Ecosystem Services Analysis and Design through Nature-Based Solutions in Urban Planning at a Neighbourhood Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ecosystem Services Analysis
3. Results
3.1. Land Use Characterization of Different Scenarios
3.2. Proposed Nature-Based Solutions
3.3. Ecosystem Services Impact Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuissl, H.; Haase, D.; Lanendorf, M.; Wittemer, H. Environmental impact assessment of urban land use transitions—A context-sensitive approach. Land Use Policy 2009, 26, 414–424. [Google Scholar] [CrossRef]
- Ahern, J.; Ciliers, S.; Niemela, L. The concept of ecosystem services in adaptive urban planning and design: A framework for supporting innovation. Landsc. Urban Plan. 2014, 125, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, G.; Semeraro, T.; Aretano, R.; De Bellis, L.; Luvisi, A. GIS Analysis of Land-Use Change in Threatened Landscapes by Xylella fastidiosa. Sustainability 2019, 11, 253. [Google Scholar] [CrossRef] [Green Version]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- La Rosa, D.; Spyra, M.; Inostroza, L. Indicators of Cultural Ecosystem Services for urban planning: A review. Ecol. Indic. 2016, 61, 74–89. [Google Scholar] [CrossRef]
- Baker, J.; Sheate, W.R.; Philips, P.; Eals, R. Ecosystem services in environmental assessment—Help or hindrance? Environ. Impact Assess. Rev. 2013, 40, 3–13. [Google Scholar] [CrossRef]
- United Nations. Resolution adopted by the General Assembly on 25 September 2015. In Proceedings of the Transforming our world: The 2030 Agenda for Sustainable Development (A/RSE/70/L.1), New York, NY, USA, 25–27 September 2015. [Google Scholar]
- OECD (Organisation for Economic Cooperation and Development). Strategic Environmental in Assessment Ecosystem Services. 2010. Available online: http://www.oecd.org/dataoecd/24/54/41882953.pdf (accessed on 28 December 2021).
- TEEB—The Economics of Ecosystems and Biodiversity. In TEEB Manual for Cities: Ecosystem Services in Urban Management; TEEB: Geneva, Switzerland, 2011.
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Partidario, M.R.; Gomes, R. Ecosystem Services Inclusive strategic Environmental Assessment. Environ. Impact Assess. Rev. 2013, 40, 36–46. [Google Scholar] [CrossRef]
- Geneletti, D. Chapter 3: Ecosystem services analysis for Strategic Environmental Assessment: Concepts and examples. In Research Handbooks on Impact Assessment Series; Geneletti, D., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2016; pp. 41–61. ISBN 9781783478989. [Google Scholar] [CrossRef]
- Semeraro, T.; Radicchio, B.; Medagli, P.; Arzeni, S.; Turco, A.; Geneletti, D. Integration of Ecosystem Services in Strategic Environmental Assessment of a Peri-Urban Development Plan. Sustainability 2021, 13, 122. [Google Scholar] [CrossRef]
- Petrosillo, I.; Semeraro, T.; Zurlini, G. Detecting the ‘conservation effect’ on the maintenance of natural capital flow in different natural parks. Ecol. Econ. 2010, 69, 1115–1123. [Google Scholar] [CrossRef]
- Petrosillo, I.; Zaccarelli, N.; Semeraro, T.; Zurlini, G. The effectiveness of different conservation policies on the security of natural capital. Landsc. Urban Plan. 2009, 89, 49–56. [Google Scholar] [CrossRef]
- Connecting Nature. Available online: https://connectingnature.eu/about (accessed on 30 January 2022).
