Relation between PM2.5 and O3 over Different Urban Environmental Regimes in India
Abstract
:1. Introduction
- Secondary particle production gets enhanced by high O3 concentrations and strong atmospheric oxidation, raising ambient PM2.5 levels.
- Increased PM2.5 concentrations might lower the ambient O3 levels by reducing atmospheric radiation.
1.1. Study Locations
1.2. Emissions
2. Materials and Methods
2.1. Data
- (i)
- Particular matter (PM) of aerodynamic diameter less than 2.5 μm (PM2.5);
- (ii)
- Ozone (O3);
- (iii)
- Nitrogen oxides (NOx);
- (iv)
- Relative humidity (RH);
- (v)
- Temperature (T); and
- (vi)
- Wind speed (WS).
2.2. Lagrangian Particle Dispersion Model: FLEXPART
2.3. Recurrent Neural Network (RNN)
3. Result and Discussion
3.1. Dependence of PM2.5 on O3 for Different Meteorological and Chemical Parameters in Delhi during Winter and Summer
3.2. Dependence of PM2.5 on O3 for Different Meteorological and Chemical Parameters in Ahmedabad during Winter and Summer
3.3. Dependence of PM2.5 on Ozone for Different Meteorological and Chemical Parameters in Bengaluru during Winter and Summer
3.4. Role of Atmospheric Transport Inferred from FLEXPART
3.5. Predicting the Ozone Concentration Using Recurrent Neural Networks (RNNs)
3.5.1. Experimental Setting
3.5.2. Experimental Results
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, J.; Wang, S.; Zhao, B.; Wu, W.; Ding, D.; Jang, C.; Zhu, Y.; Chang, X.; Wang, J.; Zhang, F.; et al. Quantifying Nonlinear Multiregional Contributions to Ozone and Fine Particles Using an Updated Response Surface Modeling Technique. Environ. Sci. Technol. 2017, 51, 11788–11798. [Google Scholar] [CrossRef] [PubMed]
- Benas, N.; Mourtzanou, E.; Kouvarakis, G.; Bais, A.; Mihalopoulos, N.; Vardavas, I. Surface Ozone Photolysis Rate Trends in the Eastern Mediterranean: Modeling the Effects of Aerosols and Total Column Ozone Based on Terra MODIS Data. Atmos. Environ. 2013, 74, 1–9. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, T.; Cheng, X.; Gong, S.; Zhang, X.; Tang, L.; Liu, D.; Wu, X.; Wang, L.; Chen, Y. Inverse Relations of PM2.5 and O3 in Air Compound Pollution between Cold and Hot Seasons over an Urban Area of East China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Dabdub, D.; Seinfeld, J.H. Chemical Coupling between Atmospheric Ozone and Particulate Matter. Science 1997, 277, 116–119. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High Secondary Aerosol Contribution to Particulate Pollution during Haze Events in China. Nature 2015, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Wang, Z.; Fu, P.; Jiang, Q.; Yang, T.; Li, J.; Ge, X. The Impact of Relative Humidity on Aerosol Composition and Evolution Processes during Wintertime in Beijing, China. Atmos. Environ. 2013, 77, 927–934. [Google Scholar] [CrossRef]
- Kaul, D.S.; Gupta, T.; Tripathi, S.N.; Tare, V.; Collett, J.L. Secondary Organic Aerosol: A Comparison between Foggy and Nonfoggy Days. Environ. Sci. Technol. 2011, 45, 7307–7313. [Google Scholar] [CrossRef]
- Zang, L.; Wang, Z.; Zhu, B.; Zhang, Y. Roles of Relative Humidity in Aerosol Pollution Aggravation over Central China during Wintertime. Int. J. Environ. Res. Public Health 2019, 16, 4422. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Vinoj, V. Surprising Changes in Aerosol Loading over India amid {COVID}-19 Lockdown. Aerosol Air Qual. Res. 2021, 21, 200466. [Google Scholar] [CrossRef]
- Kant, R.; Trivedi, A.; Ghadai, B.; Kumar, V.; Mallik, C. Interpreting the COVID Effect on Atmospheric Constituents over the Indian Region during the Lockdown: Chemistry, Meteorology, and Seasonality; Springer International Publishing: Cham, Switzerland, 2022; Volume 194, ISBN 0123456789. [Google Scholar]
- Odum, J.R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R.C.; Seinfeld, J.H. Gas/Particle Partitioning and Secondary Organic Aerosol Yields. Environ. Sci. Technol. 1996, 30, 2580–2585. [Google Scholar] [CrossRef]
