Health Benefit Assessment of Running in Urban Areas against the Background of Particulate Matter 2.5 Concentration: The Munich Olympic Park
Abstract
:1. Introduction
2. Materials and Methods
2.1. Health Benefit Assessment
2.2. PM2.5 Concentration in the Munich Olympic Park
3. Results
3.1. Tipping and Break-Even Points
3.2. PM2.5 Concentrations in the Munich Olympic Park
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M.; Amann, M.; Burnett, R.T.; Cohen, A.; Dentener, F.; Ezzati, M. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol. 2012, 46, 652–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, M.J.; Dunn, C.J.; Pittman, C.L.; Kerr, W.C.; Adair, N.E. Increased ventilation in runners during running as compared to walking at similar metabolic rates. Eur. J. Appl. Physiol. 1996, 73, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Kargarfard, M.; Poursafa, P.; Rezanejad, S.; Mousavinasab, F. Effects of exercise in polluted air on the aerobic power, serum lactate level and cell blood count of active individuals. Int. J. Prev. Med. 2011, 2, 145–150. [Google Scholar]
- Pasqua, L.A.; Damasceno, M.V.; Cruz, R.; Matsuda, M.; Garcia Martins, M.; Lima-Silva, A.E.; Marquezini, M.; Saldiva, P.H.N.; Bertuzzi, R. Exercising in air pollution: The cleanest versus dirtiest cities challenge. Int. J. Environ. Res. Public Health 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Tainio, M.; Nazelle, A.; Götschi, T.; Kahlmeier, S.; Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; Sá, T.H.; Kelly, P.; Woodcock, J. Can air pollution negate the health benefits of cycling and walking? Prev. Med. 2016, 87, 233–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giallouros, G.; Kouis, P.; Papatheodorou, I.; Woodcock, J.; Tainio, M. The long-term impact of restricting cycling and walking during high air pollution days on all-cause mortality: Health impact assessment study. Environ. Int. 2020, 140, 105679. [Google Scholar] [CrossRef]
- Swain, D.P.; Abernathy, K.S.; Smith, C.S.; Lee, S.J.; Bunn, S.A. Target heart rates for the development of cardiorespiratory fitness. Med. Sci. Sports Exerc. 1994, 26, 112–116. [Google Scholar] [CrossRef]
- Jackson, A.S.; Sui, X.; O’Connor, D.P.; Church, T.S.; Lee, D.-C.; Artero, E.G.; Blair, S.N. Longitudinal cardiorespiratory fitness algorithms for clinical settings. Am. J. Prev. Med. 2012, 43, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Pedisic, Z.; Shrestha, N.; Kovalchik, S.; Stamatakis, E.; Liangruenrom, N.; Grgic, J.; Titze, S.; Biddle, S.J.H.; Oja, P. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. British J. Sports Med. 2019, 54, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Kahlmeier, S.; Götschi, T.; Orsini, N.; Richards, J.; Roberts, N.; Scarborough, P.; Foster, C. Systematic review and meta-analysis of reduction in all-cause mortality from walking and cycling and shape of dose response relationship. Int. J. Behav. Nut. Phys. Act. 2014, 11, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigle, C.C.; Chalupa, D.C.; Gibb, F.R. Ultrafine particle deposition in humans during rest and exercise. Inhal. Toxicol. 2003, 15, 539–552. [Google Scholar] [CrossRef]
- Oravisjarvi, K.; Pietikainen, M.; Ruuskanen, J. Effects of physical activity on the deposition of traffic-related particles into the human lungs in silico. Sci. Total Environ. 2011, 409, 4511–4518. [Google Scholar] [CrossRef]
- WHO. WHO Expert Meeting: Methods and Tools for Assessing the Health Risks of air Pollution at Local, National and International Level. Meeting Report. Available online: http://www.euro.who.int/__data/assets/pdf_file/0010/263629/WHO-Expert-Meeting-Methods-and-tools-for-assessing-the-health-risks-of-air-pollution-at-local,-national-and-international-level.pdf (accessed on 10 October 2020).
- Koenigstorfer, J.; Bocarro, J.N.; Byers, T.; Edwards, M.B.; Jones, G.J.; Preuss, H. Mapping research on legacy of mega sporting events: Structural changes, consequences, and stakeholder evaluations in empirical studies. Leis. Stud. 2019, 38, 729–745. [Google Scholar] [CrossRef]
- Haas, O.; Kösler, W. Offizieller Olympiaführer der Spiele der XX. Olympiade München 1972. Organisationskomitee für die Spiele der XX. Olympiade München 1972 [Official Guide for the XX Olympic Games in Munich 1972, Released by the Organizing Committee of the XX Olympic Games 1972]; Atlas Verlag GmbH: München, Germany, 1972. [Google Scholar]
- Morpurgo, A.; Pedersini, F.; Reina, A. A low-cost instrument for environmental particulate analysis based on optical scattering. Presented at the Instrumentation and Measurement Technology Conference (I2MTC), IEEE International, Graz, Austria, 13–16 May 2012. [Google Scholar]
- Han, I.; Symanski, E.; Stock, T.H. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air. J. Air Waste Manag. 2017, 67, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Holstius, D.M.; Pillarisetti, A.; Smith, K.; Seto, E. Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmos. Meas. Tech. Discuss. 2014, 7, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Müller, N. Wer Läuft Wann?—Die Bevorzugten Joggingzeiten Weltweit [Who Runs When? Preferred Running Times around the World]. Available online: https://www.netzathleten.de/lifestyle/sports-inside/item/5419-wer-laeuft-wann-die-bevorzugten-joggingzeiten-weltweit on 03/15/2020 (accessed on 10 October 2020).