- Mell, I.C. Can green infrastructure promote urban sustainability? Proc. Inst. Civ. Eng.: Eng. Sustain. 2009, 162, 23–34. [Google Scholar] [CrossRef]
- Taylor-Lovell, S.; Taylor, J.R. Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Anguluri, R.; Narayanan, P. Role of green space in urban planning: Outlook towards smart cities. Urban For. Urban Green. 2017, 25, 58–65. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, L.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.K. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. J. Environ. Manag. 2002, 64, 115–126. [Google Scholar] [CrossRef]
- Majekodunmi, M.; Emmanuel, R.; Jafry, T. A spatial exploration of deprivation and green infrastructure ecosystem services within Glasgow city. Urban For. Urban Green. 2020, 52, 126698. [Google Scholar] [CrossRef]
- Song, P.; Kim, G.; Mayer, A.; He, R.; Tian, G. Assessing the Ecosystem Services of Various Types of Urban Green Spaces Based on i-Tree Eco. Sustainability 2020, 12, 1630. [Google Scholar] [CrossRef] [Green Version]
- Semeraro, T.; Aretano, R.; Pomes, A.; Del Giudice, C.; Nigro, D. Planning ground based utility scale solar energy as Green Infrastructure to enhance ecosystem services. Energy Policy 2018, 117, 218–227. [Google Scholar] [CrossRef]
- Semeraro, T.; Aretano, R.; Barca, A.; Pomes, A.; Del Giudice, C.; Gatto, E.; Lenucci, M.; Buccolieri, R.; Emmanuel, R.; Gao, Z.; et al. A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems. Land 2020, 9, 238. [Google Scholar] [CrossRef]
- Turner, B.L.; Skole, D.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land-use and Land-cover Change Science/Research Plan. In Joint Publication of the International Geosphere-Biosphere Programme (Report No. 35) and the Human Dimensions of Global Environmental Change Programme (Report No. 7); Royal Swedish Academy of Sciences: Stockholm, Sweden, 1995. [Google Scholar]
- Brown, D.G.; Pijanowski, B.C.; Duh, J.D. Modeling the relationships between land-use and land-cover on private lands in the Upper Midwest, USA. J. Environ. Manag. 2000, 59, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Sevianu, E.; Maloş, C.V.; Arghiuş, V.; Brişan, N.; Bǎdǎrǎu, A.S.; Moga, M.C.; Muntean, L.; Rǎulea, A.; Hartel, T. Mainstreaming Ecosystem Services and Biodiversity in Peri-Urban Forest Park Creation: Experience From Eastern Europe. Front. Environ. Sci. 2021, 9, 618217. [Google Scholar] [CrossRef]
- Richards, D.; Fung, T.K.; Meili, N.; Song, X.P.; Dissegna, A.; Drillet, Z.; Urech, P.; Edward, P. An Ecosystem Service Design Loop for Using Vegetation to Mitigate the Urban Heat Island Effect. In Future Cities Lab Indicia 2; Cairns, S., Tunas, D., Eds.; Lars Müller Publishers: Zurich, Switzerland, 2019. [Google Scholar]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Tank, A.K.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Leemans, R. Modelling of Global Land Use: Connections, Causal Chains and Integration Inaugural Lecture; Wageningen University: Wageningen, The Netherlands, 2000; p. 85. [Google Scholar]
- Piracha, A.L.; Marcotullio, P.J. Urban Ecosystem Analysis Identifying Tools and Methods; United Nations University Institute of Advanced Studies: Tokyo, Japan, 2003. [Google Scholar]
- Semeraro, T.; Zaccarelli, N.; Lara, A.; Sergi-Cucinelli, F.; Aretano, R. A Bottom-Up and Top-Down Participatory Approach to Planning and Designing Local Urban Development: Evidence from an Urban University Center. Land 2020, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Luvisi, A.; Nicolì, F.; De Bellis, L. Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome. Sustainability 2017, 9, 659. [Google Scholar] [CrossRef] [Green Version]
- Semeraro, T.; Gatto, E.; Buccolieri, R.; Catanzaro, V.; De Bellis, L.; Cotrozzi, L.; Lorenzini, G.; Vergine, M.; Luvisi, A. How Ecosystem Services Can Strengthen the Regeneration Policies for Monumental Olive Groves Destroyed by Xylella fastidiosa Bacterium in a Peri-Urban Area. Sustainability 2021, 13, 8778. [Google Scholar] [CrossRef]
- Apulian Law. Protection and Enhancement of the Landscape of the Monumental Olive Trees of Apulia. Official Bulletin of the Apulian Region—n. 83 Suppl. of 7-6-2007. 2007. Available online: http://www.geologipuglia.it/doc/downloads/457-lr_4_06_2 (accessed on 27 December 2021).
- United Nations Environment Programme. Integrating Ecosystem Services in Strategic Environmental Assessment: A Guide for Practitioners; ISO 14001:2004 Certified; UNON, Publishing Services Section: Nairobi, Kenya, 2014; Available online: http://www.ing.unitn.it/~genelab/documents/GuidelineESintoSEA.pdf (accessed on 13 December 2021).
- Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R. Mapping and Modelling Ecosystem Services for Science, Policy and Practice. Ecosyst. Serv. 2013, 4, 1–3. [Google Scholar] [CrossRef]
- Semeraro, T.; Gatto, E.; Buccolieri, R.; Vergine, M.; Gao, Z.; De Bellis, L.; Luvisi, A. Changes in Olive Urban Forests Infected by Xylella fastidiosa: Impact on Microclimate and Social Health in urban areas. Int. J. Environ. Res. Public Health 2019, 16, 2642. [Google Scholar] [CrossRef] [Green Version]
- Semeraro, T.; Buccolieri, R.; Vergine, M.; De Bellis, L.; Luvisi, A.; Emmanuel, R.; Marwan, N. Analysis of Olive Grove Destruction by Xylella fastidiosa Bacterium on the Land Surface Temperature in Salento Detected Using Satellite Images. Forests 2021, 12, 1266. [Google Scholar] [CrossRef]
- Mentese, E.Y.; Tezer, A. Impacts of Infrastructure Developments on Ecosystem Services Potential in Istanbul. Front. Environ. Sci. 2021, 9, 614752. [Google Scholar] [CrossRef]
- Aretano, R.; Petrosillo, I.; Zaccarelli, N.; Semeraro, T.; Zurlini, G. People perception of landscape change effects on ecosystem services in small Mediterranean islands: A combination of subjective and objective assessments. Landsc. Urban Plan. 2013, 112, 63–73. [Google Scholar] [CrossRef]
- Semeraro, T.; Aretano, R.; Pomes, A. Green infrastructure to improve ecosystem services in the landscape urban regeneration. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 245, 082044. [Google Scholar] [CrossRef]
- Kaspersen, P.S.; Høegh Ravn, N.; Arnbjerg-Nielsen, K.; Madsen, H.; Drews, M. Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding. Hydrol. Earth Syst. Sci. 2017, 21, 4131–4147. [Google Scholar] [CrossRef] [Green Version]
- Walter, L.F.; Icaza, L.E.; Neht, A.; Klavins, M.; Morgan, E.A. Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 2018, 171, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights. In Department of Economic and Social Affairs; Population Division, United Nations: New York, NY, USA, 2014. [Google Scholar]
- Harlan, S.L.; Ruddel, D. Climate change and health in cities: Impacts of heat and air pollution and potential co-benefits from mitigation and adaptation. Curr. Opin. Environ. Sustain. 2011, 3, 126–134. [Google Scholar] [CrossRef]
- Hirano, Y.; Yoshida, Y. Assessing the effects of CO2 reduction strategies on heat islands in urban areas. Sustain. Cities Soc. 2016, 26, 383–392. [Google Scholar] [CrossRef]
- Hsieh, C.M.; Huang, H.C. Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Comp. Environ. Urban Syst. 2016, 57, 130–143. [Google Scholar] [CrossRef]
- Qiu, G.-Y.; Li, H.-Y.; Zhang, Q.-T.; Chen, W.; Liang, X.-J.; Li, X.-Z. Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [Google Scholar] [CrossRef]
- Gartland, L. Heat Islands: Understanding and Mitigating Heat in Urban Areas; Routledge: London, UK, 2010. [Google Scholar]
- Emmanuel, R.; Krüger, E. Urban Heat Islands and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. Build. Environ. 2012, 53, 137–149. [Google Scholar] [CrossRef]
- De Marco, A.; Petrosillo, I.; Semeraro, T.; Pasimeni, M.R.; Aretano, R.; Zurlini, G. The contribution of Utility-Scale Solar Energy to the global climate regulation and its effects on local ecosystem services. Glob. Ecol. Conserv. 2014, 2, 324–337. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.S. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.; Boumans, R. A typology for the description, classification and valuation of Ecosystem Functions. Goods Serv. Econ. 2002, 41, 393–408. [Google Scholar]
- Fischer, L.K.; Honold, J.; Botzat, A.; Brinkmeyer, D.; Cvejic, E.; Delshammar, T.; Kowarik, I. Recreational ecosystem services in European cities: Sociocultural and geographical contexts matter for park use. Ecosyst. Serv. 2018, 31, 455–467. [Google Scholar] [CrossRef]
- Arnberger, A.; Eder, R. Are urban visitors’ general preferences for green-spaces similar to their preferences when seeking stress relief? Urban For. Urban Green. 2015, 14, 872–882. [Google Scholar] [CrossRef]
- von Döhren, P.; Haase, D. Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecol. Indic. 2015, 52, 490–497. [Google Scholar] [CrossRef]
- Tan, B.A.; Gaw, L.Y.-F.; Masoudi, M.; Richards, D.R. Nature-Based Solutions for Urban Sustainability: An Ecosystem Services Assessment of Plans for Singapore’s First “Forest Town”. Front. Environ. Sci. 2021, 9, 610155. [Google Scholar] [CrossRef]
- United States General Services Administration. The Benefits and Challenges of Green Roofs on Public and Commercial Buildings. 2011. Available online: https://www.gsa.gov/about-us/organization/office-ofgovernmentwide-policy/office-of-federal-highperformance-buildings/projects-andresearch/green-roofs (accessed on 27 January 2021).
