, 7, 152–157. [Google Scholar] [CrossRef]
- Bhangale, U.; Rathod, V.; Rajgor, N.; Rami, J.; Kurte, K. Identification of Informal Settlement using Remote Sensing Images. In Proceedings of the International Conference on Advances in Information Communication Technology and Computing, Bikaner, India, 12–13 August 2016. [Google Scholar]
- De Melo, R.H.C.; Conci, A. How Succolarity could be used as another Fractal Measure in Image Analysis. Telecommun. Syst. 2013, 52, 1643–1655. [Google Scholar] [CrossRef]
- Ribeiro, B.M.G. Mapping Informal Settlements using WorldView-2 Imagery and C4. 5 Decision Tree Classifier. In Proceedings of the Joint Urban Remote Sensing Event, Lausanne, Switzerland, 30 March–1 April 2015. [Google Scholar]
- Rhinane, H.; Hilali, A.; Bahi, H.; Berrada, A. Contribution of Landsat TM Data for the Detection of Urban Heat Islands Areas Case of Casablanca. J. Geogr. Inf. Syst. 2012, 4, 20. [Google Scholar]
- Nagendra, H.; Rocchini, D. High Resolution Satellite Imagery for Tropical Biodiversity Studies: The Devil Is in the Detail. Biodivers. Conserv. 2008, 17, 3431–3442. [Google Scholar] [CrossRef]
- Weeks, J.R.; Larson, D.P.; Fugate, D.L. Patterns of Urban Land Use as Assessed by Satellite Imagery: An Application to Cairo, Egypt. In Population, Land Use, and Environment: Research Directions; The National Academies Press: Washington, DC, USA, 2005; pp. 265–286. [Google Scholar]
- Hofmann, P.; Taubenböck, H.; Werthmann, C. Monitoring and Modelling of Informal Settlements—A Review on Recent Developments and Challenges. In Proceedings of the Joint Urban Remote Sensing Event, Lausanne, Switzerland, 30 March–1 April 2015. [Google Scholar]
- Hardoy, J.E.; Satterhwaite, D. Squatter Citizen: Life in the Urban Third World; International Institute for Environment and Development: London, UK, 1989. [Google Scholar]
- Saraiva, C.; Marques, E. The Social Dynamics of the Slums of the Metropolitan Region of São Paulo. Available online: http://neci.fflch.usp.br/sites/neci.fflch.usp.br/files/8306-20330-1-SM.pdf (accessed on 27 June 2017).
- Rindfuss, R.R.; Stern, P.C. Linking Remote Sensing and Social Science: The Need and the Challenges. In People and Pixels: Linking Remote Sensing and Social Science; The National Academies Press: Washington, DC, USA, 1998; pp. 1–27. [Google Scholar]
- Wurm, M.; Taubenböck, H. Detecting Social Groups from Space—Assessment of Remote Sensing-based Mapped Morphological Slums using Income Data. Remote Sens. Lett. 2018, 9, 41–50. [Google Scholar] [CrossRef]
- Baud, I.; Sridharan, N.; Pfeffer, K. Mapping Urban Poverty for Local Governance in an Indian Mega-City: The Case of Delhi. Urban Stud. 2008, 45, 1385–1412. [Google Scholar] [CrossRef]
- Lo, C.P.; Faber, B.J. Integration of Landsat Thematic Mapper and Census Data for Quality of Life Assessment. Remote Sens. Environ. 1997, 62, 143–157. [Google Scholar] [CrossRef]
- Afsar, S.; Ali, S.S.; Kazmi, S.J.H. Assessment the Quality of Life in Karachi City through the Integration of Space and Spatial Technologies. J. Basic Appl. Sci. 2013, 9, 373–388. [Google Scholar] [CrossRef]
- Openshaw, S. The Modifiable Areal Unit Problem. Geo Books Norwich. 1984, Volume 38. Available online: https://www.uio.no/studier/emner/sv/iss/SGO9010/openshaw1983.pdf (accessed on 23 December 2016).
