Selecting Potential Moss Species for Green Roofs in the Mediterranean Basin
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M.; et al. The Mediterranean climate: An overview of the main characteristics and issues. Dev. Earth Environ. Sci. 2006, 4, 1–26. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, Z.; Zhang, T.; Pegion, P. On the Increased Frequency of Mediterranean Drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
- Kuttler, W. The urban climate: Basic and applied aspects. In Urban Ecology; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., ZumBrunnen, C., Simon, U., Eds.; Springer: Berlin, Germany, 2008; pp. 233–248. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. BioScience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Carter, T.; Keeler, A. Life-cycle cost–benefit analysis of extensive vegetated roof systems. J. Environ. Manag. 2008, 87, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Lundholm, J. Vegetation of Urban Hard Surfaces. In Urban Ecology—Patterns Processes, and Applications; Niemelä, J., Breuste, J.H., Elmqvist, T., Guntenspergen, G., James, P., McIntyre, N.E., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 93–102. [Google Scholar] [CrossRef]
- Veisten, K.; Smyrnova, Y.; Klæboe, R.; Hornikx, M.; Mosslemi, M.; Kang, J. Valuation of green walls and green roofs as soundscape measures: Including monetised amenity values together with noise-attenuation values in a cost-benefit analysis of a green wall affecting courtyards. Int. J. Environ. Res. Public Health 2012, 9, 3770–3788. [Google Scholar] [CrossRef] [PubMed]
- Jaffal, I.; Ouldboukhitine, S.E.; Belarbi, R. A comprehensive study of the impact of green roofs on building energy performance. Renew. Energy 2012, 43, 157–164. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Eumorfopoulou, E.; Aravantinos, D. The contribution of a planted roof to the thermal protection of buildings in Greece. Energy Build. 1998, 27, 29–36. [Google Scholar] [CrossRef]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green Roof Stormwater Retention. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, E.; Jones, P. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Loder, A. ‘There’s a meadow outside my workplace’: A phenomenological exploration of aesthetics and green roofs in Chicago and Toronto. Landsc. Urban Plan. 2014, 126, 94–106. [Google Scholar] [CrossRef]
- Alpert, P.; Oliver, M.J. Drying without dying. In Desiccation and Survival in Plants: Drying without Dying; Black, M., Pritchard, H.W., Eds.; CABI Publishing: Wallingford, UK, 2002; pp. 3–43. [Google Scholar] [CrossRef]
- Cruz de Carvalho, R.; Santos, P.; Branquinho, C. Production of moss-dominated biocrusts to enhance the stability and function of the margins of artificial water bodies. Restor. Ecol. 2018, 26, 419–421. [Google Scholar] [CrossRef]
- Bowker, M.A.; Mau, R.L.; Maestre, F.T.; Escolar, C.; Castillo-Monroy, A.P. Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct. Ecol. 2011, 25, 787–795. [Google Scholar] [CrossRef]
- Buffam, I.; Mitchell, M.E. Nutrient Cycling in Green Roof Ecosystems. In Green Roof Ecosystems; Sutton, R., Ed.; Springer International Publishing: Basel, Switzerland, 2015; Chapter 5; pp. 107–137. [Google Scholar] [CrossRef]
- Rixen, C.; Mulder, C.P. Improved water retention links high species richness with increased productivity in arctic tundra moss communities. Oecologia 2005, 146, 287–299. [Google Scholar] [CrossRef]
- Garabito, D.; Vallejo, R.; Montero, E.; Garabito, J.; Martínez-Abaigar, J. Green buildings envelopes with bryophytes. A review of the state of the art. Boletín de la Sociedad Española de Briología 2017, 48–49, 1–16. [Google Scholar]
- Glime, J.M. Construction. In Bryophyte Ecology; Glime, J.M., Ed.; Volume 2: Uses; Ebook Sponsored by Michigan Technological University and the International Association of Bryologists: 5 November 2017; Chapter 5; Available online: http://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed on 30 April 2018).