- U.S. National Climate Assessment. Global Change Research Program. 2014. Available online: https://nca2014.globalchange.gov/highlights/report-findings/water-supply (accessed on 27 October 2021).
- Pulighe, G.; Fava, F.; Lupia, F. Insights and opportunities from mapping ecosystem services of urban green spaces and potentials in planning. Ecosyst. Serv. 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Wand, J.; Banzhaf, E. Towards a better understanding of Green Infrastructure: A critical review. Ecol. Indic. 2018, 85, 758–772. [Google Scholar] [CrossRef]
- Scarano, A.; Semeraro, T.; Chieppa, M.; Santino, A. Neglected and Underutilized Plant Species (NUS) from the Apulia Region Worthy of Being Rescued and Re-Included in Daily Diet. Horticulturae 2021, 7, 177. [Google Scholar] [CrossRef]
- Hodgson, K.; Campbell, M.C.; Bailkey, M. Urban Agriculture: Growing Healthy Sustainable Places. Am. Plan. Assoc. Plan. Advis. Serv. Rep. 2011, 563, 1–34. [Google Scholar]
- Lal, R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Sec. 2020, 12, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, A.; Bohn, K.; Howe, J. Continuous Productive Urban Landscapes: Designing Urban Agriculture for Sustainable Cities; Architectural Press: Oxford, UK, 2005. [Google Scholar]
- Miller, M.S.; Montalto, F.A. Stakeholder perceptions of the ecosystem services provided by Green Infrastructure in New York City. Ecosyst. Serv. 2019, 37, 100928. [Google Scholar] [CrossRef]
- Royal Commission on Environmental Pollution. Twenty Sixth Report: The Urban Environment; The Stationery Office (TSO): London, UK, 2007. [Google Scholar]
- Egerer, M.; Fairbairn, M. Gated gardens: Effects of urbanization on community formation and commons management in community gardens. Geoforum 2018, 96, 61–69. [Google Scholar] [CrossRef]
- Koopmans, M.; Keech, D.; Sovova, L.; Reed, M. Urban agriculture and place-making: Narratives about place and space in Ghent, Brno and Bristol New frontiers for urban community garden. Morav. Geogr. Rep. 2017, 25, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Chow, M.F.; Bakar, F.A. A Review on the Development and Challenges of Green Roof Systems in Malaysia. World Acad. Sci. Eng. Technol. Int. J. Archit. Environ. Eng. 2016, 10, 16–20. [Google Scholar]
- Litvak, E.; Pataki, D.E. Evapotranspiration of urban lawns in a semi-arid environment: An in situ evaluation of microclimatic conditions and watering recommendations. J. Arid. Environ. 2016, 134, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Stovin, V. The potential of green roofs to manage Urban Stormwater. Water Environ. J. 2010, 24, 192–199. [Google Scholar] [CrossRef]
- Berardi, U.; Hoseini, A.H.G.; Hoseini, A.G. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Martin, G.; Clift, R.; Chistie, I. Urban Cultivation and Its Contributions to Sustainability: Nibbles of Food but Oodles of Social Capital. Sustainability 2016, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Phoomirat, R.; Disyatat, N.R.; Park, T.Y.; Lee, D.K.; Dumrongrojwatthana, P. Rapid assessment checklist for green roof ecosystem services in Bangkok. Ecol. Process. 2020, 9, 19. [Google Scholar] [CrossRef]
- Langemeyer, J.; Wedgwood, D.; McPhearsonc, T.; Baró, F.; Madsende, A.L.; Barton, D.N. Creating urban green infrastructure where it is needed—A spatial ecosystem service-based decision analysis of green roofs in Barcelona. Sci. Total Environ. 2020, 707, 135487. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, T.; Turco, A.; Arzeni, S.; La Gioia, G.; D’Armento, R.; Taurino, R.; Medagli, P. Habitat Restoration: An Applicative Approach to “Biodiversity Heritage Relicts” in Social-Ecological Systems. Land 2021, 10, 898. [Google Scholar] [CrossRef]