- Arling, J.; O’Connor, K.; Mercieca, M. Air quality sensor network for Philadelphia. Eng. Man. 2010. Available online: http://aqicn.org/data/dylos/Air-Quality-Sensor-Network-for-Philadelphia.pdf (accessed on 7 November 2020).
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Access to urban green space and environmental inequalities in Germany. Landsc. Urban Plan. 2017, 164, 124–131. [Google Scholar] [CrossRef]
- Bayerisches Landesamt für Umwelt. Messwertarchiv [Archive of Measurement Values]. Available online: https://www.lfu.bayern.de/luft/immissionsmessungen/messwertarchiv/index.htm (accessed on 10 October 2020).
- Giles, V.L.; Koehle, M.S. The health effects of exercising in air pollution. Sports Med. 2014, 44, 223–249. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 2019, 201, 73–83. [Google Scholar] [CrossRef]
- Von Schneidemesser, E.; Steinmar, K.; Weatherhead, E.C.; Bonn, B.; Quedenau, J.; Gerwig, H. Air pollution at human scales in an urban environment: Impact of local environment and vehicles on particle number concentrations. Sci. Total Environ. 2019, 688, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, H.; Borgman, F.; Kamminga, J.; Hoek, G. Exposure to ultrafine and fine particles and noise during cycling and driving in 11 Dutch cities. Atmos. Environ. 2009, 43, 4234–4242. [Google Scholar] [CrossRef]
- Dunea, D.; Iordache, S.; Ianache, C. Relationship between airborne particulate matter and weather conditions in Targoviste urban area during cold months. Rev. Roum. Chim. 2014, 60, 595–601. [Google Scholar]
- WHO. Ambient Air Pollution: Pollutants. Available online: https://www.who.int/airpollution/ambient/pollutants/en/ on 02/16/2019 (accessed on 10 October 2020).
- Laeremans, M.; Dons, E.; Avila-Palencia, I.; Carrasco-Turigas, G.; Orjuela-Mendoza, J.P.; Anaya-Boig, E.; Cole-Hunter, T.; de Nazelle, A.; Nieuwenhuijsen, M.; Standaert, A.; et al. Black carbon reduces the beneficial effect of physical activity on lung function. Med. Sci. Sports Exerc. 2018, 50, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Panis, L.I.; de Geus, B.; Vandenbulcke, G.; Willems, H.; Degraeuwe, B.; Bleux, N.; Mishra, V.; Thomas, I.; Meeusen, R. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmos. Environ. 2010, 44, 2263–2270. [Google Scholar] [CrossRef]
- OpenStreetMap.org. Open Database License ODbL. Available online: https://www.openstreetmap.org/search?query=M%C3%BCnchen#map=13/48.1764/11.5624 (accessed on 11 November 2020).
Variable | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
Overall PM2.5 concentration (µg/m3) | 12.94 | 16.46 | 0.89 | 89.11 |
PM2.5 concentration in green space (µg/m3) | 12.77 | 17.68 | 0.89 | 89.11 |
PM2.5 concentration nearby traffic (µg/m3) | 13.18 | 15.16 | 1.15 | 80.95 |
Temperature (°C) | 16.54 | 7.78 | 3.00 | 34.00 |
Humidity (%) | 62.51 | 19.03 | 28.00 | 91.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeindl, L.; Koenigstorfer, J. Health Benefit Assessment of Running in Urban Areas against the Background of Particulate Matter 2.5 Concentration: The Munich Olympic Park. Urban Sci. 2020, 4, 62. https://doi.org/10.3390/urbansci4040062
Zeindl L, Koenigstorfer J. Health Benefit Assessment of Running in Urban Areas against the Background of Particulate Matter 2.5 Concentration: The Munich Olympic Park. Urban Science. 2020; 4(4):62. https://doi.org/10.3390/urbansci4040062
Chicago/Turabian StyleZeindl, Linda, and Joerg Koenigstorfer. 2020. "Health Benefit Assessment of Running in Urban Areas against the Background of Particulate Matter 2.5 Concentration: The Munich Olympic Park" Urban Science 4, no. 4: 62. https://doi.org/10.3390/urbansci4040062