- Van Mechelen, C.; Dutoit, T.; Hermy, M. Mediterranean open habitat vegetation offers great potential for extensive green roof design. Landsc. Urban Plan. 2014, 121, 81–91. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Diaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; Ter Steege, H.; Morgan, H.D.; Van Der Heijden, M.G.A.; et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef] [Green Version]
- Kleyer, M.; Bekker, R.M.; Knevel, I.C.; Bakker, J.P.; Thompson, K.; Sonnenschein, M.; Poschlod, P.; Van Groenendael, J.M.; Klimeš, L.; Klimešová, J.; et al. The LEDA Traitbase: A database of life-history traits of Northwest European flora. J. Ecol. 2008, 96, 1266–1274. [Google Scholar] [CrossRef]
- Paula, S.; Arianoutsou, M.; Kazanis, D.; Tavsanoglu, Ç.; Lloret, F.; Buhk, C.; Ojeda, F.; Luna, B.; Moreno, J.M.; Rodrigo, A.; et al. Fire-related traits for plant species of the Mediterranean Basin. Ecology 2009, 90, 1420. [Google Scholar] [CrossRef]
- Kattge, J.; Diaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Bönisch, G.; Garnier, E.; Westoby, M.; Reich, P.B.; Wright, I.J.; et al. TRY—A global database of plant traits. Glob. Chang. Biol. 2011, 17, 2905–2935. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Diaz, S.; Gamier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Comwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Hill, M.O.; Preston, C.D.; Bosanquet, S.D.S.; Roy, D.B. BRYOATT: Attributes of British and Irish Mosses, Liverworts and Hornworts; Centre for Ecology and Hydrology: Huntingdon, UK, 2007; ISBN 9781855312364. [Google Scholar]
- Henriques, D.S.G.; Ah-Peng, C.; Gabriel, R. Structure and Applications of BRYOTRAIT-AZO, a Trait Database for Azorean Bryophytes. Cryptogam. Bryol. 2017, 38, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Brandão, C.; Cameira, M.R.; Valente, F.; Cruz de Carvalho, R.; Paço, T.A. Wet season hydrological performance of green roofs using native species under Mediterranean climate. Ecol. Eng. 2017, 102, 596–611. [Google Scholar] [CrossRef]
- Paço, T.A.; Cruz de Carvalho, R.; Arsénio, P.; Martins, D. Green roof design techniques to improve water use under Mediterranean conditions. Urban Sci. 2019, 3, 14. [Google Scholar] [CrossRef]
- Ros, R.M.; Mazimpaka, V.; Abou-Salama, U.; Aleffi, M.; Blockeel, T.L.; Brugués, M.; Cros, R.M.; Dia, M.G.; Dirkse, G.M.; Draper, I.; et al. Mosses of the Mediterranean, an Annotated Checklist. Cryptogam. Bryol. 2013, 34, 99–283. [Google Scholar] [CrossRef]
- Hodgetts, N.G. Checklist and Country Status of European Bryophytes—Towards a New Red List for Europe; Irish Wildlife Manuals. No. 84; National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht: Ireland, UK, 2015. [Google Scholar]
- Karrer, G.; Wiedermann, R. Ökologische Zeigerwerte. Available online: http://statedv.boku.ac.at/zeigerwerte/ (accessed on 30 April 2018).