- Moseley, D.; Marzano, M.; Chetcuti, J.; Watts, K. Green networks for people: Application of a functional approach to support the planning and management of greenspace. Landsc. Urban Plan. 2013, 116, 1–12. [Google Scholar] [CrossRef]
- Macháč, J.; Hekrle, M.; Meyer, P.; Staňková, N.; Brabec, J.; Sýkorová, M. Cultural ecosystem services and public preferences: How to integrate them effectively into Smart City planning? Smart City Symp. Prague 2020, 19750341. [Google Scholar] [CrossRef]
- Nicolaides, C. Mission Possible—The Mission on Climate Neutral and Smart Cities A new approach to sustainable urban transformation and urban transition to climate neutrality. J. Renew. Energy Sustain. Dev. 2021, 7, 41–42. [Google Scholar] [CrossRef]
- Gray, L.; Guzman, P.; Glowa, K.M.; Drevno, A.G. Can home gardens scale up into movements for social change? The role of home gardens in providing food security and community change in San Jose, California. Local Environ. 2013, 19, 187–203. [Google Scholar] [CrossRef]
- European Commission (EC) (2013). Green Infrastructure (GI)—Enhancing Euope’s Natural Capital. In Proceedings of the Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Strasbourg, France, 18 September 2013.
- Witzling, L.; Wander, M.; Phillips, E. Testing and educating on urban soil lead: A case of Chicago community gardens. J. Agric. Food Syst. Community Dev. 2011, 1, 167–185. [Google Scholar] [CrossRef]
- Taylor, J.R.; Taylor Lovell, S. Urban home food gardens in the Global North: Research traditions and future directions. Agric. Hum. Values 2013, 31, 285–305. [Google Scholar] [CrossRef]
Land Use | ha | % |
---|---|---|
Arable lands | 12.8 | 33% |
Artificial surfaces | 6.2 | 16% |
Fruit trees | 0.2 | 0% |
Green urban areas | 1.2 | 3% |
Herbaceous vegetation | 6.6 | 17% |
Olive Groves | 10.9 | 28% |
Shrub | 0.3 | 1% |
Vineyards | 0.9 | 2% |
Total | 39.0 |
Service | Olive Groves Pre-Xyella Fastidiosa | Olive Groves Affected by X. fastidiosa | Arable Lands | Herbaceous Vegetation | Fruit Trees | Shrub | Artificial Surfaces (Building; Roads; Parking Areas) | Green Urban Areas | Vineyards |
---|---|---|---|---|---|---|---|---|---|
1—Food | - | - | - | - | - | ||||
2—Water | - | - | - | - | - | - | - | ||
3—Raw Materials | - | - | - | - | |||||
4—Genetic resources | - | ||||||||
5—Medicinal resources | - | - | - | - | - | ||||
6—Ornamental resources | - | - | - | - | - | - | - | ||
7—Air quality regulation | - | - | |||||||
8—Climate regulation | - | ||||||||
9—Moderation of extreme events | - | - | |||||||
10—Regulation of water flows | - | ||||||||
11—Waste treatment | - | - | - | - | - | - | |||
12—Erosion prevention | - | - | - | ||||||
13—Maintenance of soil fertility | ; | - | - | ||||||
14—Pollination | - | - | |||||||
15—Biological control | - | - | |||||||
16—Maintenance of life cycles of migratory species | - | ||||||||
17—Maintenance of genetic diversity | - | ||||||||
18—Aesthetic information | - | - | - | ||||||
19—Opportunities for recreation and tourism | - | - | |||||||
20—Inspiration for culture, art, and design | - | - | - | - | |||||
21—Spiritual experience | - | - | - | - | |||||
22—Information for cognitive development | - | - | - |
Land Urban Plan | ha | % |
---|---|---|