- Robinson, W.S. Ecological Correlations and the Behavior of Individuals. Am. Sociol. Assoc. 1950, 15, 351–357. [Google Scholar] [CrossRef]
- Paelinck, J.H.P. On Aggregation in Spatial Econometric Modelling. J. Geogr. Syst. 2000, 2, 157–165. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Wong, D.W.S. The Modifiable Areal Unit Problem in Multivariate Statistical Analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Kennedy, S. The Small Number Problem and the Accuracy of Spatial Databases. In the Accuracy of Spatial Databases; Goodchild, M.F., Gopal, S., Eds.; CRC Press: Bristol, PA, USA, 1989; pp. 121–127. ISBN 9780850668476. [Google Scholar]
- Levin, S.A. The Problem of Pattern and Scale in Ecology. Ecol. Soc. Am. 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Weeks, J.R.; Hill, A.; Stow, D.; Getis, A.; Fugate, D. The Impact of Neighborhood Structure on Health Inequalities in Accra, Ghana. In Proceedings of the Annual Meeting of the Population Association of America Los Angeles, Los Angeles, CA, USA, 30 March–1 April 2006; pp. 1–34. [Google Scholar]
- Rindfuss, R.R.; Entwisle, B.; Walsh, S.J.; Prasartkul, P.; Sawangdee, Y.; Crawford, T.W.; Reade, J. Continuous and Discrete: Where They Have Met in Nang Rong, Thailand. In Linking People, Place, and Policy; Walsh, S.J., Crews-Meyer, K.A., Eds.; Springer: New York, NY, USA, 2002; pp. 7–37. [Google Scholar]
- Lesschen, J.P.; Verburg, P.H.; Staal, S.J. Statistical Methods for Analysing the Spatial Dimension of Changes in Land Use and Farming Systems; LUCC Report Series 7; International Livestock Research Institute: Nairobi, Kenya, 2005. [Google Scholar]
- Communications Authority of Kenya. First Quarter Sector Statistics Report for the Financial Year 2015/2016; Communications Authority of Kenya: Nairobi, Kenya, 2015. Available online: http://www.ca.go.ke/images/downloads/STATISTICS/Sector%20%20Statistics%20Report%20Q1%202015-16.pdf (accessed on 12 December 2017).
- Dutta, S.; Geiger, T.; Lanvin, B. The Global Information Technology Report. World Economic Forum. 2015. Available online: http://www3.weforum.org/docs/WEF_Global_IT_Report_2015.pdf (accessed on 21 January 2017).
- Connecting the World. Facebook. Available online: https://info.internet.org/en/ (accessed on 23 April 2017).
- CSquared. Google. Available online: https://www.google.com/get/projectlink/ (accessed on 23 April 2017).
- Balloon-Powered Internet For Everyone. Google. Project Loon. Available online: https://x.company/loon/ (accessed on 24 May 2017).
- Wesolowski, A.; Eagle, N. Parameterizing the Dynamics of Slums. In Proceedings of the AAAI Spring Symposium: Artificial Intelligence for Development, Palo Alto, CA, USA, 22–24 March 2010. [Google Scholar]
- Steele, J.E.; Sundsøy, P.R.; Pezzulo, C.; Alegana, V.A.; Bird, T.J.; Blumenstock, J.; Bjelland, J.; Engø-Monsen, K.; de Montjoye, Y.; Iqbal, A.M.; et al. Mapping poverty using mobile phone and satellite data. J. R. Soc. Interface 2017, 14, 20160690. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, M.F. Citizens as Sensors: The World of Volunteered Geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Mullen, W.F.; Jackson, S.P.; Croitoru, A.; Crooks, A.; Stefanidis, A.; Agouris, P. Assessing the impact of demographic characteristics on spatial error in volunteered geographic information features. GeoJournal 2015, 80, 587–605. [Google Scholar] [CrossRef]
- Google. Google Map Maker. Available online: https://services.google.com/fb/forms/mapmakerdatadownload (accessed on 21 October 2017).