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W.; Paulissen, D. Zeigerwerte von Pflanzen in Mitteleuropa, 2nd ed.; Goltze: Göttingen, Germany, 1992; Scripta Geobotanica 18; pp. 1–258. ISBN 9783884525180. [Google Scholar]
- Dierssen, K. Distribution, Ecological Amplitude and Phytosociological Characterization of European Bryophytes; Bryophytorum Bibliotheca 56; J. Cramer: Stuttgart, Germany, 2001; pp. 1–289. ISBN 978-3-443-62028-8. [Google Scholar]
- During, H.J. Ecological classifications of bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment; Bates, J.W., Farmer, A.M., Eds.; Clarendon: Oxford, UK, 1992; pp. 1–31. ISBN 978-0198542919. [Google Scholar]
- Frey, W.; Frahm, J.P.; Fischer, E.; Lobin, W. The Liverworts, Mosses and Ferns of Europe; English Edition; Heidelberg, T.L., Ed.; Apollo Books: Vester Skerninge, Denmark, 2006; 527p, ISBN 978-0946589708. [Google Scholar]
- Bates, J.W. Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 1998, 82, 223–237. [Google Scholar] [CrossRef]
- Zotz, G.; Schweikert, A.; Jetz, W.; Westerman, H. Water relations and carbon gain are closely related to cushion size in the moss Grimmia pulvinata. New Phytol. 2000, 148, 59–67. [Google Scholar] [CrossRef]
- Kürschner, H. Life strategies and adaptations in bryophytes from the Near and Middle East. Turk. J. Bot. 2004, 28, 73–84. [Google Scholar]
- Proctor, M.C.F.; Oliver, M.J.; Wood, A.J.; Alpert, P.; Stark, L.R.; Cleavitt, N.L.; Mishler, B.D. Desiccation tolerance in bryophytes: A review. Bryologist 2007, 110, 595–621. [Google Scholar] [CrossRef]
- Giordano, S.; Sorbo, S.; Adamo, P.; Adriana Basile, A.; Spagnuolo, V.; Cobianchi, R.C. Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecol. 2004, 170, 1–14. [Google Scholar] [CrossRef]
- Kürschner, H. Life strategies of Pannonian loess cliff bryophyte communities: Studies of the cryptogamic vegetation of loess cliffs, VIII. Nova Hedwig. 2002, 75, 307–318. [Google Scholar] [CrossRef]
Species | L | T | H | Life Form | Growth Form | Lifestyle |
---|---|---|---|---|---|---|
Abietinella abietina (Hedw.) M.Fleisch | 8 | x | 3 | Ma | Pl | P |
Barbula convoluta Hedw. | 8 | x | 3 | Tf | Acr | C |
Bryum argenteum Hedw. | 8 | x | x | Tf | Acr | C |
Bryum canariense Brid. | 9 | x | 2 | Tf | Acr | C |
Campylopus oerstedianus (Müll.Hal.) Mitt. | 8 | 9 | 2 | Tf | Acr | P |
Campylopus pilifer Brid. | 9 | 8 | 2 | Cu | Acr | LS |
Ceratodon purpureus (Hedw.) Brid. | 8 | x | 2 | Tf | Acr | C |
Cheilothela chloropus (Brid.) Broth. | 9 | x | 2 | Tf | Acr | C |
Crossidium crassinerve (De Not.) Jur. | 9 | 8 | 2 | Tf | Acr | C |
Crossidium squamiferum (Viv.) Jur. | 9 | 8 | 1 | Tf | Acr | C |
Didymodon cordatus Jur. | 9 | 8 | 1 | Tf | Acr | P |
Didymodon fallax (Hedw.) R.H.Zander | 8 | x | 2 | Tf | Acr | P |
Fabronia ciliaris (Brid.) Brid. | 8 | 8 | 2 | Ma | Pl | P |
Fabronia pusilla Raddi | 8 | 9 | 3 | Ma | Pl | P |
Grimmia anodon Bruch & Schimp. | 9 | x | 1 | Cu | Acr | STP |
Grimmia crinita Brid. | 9 | 8 | 1 | Tf | Acr | C |
Grimmia donniana Sm. | 8 | x | 2 | Cu | Acr | C |
Grimmia lisae De Not. | 8 | 9 | 1 | Cu | Acr | C |
Grimmia tergestina Tomm. ex Bruch & Schimp. | 9 | 8 | 1 | Cu | Acr | C |
Haplocladium virginianum (Brid.) Broth. | 8 | 8 | 3 | Ma | Pl | P |
Hedwigia ciliata (Hedw.) P.Beauv. | 9 | x | 2 | Ma | Acr | LS |
Hedwigia stellata Hedenäs | 8 | 9 | 1 | Ma | Acr | LS |
Homalothecium aureum (Spruce) H.Rob. | 8 | 9 | 2 | Ma | Pl | P |
Leptobarbula berica (De Not.) Schimp. | 8 | 8 | 2 | Tf | Acr | C |