Area not included in the urban plan | 2.1 | 5% |
Artificial surfaces | 14.9 | 38% |
Fruit trees | 0.8 | 2% |
Green urban areas | 21.1 | 54% |
Total | 39.0 |
Class | Urban Neighbourhood Plan Scenario (ha) | ||||
---|---|---|---|---|---|
Area Not Included in the Urban Plan | Artificial Surfaces | Fruit Trees | Green Urban Areas | ||
Land Use starting scenario (ha) | Arable lands | 0.1 | 5.9 | 6.7 | |
Artificial surfaces | 1.4 | 2.2 | 2.5 | ||
Fruit trees | 0.1 | 0.1 | 0.0 | 0.0 | |
Green urban areas | 0.1 | 0.3 | 0.8 | ||
Herbaceous vegetation | 0.3 | 2.7 | 3.6 | ||
Olive Groves | 0.0 | 3.2 | 0.8 | 6.8 | |
Shrub | 0.0 | 0.2 | 0.0 | ||
Vineyards | 0.3 | 0.5 |
Ecosystem Service | Ecological Benefits | Ecological Function | NbSs | References |
---|---|---|---|---|
1—Food production (C) | Provision of natural resources: hunting, game, fruits, etc. Small-scale subsistence. | Production functions (Provision of natural resources). | Intensive and extensive green rooves for big buildings. EIGR. Grasslands; IGR: Sclerophyllous vegetation. Green Wall: Grasslands. The use of endemic vegetations with germplasm derivate from the local context. Creation microhabitat and structure able support local insects and animal using Melliferous, Aromatic Flora (MAF: Sclerophyllous vegetation). Creation of Urban Forest Habitat (UFH: Broad-leaved forests). Urban community gardens with an attempt to Graft Monumental Olive Trees infected with resistant essences (UG-OT: olive trees). Urban community gardens with Reforestation: mixed shrub and arboreal agricultural essences and natural flora (UG-R: Fruit trees and berry plantations). Squares, streets, and parking lots with Grassy Floors (GF: Grasslands). Using Flora for Environmental Monitoring (FEM: Sclerophyllous vegetation). | [7,21,41,42,46,56,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83] |
2—Raw Materials © | ||||
3—Genetic resourc© (C) | ||||
4—Medicinal reso©es (C) | ||||
6—Ornamental r©urces (C) | ||||
7—Air quality regulation (P) | Role of ecosystems in bio-geochemical cycles (e.g., CO2/O2 balance, ozone layer, etc.). | Regulation functions Maintenance of essential ecological processes and life-support systems. | ||
8—Climate regulation (P) | Maintenance of a favourable local climate (temp., humidity, etc.) for human habitation and health. | |||
9—Moderation of ext©e events (C) | Influence of ecosystem structure on Dampening env. disturbances. Role of vegetation root matrix and soil biota in soil retention. Role of land cover in regulating runoff and river discharge. | |||
10—Regulation ©water flows (C) | Role of land cover in regulating runoff and river discharge. | |||
11©aste treatment (C) | Filtering, retention, and storage of fresh water (e.g., in aquifers). Role of the vegetation in removal or breakdown of xenic nutrients. | |||
12©osion prevention (C) | Prevention of damage from erosion/silt. | |||
13—Maintenance of soil fertility | Maintenance of healthy soils and productive ecosystems. | |||
14—Pollination (C) | Role of biota in movement of floral gametes thus pollination of crops. | Habitat functions (Providing habitat (suitable living space) for wild plant and animal species). | ||
15—Biological control (C) | Population control through trophic–dynamic relations. | |||
17—Maintenance of genetic diversity (C) | Suitable living space for wild plants and animals. Suitable reproduction habitat. Genetic material and evolution in wild plants and animals. | |||