- OpenStreetMap. Available online: http://www.openstreetmap.org (accessed on 1 December 2017).
- ArcGIS Online. Environmental Systems Research Institute (ESRI). Available online: http://www.arcgis.com/ (accessed on 21 July 2017).
- Wikimapia. Available online: http://wikimapia.org (accessed on 2 January 2017).
- Mahabir, R.; Stefanidis, A.; Croitoru, A.; Crooks, A.T.; Agouris, P. Authoritative and Volunteered Geographical Information in a Developing Country: A Comparative Case Study of Road Datasets in Nairobi, Kenya. ISPRS Int. J. GeoInf. 2017, 6, 24. [Google Scholar] [CrossRef]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Baud, I.; van Maarseveen, M. Capturing the Diversity of Deprived Areas with Image-Based Features: The Case of Mumbai. Remote Sens. 2017, 9, 384. [Google Scholar] [CrossRef]
- Geofabrik. Map Compare. 2016. Available online: http://tools.geofabrik.de/mc (accessed on 25 August 2016).
- Croitoru, A.; Crooks, A.T.; Radzikowski, J.; Stefanidis, A.; Vatsavai, R.R.; Wayant, N. Geoinformatics and Social Media: A New Big Data Challenge. In Big Data Techniques and Technologies in Geoinformatics; Karimi, H., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 207–232. [Google Scholar]
- Stefanidis, A.; Crooks, A.; Radzikowski, J. Harvesting Ambient Geospatial Information from Social Media Feeds. GeoJournal 2013, 78, 319–338. [Google Scholar] [CrossRef]
- Jenkins, A.; Croitoru, A.; Crooks, A.T.; Stefanidis, A. Crowdsourcing a Collective Sense of Place. PLoS ONE 2016, 11, e0152932. [Google Scholar] [CrossRef] [PubMed]
- Frenzel, F.; Koens, K.; Steinbrink, M.; Rogerson, C.M. Slum Tourism: State of the Art. Tour. Rev. Int. 2015, 18, 237–252. [Google Scholar] [CrossRef]
- Rolfes, M. Poverty Tourism: Theoretical Reflections and Empirical Findings Regarding an Extraordinary Form of Tourism. GeoJournal 2010, 75, 421–442. [Google Scholar] [CrossRef]
- Privitera, D. Tourist Valorisation of Urban Poverty: An Empirical Study on the Web. Urban Forum 2015, 26, 373–390. [Google Scholar] [CrossRef]
- Reality Tours and Travel. Available online: http://realitytoursandtravel.com (accessed on 23 March 2017).