Orthotrichum cupulatum Hoffm. ex Brid. | 9 | 8 | 1 | Cu | Acr | C |
Pleurochaete squarrosa (Brid.) Lindb. | 9 | 8 | 2 | Tf | Acr | CP |
Pottiopsis caespitosa (Bruch ex Brid.) Blockeel & A.J.E.Sm. | 8 | 8 | 2 | Tf | Acr | C |
Pseudoleskeella tectorum (Funck ex Brid.) Kindb. ex Broth. | 8 | x | 2 | Ma | Pl | STP |
Pterygoneurum sampaianum (Machado-Guim.) Machado-Guim. | 9 | 8 | 3 | Tf | Acr | C |
Racomitrium lanuginosum (Hedw.) Brid. | 9 | x | 3 | Tf | Acr | STP |
Rhytidium rugosum (Hedw.) Kindb. | 9 | x | 3 | Ma | Pl | P |
Schistidium confertum (Funck) Bruch & Schimp. | 9 | x | 1 | Cu | Acr | C |
Schistidium flaccidum (De Not.) Ochyra | 9 | x | 1 | Cu | Acr | P |
Syntrichia caninervis Mitt. | 9 | 9 | 1 | Tf | Acr | C |
Syntrichia laevipila Brid. | 8 | 8 | 2 | Tf | Acr | C |
Syntrichia ruralis (Hedw.) F.Weber & D.Mohr | 9 | x | 2 | Tf | Acr | C |
Tortella nitida (Lindb.) Broth. | 8 | 8 | 2 | Cu | Acr | STP |
Tortula acaulon (With.) R.H.Zander | 9 | 9 | 3 | Tf | Acr | C |
Tortula brevissima Schiffn. | 9 | 8 | 2 | Tf | Acr | C |
Tortula inermis (Brid.) Mont. | 8 | 8 | 2 | Cu | Acr | C |
Tortula muralis Hedw. | 9 | 8 | 1 | Tf | Acr | C |
Tortula revolvens (Schimp.) G.Roth | 9 | 8 | 1 | Tf | Acr | C |
Trichostomum crispulum Bruch | 8 | 8 | 2 | Tf | Acr | C |
Species | AD | AL | AZ | BA | BG | BL | CN | CO | CT | CY | DZ | EG | ES | FR | GR | HR | IL | IT | JO | LB | LY | MA | MD | ME | MK | MT | PT | RS | SA | SC | SI | SY | TN | TR | Nº |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abietinella abietina (Hedw.) M.Fleisch | X | X | X | X | X | X | X | X | X | X | X | X | X | 13 | |||||||||||||||||||||
Barbula convoluta Hedw. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 18 | ||||||||||||||||
Bryum argenteum Hedw. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 32 | ||
Bryum canariense Brid. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 22 | ||||||||||||
Campylopus oerstedianus (Müll.Hal.) Mitt. | X | X | X | X | X | X | 6 | ||||||||||||||||||||||||||||
Campylopus pilifer Brid. | X | X | X | X | X | X | X | X | X | X | X | X | X | 13 | |||||||||||||||||||||
Ceratodon purpureus (Hedw.) Brid. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 27 | |||||||
Cheilothela chloropus (Brid.) Broth. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 23 | |||||||||||
Crossidium crassinerve (De Not.) Jur. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 23 | |||||||||||
Crossidium squamiferum (Viv.) Jur. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 25 | |||||||||
Didymodon cordatus Jur. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 15 | |||||||||||||||||||
Didymodon fallax (Hedw.) R.H.Zander | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 30 | ||||
Fabronia ciliaris (Brid.) Brid. | X | X | X | X | X | X | X | 7 | |||||||||||||||||||||||||||
Fabronia pusilla Raddi | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 25 | |||||||||
Grimmia anodon Bruch & Schimp. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 22 | ||||||||||||
Grimmia crinita Brid. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 16 | ||||||||||||||||||
Grimmia donniana Sm. | X | X | X | X | X | X | X | X | X | X | X | X | X | 13 | |||||||||||||||||||||
Grimmia lisae De Not. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 29 | |||||
Grimmia tergestina Tomm. ex Bruch & Schimp. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 25 | |||||||||