18—Aesthetic information (P) | Attractive landscape features. Variety in landscapes with (potential) recreational uses. Variety in natural features with cultural and artistic value. Variety in natural features with spiritual and historic value. Variety in nature with scientific and educational value. Living space (ranging from small settlements to urban areas). Social activities (outdoor sports, beach tourism, etc.). | Information and carrier functions: Providing opportunities for cognitive development; providing a suitable substrate or medium for human activities and infrastructure. | ||
19—Opportunities for recreation and tourism (P) | ||||
20—Inspiration for culture, art, and design (P) | ||||
21—Spiritual experience (P) | ||||
22—Information for cognitive development (P) |
CO2 sequestration (Past scenario) | CO2 sequestration (Scenario 0) | |||||||
Land Use pre X. fastidiosa | ha | t/ha | t | Land Use post X. fastidiosa | ha | t/ha | t | |
Arable lands | 12.8 | 5.00 | 63.8 | Arable lands | 12.8 | 5.00 | 63.8 | |
Artificial surfaces | 6.2 | 0.00 | 0.0 | Artificial surfaces | 6.2 | 0.00 | 0.0 | |
Fruit trees | 0.2 | 21 | 3.5 | Fruit trees | 0.2 | 21 | 3.5 | |
Green urban areas | 1.2 | 6.60 | 7.9 | Green urban areas | 1.2 | 6.60 | 7.9 | |
Herbaceous vegetation | 6.6 | 0.00 | 0.0 | Herbaceous vegetation | 6.6 | 0.00 | 0.0 | |
Olive Groves | 10.9 | 51.50 | 560.3 | Olive Groves (Xyella fastidiosa) | 10.9 | 6.60 | 71.8 | |
Shrub | 0.3 | 17.74 | 3.0 | Shrub | 0.3 | 17.74 | 3.0 | |
Vineyards | 0.9 | 21.00 | 18.0 | Vineyards | 0.9 | 21.00 | 18.0 | |
Total | 39.0 | 679.8 | Total | 39.0 | 170.30 | |||
CO2 sequestration (Scenario 1) | CO2 sequestration (Scenario 2) | |||||||
Land Urban Plan | ha | t/ha | t | Land Urban Plan | ha | t/ha | t | |
Area not included in the urban plan | 2.1 | 0 | 0.0 | Area excluded from the plan | 2.3 | 0 | 0 | |
Artificial surfaces | 14.9 | 0 | 0.0 | Area pertaining to the building | 0.8 | 0 | 0 | |
Fruit trees | 0.8 | 21 | 17.6 | EGR (Grasslands) | 2.1 | 3.04 | 6.52 | |
Green urban areas | 21.1 | 6.6 | 139.4 | FH (Broad-leaved forests) | 7.4 | 28.24 | 209 | |
Total | 39.0 | 157.0 | GF (Grasslands) | 2.9 | 3.04 | 8.74 | ||
IGR (Sclerophyllous vegetation) | 2.1 | 17.74 | 37.4 | |||||
MAF (Sclerophyllous vegetation) | 4.2 | 17.74 | 74.5 | |||||
MAF-FEM (Sclerophyllous vegetation) | 0.7 | 17.74 | 11.9 | |||||
UG-R (Fruit trees and berry plantations) | 4.7 | 21 | 98.9 | |||||
UG-OT (Olive trees) | 4.8 | 51.5 | 246 | |||||
urban road network | 7.0 | 0 | 0 | |||||
Total | 39 | 693 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semeraro, T.; Scarano, A.; Pandey, R. Ecosystem Services Analysis and Design through Nature-Based Solutions in Urban Planning at a Neighbourhood Scale. Urban Sci. 2022, 6, 23. https://doi.org/10.3390/urbansci6010023
Semeraro T, Scarano A, Pandey R. Ecosystem Services Analysis and Design through Nature-Based Solutions in Urban Planning at a Neighbourhood Scale. Urban Science. 2022; 6(1):23. https://doi.org/10.3390/urbansci6010023
Chicago/Turabian StyleSemeraro, Teodoro, Aurelia Scarano, and Rajiv Pandey. 2022. "Ecosystem Services Analysis and Design through Nature-Based Solutions in Urban Planning at a Neighbourhood Scale" Urban Science 6, no. 1: 23. https://doi.org/10.3390/urbansci6010023
APA StyleSemeraro, T., Scarano, A., & Pandey, R. (2022). Ecosystem Services Analysis and Design through Nature-Based Solutions in Urban Planning at a Neighbourhood Scale. Urban Science, 6(1), 23. https://doi.org/10.3390/urbansci6010023