- Heipke, C. Crowdsourcing Geospatial Data. ISPRS J. Photogramm. Remote Sens. 2010, 65, 550–557. [Google Scholar] [CrossRef]
- Ali, A.H. Power of Social Media in Developing Nations: New Tools for Closing the Global Digital Divide and Beyond. Harv. Hum. Rts. J. 2011, 24, 185. [Google Scholar]
- Norris, P. Digital Divide: Civic Engagement, Information Poverty, and the Internet Worldwide; Cambridge University Press: Oxford, UK, 2001; ISBN 978-0521002233. [Google Scholar]
- Warschauer, M. Technology and Social Inclusion: Rethinking the Digital Divide; MIT Press: Boston, MA, USA, 2004; ISBN 9780262232241. [Google Scholar]
- Iren, D.; Bilgen, S. Cost of Quality in Crowdsourcing. Hum. Comput. 2014, 1, 283–314. [Google Scholar] [CrossRef]
- Haklay, M. How Good Is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. Environ. Plan. B 2010, 37, 682–703. [Google Scholar] [CrossRef]
- Jackson, S.P.; Mullen, W.; Agouris, P.; Crooks, A.; Croitoru, A.; Stefanidis, A. Assessing Completeness and Spatial Error of Features in Volunteered Geographic Information. ISPRS Int. J. GeoInf. 2013, 2, 507–530. [Google Scholar] [CrossRef]
- Stefanidis, A.; Nittel, S. GeoSensor Networks; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Riederer, C.; Kim, Y.; Chaintreau, A.; Korula, N.; Lattanzi, S. Linking Users Across Domains with Location Data: Theory and Validation. In Proceedings of the 25th International Conference on World Wide Web, Montréal, QC, Canada, 11–15 April 2016; pp. 707–719. [Google Scholar]
- Stehr, N.J. Drones: The newest technology for precision agriculture. Nat. Sci. Educ. 2015, 44, 89–91. [Google Scholar] [CrossRef]
- The Economist. Commercial Drones Are the Fastest-Growing Part of the Market. 2018. Available online: https://www.economist.com/news/technology-quarterly/21723003-most-drones-today-are-either-cheap-toys-or-expensive-weapons-interesting (accessed on 14 January 2018).
- Sliuzas, R.; Kuffer, M.; Gevaert, C.; Persello, C.; Pfeffer, K. Slum mapping. In Proceedings of the Urban Remote Sensing Event, Dubai, UAE, 6–8 March 2017. [Google Scholar]
- Meier, P. Digital Humanitarians: How Big Data Is Changing the Face of Humanitarian Response; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Hruska, R.; Mitchell, J.; Anderson, M.; Glenn, N.F. Radiometric and Geometric Analysis of Hyperspectral Imagery acquired from an Unmanned Aerial Vehicle. Remote Sens. 2012, 4, 2736–2752. [Google Scholar] [CrossRef]
- Lin, Y.; Hyyppa, J.; Jaakkola, A. Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geosci. Remote Sens. Lett. 2011, 8, 426–430. [Google Scholar] [CrossRef]
- Gevaert, C.M.; Persello, C.; Sliuzas, R.; Vosselman, G. Informal settlement classification using point-cloud and image-based features from UAV data. ISPRS J. Photogramm. Remote Sens. 2017, 125, 225–236. [Google Scholar] [CrossRef]
- Ahmed, S.; Simiyu, E.; Githiri, G.; Sverdlik, A.; Mbaka, S. Cooking up a Storm: Community-Led Mapping and Advocacy with Food Vendors in Nairobi’s Informal Settlements; International Institute for Environment and Development: London, UK, 2015. [Google Scholar]
- Walter, K.F.N.; Bill, R. Geosensor Web Enablement in Early Warning Systems for Landslides. Available online: http://bono.hostireland.com/~eurosdr/km_pub/no54/workshops_docs/Geosensor_WS/walter_niemeyer.pdf (accessed on 14 August 2017).
- Nittel, S.; Labrinidis, A.; Stefanidis, A. Introduction to Advances in Geosensor Networks. In GeoSensor Networks; Lecture Notes in Computer Science; Nittel, S., Labrinidis, A., Stefanidis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4540. [Google Scholar] [CrossRef]
- Kearney, A.T. African Mobile Observatory: Driving Economic and Social Development through Mobile Services; Groupe Spéciale Mobile Association: London, UK, 2011. [Google Scholar]
- Jeon, S. M-Maji. Available online: https://mmaji.wordpress.com (accessed on 25 February 2017).
- Safaricom. M-PESA. Available online: http://www.safaricom.co.ke/personal/m-pesa (accessed on 25 February 2017).
- Morawczynski, O.; Pickens, M. Poor People Using Mobile Financial Services: Observations on Customer Usage and Impact from M-PESA. Available online: https://www.cgap.org/sites/default/files/CGAP-Brief-Poor-People-Using-Mobile-Financial-Services-Observations-on-Customer-Usage-and-Impact-from-M-PESA-Aug-2009.pdf (accessed on 25 May 2017).