Haplocladium virginianum (Brid.) Broth. | X | X | X | 3 | |||||||||||||||||||||||||||||||
Hedwigia ciliata (Hedw.) P.Beauv. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 21 | |||||||||||||
Hedwigia stellata Hedenäs | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 16 | ||||||||||||||||||
Homalothecium aureum (Spruce) H.Rob. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 24 | ||||||||||
Leptobarbula berica (De Not.) Schimp. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 19 | |||||||||||||||
Orthotrichum cupulatum Hoffm. ex Brid. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 25 | |||||||||
Pleurochaete squarrosa (Brid.) Lindb. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 27 | |||||||
Pottiopsis caespitosa (Bruch ex Brid.) Blockeel & A.J.E.Sm. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 19 | |||||||||||||||
Pseudoleskeella tectorum (Funck ex Brid.) Kindb. ex Broth. | X | X | X | X | X | X | X | X | X | X | 10 | ||||||||||||||||||||||||
Pterygoneurum sampaianum (Machado-Guim.) Machado-Guim. | X | X | X | 3 | |||||||||||||||||||||||||||||||
Racomitrium lanuginosum (Hedw.) Brid. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 17 | |||||||||||||||||
Rhytidium rugosum (Hedw.) Kindb. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 14 | ||||||||||||||||||||
Schistidium confertum (Funck) Bruch & Schimp. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 23 | |||||||||||
Schistidium flaccidum (De Not.) Ochyra | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 18 | ||||||||||||||||
Syntrichia caninervis Mitt. | X | X | X | X | X | 5 | |||||||||||||||||||||||||||||
Syntrichia laevipila Brid. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 29 | |||||
Syntrichia ruralis (Hedw.) F.Weber & D.Mohr | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 22 | ||||||||||||
Tortella nitida (Lindb.) Broth. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 32 | ||
Tortula acaulon (With.) R.H.Zander | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 24 | ||||||||||
Tortula brevissima Schiffn. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 14 | ||||||||||||||||||||
Tortula inermis (Brid.) Mont. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 27 | |||||||
Tortula muralis Hedw. | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 31 | |||
Tortula revolvens (Schimp.) G.Roth | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 15 | |||||||||||||||||||
Trichostomum crispulum Bruch | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | 32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz de Carvalho, R.; Varela, Z.; do Paço, T.A.; Branquinho, C. Selecting Potential Moss Species for Green Roofs in the Mediterranean Basin. Urban Sci. 2019, 3, 57. https://doi.org/10.3390/urbansci3020057
Cruz de Carvalho R, Varela Z, do Paço TA, Branquinho C. Selecting Potential Moss Species for Green Roofs in the Mediterranean Basin. Urban Science. 2019; 3(2):57. https://doi.org/10.3390/urbansci3020057
Chicago/Turabian StyleCruz de Carvalho, Ricardo, Zulema Varela, Teresa Afonso do Paço, and Cristina Branquinho. 2019. "Selecting Potential Moss Species for Green Roofs in the Mediterranean Basin" Urban Science 3, no. 2: 57. https://doi.org/10.3390/urbansci3020057
APA StyleCruz de Carvalho, R., Varela, Z., do Paço, T. A., & Branquinho, C. (2019). Selecting Potential Moss Species for Green Roofs in the Mediterranean Basin. Urban Science, 3(2), 57. https://doi.org/10.3390/urbansci3020057