- Demombynes, G.; Thegeya, A. Kenya’s Mobile Revolution and the Promise of Mobile Savings; World Bank Policy Research Working Paper, No. 5988; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Kariuki, J. Safaricom Partners with MTN to Spread M-Pesa Services to 19 African Countries. 2015. Available online: http://www.nation.co.ke/business/eMoney/Safaricom-MTN-partnership-Africa/-/1625712/2694198/-/pps4q6z/-/index.html (accessed on 23 January 2017).
- Vodafone. M-Pesa. Available online: https://www.mpesa.in (accessed on 23 January 2017).
- Brac Bank. bKash. Available online: http://www.bkash.com (accessed on 23 January 2017).
- Roth, C.; Kang, S.M.; Batty, M.; Barthélemy, M. Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows. PLoS ONE 2011, 6, e15923. [Google Scholar] [CrossRef] [PubMed]
- Wesolowski, A.; Eagle, N.; Noor, A.M.; Snow, R.W.; Buckee, C.O. Heterogeneous Mobile Phone Ownership and Usage Patterns in Kenya. PLoS ONE 2012, 7, e35319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OsmAnd. Offline Mobile Maps and Navigation. Available online: http://osmand.net (accessed on 13 August 2017).
- American Red Cross. Portable OpenStreetMap. Available online: https://github.com/AmericanRedCross/posm (accessed on 13 August 2017).
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding Smart Cities: An Integrative Framework. In Proceedings of the International Conference on System Science, Maui, HI, USA, 4–7 January 2012; pp. 2289–2297. [Google Scholar]
Approach | Properties |
---|---|
Multi-scale (Section 4.1) | Description |
Discriminate objects based on properties at different scales. | |
Commonly exploited remote sensing attributes | |
Spatial, contextual and multi-scale. | |
Extraction approach | |
Detection and characterization. | |
Sample studies | |
Advantages | |
| |
Limitations | |
| |
Image texture analysis (Section 4.2) | Description |
Extract features in an image based on its shape, size and tonal variation within the image. Image texture analysis have widely been used as part of OBIA extraction strategies. | |
Commonly exploited remote sensing attributes | |
Spatial, spectral, contextual and multi-scale. | |
Extraction approach | |
Detection and characterization. | |
Sample studies | |
Advantages | |
| |
Limitations | |
| |
Landscape analysis (Section 4.3) | Description |
Use spatial metrics developed in the field of landscape ecology to quantitatively analyze the spatial patterns of land cover. These metrics describe spatial composition and configuration. | |
Commonly exploited remote sensing attributes | |
Spatial and spectral. | |
Extraction approach | |
Detection and characterization. | |
Sample studies | |
Advantages | |
Wide variety of metrics available.Generally easy to interpret. | |
Limitations | |
| |
Object-based image analysis (Section 4.4) | Description |
Treats images as a composition of objects. | |
Commonly exploited remote sensing attributes | |
Spatial, spectral, contextual and multi-scale. | |
Extraction approach | |
Detection and characterization. | |
Sample studies | |
Advantages | |
| |
Limitations | |
| |
Building feature extraction (Section 4.5) | Description |
Use computer generated algorithms and tools to help humans with extracting knowledge from large volumes of data. | |
Commonly exploited remote sensing attributes | |
Spatial, spectral and contextual. | |
Extraction approach | |
Detection, delineation and characterization. | |
Sample studies | |
Advantages | |
| |
Limitations | |
| |
Data mining (Section 4.6) | Description |
Use elevation data to extract individual slum dwellings. | |
Commonly exploited remote sensing attributes | |
Spatial, spectral and contextual. | |
Extraction approach | |
Detection and characterization. | |
Sample studies | |
Advantages | |
| |
Limitations | |
| |
Socio-economic measures (Section 4.7) | Description |
Estimate socio-economic information from remotely sensing imagery or link them with census or similar data. | |
Commonly exploited remote sensing attributes | |
Spatial and spectral. | |
Extraction approach | |
Detection and characterization. | |
Sample studies | |
Advantages | |
| |
Limitations | |
|
Studies | Approach | Administrative District | Local Area | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | * E | * F | G | |||
Kit et al. [51] | X | Andhra Pradesh | Hyderabad | ||||||
Kit et al. [150] | X | Andhra Pradesh | Hyderabad | ||||||
Kit and Ludeke [17] | X | Andhra Pradesh | Hyderabad | ||||||
Niebergall et al. [78] | X | X | Delhi | Delhi | |||||
Kohli et al. [19] | X | X | Gujarat | Ahmedabad | |||||
Kohli et al. [151] | X | X | Maharashtra | Pune | |||||
Yadav et al. [152] | X | Maharashtra | Mumbai | ||||||
Shekhar [153] | Maharashtra | Pune | |||||||
Baud et al. [34] | X | X | Delhi | Delhi | |||||
Kuffer et al. [67] | X | Delhi | Delhi | ||||||
Kuffer and Barros [154] | X | Delhi | Delhi | ||||||
Kuffer et al. [60] | X | X | Maharashtra | Mumbai | |||||
Bhangale et al. [155] | X | Maharashtra | Mumbai | ||||||
Total | 3 | 3 | 3 | 4 | 0 | 2 | 2 |
Studies | Approaches | Administrative District | Local Area | ||||||
---|---|---|---|---|---|---|---|---|---|
A | * B | * C | D | * E | F | G | |||
Filho and Sobreira [63] | X | Pernambuco | Racife | ||||||
Filho and Sobreira [81] | X | Sao Paulo | Campinas | ||||||
Amorim et al. [105] | X | Pernambuco | Racife | ||||||
De Melo and Conci [156] | X | Rio de Janiero | Rio de Janiero | ||||||
De Melo and Conci [156] | X | Sao Paulo | Campinas | ||||||
Hofmann [118] | X | Rio de Janeiro | Rio de Janeiro | ||||||
Leao and Leao [64] | X | X | Rio Grande do Sul | Canela | |||||
Novack and Kux [71] | X | Sao Paulo | Sao Paulo | ||||||
Ribeiro [157] | X | Sao Paulo | Embu | ||||||
Total | 6 | 0 | 0 | 2 | 0 | 1 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahabir, R.; Croitoru, A.; Crooks, A.T.; Agouris, P.; Stefanidis, A. A Critical Review of High and Very High-Resolution Remote Sensing Approaches for Detecting and Mapping Slums: Trends, Challenges and Emerging Opportunities. Urban Sci. 2018, 2, 8. https://doi.org/10.3390/urbansci2010008
Mahabir R, Croitoru A, Crooks AT, Agouris P, Stefanidis A. A Critical Review of High and Very High-Resolution Remote Sensing Approaches for Detecting and Mapping Slums: Trends, Challenges and Emerging Opportunities. Urban Science. 2018; 2(1):8. https://doi.org/10.3390/urbansci2010008
Chicago/Turabian StyleMahabir, Ron, Arie Croitoru, Andrew T. Crooks, Peggy Agouris, and Anthony Stefanidis. 2018. "A Critical Review of High and Very High-Resolution Remote Sensing Approaches for Detecting and Mapping Slums: Trends, Challenges and Emerging Opportunities" Urban Science 2, no. 1: 8. https://doi.org/10.3390/urbansci2010008
APA StyleMahabir, R., Croitoru, A., Crooks, A. T., Agouris, P., & Stefanidis, A. (2018). A Critical Review of High and Very High-Resolution Remote Sensing Approaches for Detecting and Mapping Slums: Trends, Challenges and Emerging Opportunities. Urban Science, 2(1), 8. https://doi.org/10.3390/urbansci2010008