- Guo, H.; Kota, S.H.; Sahu, S.K.; Hu, J.; Ying, Q.; Gao, A.; Zhang, H. Source Apportionment of PM2.5 in North India Using Source-Oriented Air Quality Models. Environ. Pollut. 2017, 231, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.N.; Sharma, M. Reconstructing Primary and Secondary Components of PM2.5 Composition for an Urban Atmosphere. Aerosol Sci. Technol. 2010, 44, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Nagar, P.K.; Singh, D.; Sharma, M.; Kumar, A.; Aneja, V.P.; George, M.P.; Agarwal, N.; Shukla, S.P. Characterization of PM2.5 in Delhi: Role and Impact of Secondary Aerosol, Burning of Biomass, and Municipal Solid Waste and Crustal Matter. Environ. Sci. Pollut. Res. 2017, 24, 25179–25189. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, S.A.; Nongkynrih, B.; Gupta, S.K. Air Pollution in Delhi: Its Magnitude and Effects on Health. Indian J. Community Med. 2013, 38, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Guttikunda, S.K.; Nishadh, K.A.; Jawahar, P. Air Pollution Knowledge Assessments (APnA) for 20 Indian Cities. Urban Clim. 2019, 27, 124–141. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.-H.; Hsieh, Y.-K.; Wang, Y.-F.; Zhang, J.; Wan, S. Impact of the COVID-19 Event on Air Quality in Central China. Aerosol Air Qual. Res. 2020, 20, 915–929. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.; Shukla, P.R.; Bhattacharya, S.; Dadhwal, V.K. Sub-Region (District) and Sector Level SO2 and NO(x) Emissions for India: Assessment of Inventories and Mitigation Flexibility. Atmos. Environ. 2001, 35, 703–713. [Google Scholar] [CrossRef]
- Hoque, R.R.; Khillare, P.S.; Agarwal, T.; Shridhar, V.; Balachandran, S. Spatial and Temporal Variation of BTEX in the Urban Atmosphere of Delhi, India. Sci. Total Environ. 2008, 392, 30–40. [Google Scholar] [CrossRef]
- Chen, Y.; Beig, G.; Archer-Nicholls, S.; Drysdale, W.; Acton, W.J.F.; Lowe, D.; Nelson, B.; Lee, J.; Ran, L.; Wang, Y.; et al. Avoiding High Ozone Pollution in Delhi, India. Faraday Discuss. 2021, 226, 502–514. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Robertson, F.R.; Takacs, L.; Molod, A.; Mocko, D. Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis. J. Clim. 2017, 30, 1177–1196. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H.-C.; Gu, W.; Sienkiewicz, M.; Koster, R.D.; Gelaro, R.; et al. The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 (Technical Memorandum) edited by Suarej, M.J. in Technical Report Series on Global Modeling and Data Assimilation, Report no.: NASA/TM–2008–10.4606. 2008; 27, pp. 1–118. Available online: https://ntrs.nasa.gov/citations/20120011955 (accessed on 10 March 2021).
- Navas, A.; Garcia-Ruiz, J.M.; Machin, J.; Lasanta, T.; Valero, B. Soil Erosion on Dry Farming Land in Two Changing Environments of the Central Ebro Valley, Spain. Hum. Impact Eros. Sediment. Proc. Int. Symp. 1997, 245, 13–20. [Google Scholar]
- Stohl, A.; Hittenberger, M.; Wotawa, G. Validation of the Lagrangian Particle Dispersion Model FLEXPART against Large-Scale Tracer Experiment Data. Atmos. Environ. 1998, 32, 4245–4264. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical Note: The Lagrangian Particle Dispersion Model FLEXPART Version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Pisso, I.; Sollum, E.; Grythe, H.; Kristiansen, N.I.; Cassiani, M.; Eckhardt, S.; Arnold, D.; Morton, D.; Thompson, R.L.; Groot Zwaaftink, C.D.; et al. The Lagrangian Particle Dispersion Model FLEXPART Version 10.4. Geosci. Model Dev. 2019, 12, 4955–4997. [Google Scholar] [CrossRef] [Green Version]
- Leelőssy, Á.; Molnár, F.; Izsák, F.; Havasi, Á.; Lagzi, I.; Mészáros, R. Dispersion Modeling of Air Pollutants in the Atmosphere: A Review. Cent. Eur. J. Geosci. 2014, 6, 257–278. [Google Scholar] [CrossRef]
- Romanov, A.A.; Gusev, B.A.; Leonenko, E.V.; Tamarovskaya, A.N.; Vasiliev, A.S.; Zaytcev, N.E.; Philippov, I.K. Graz Lagrangian Model (GRAL) for Pollutants Tracking and Estimating Sources Partial Contributions to Atmospheric Pollution in Highly Urbanized Areas. Atmosphere 2020, 11, 1375. [Google Scholar] [CrossRef]
- Gadhavi, H.S.; Renuka, K.; Ravi Kiran, V.; Jayaraman, A.; Stohl, A.; Klimont, Z.; Beig, G. Evaluation of Black Carbon Emission Inventories Using a Lagrangian Dispersion Model—A Case Study over Southern India. Atmos. Chem. Phys. 2015, 15, 1447–1461. [Google Scholar] [CrossRef] [Green Version]
- Mallik, C.; Gadhavi, H.; Lal, S.; Yadav, R.K.; Boopathy, R.; Das, T. Effect of Lockdown on Pollutant Levels in the Delhi Megacity: Role of Local Emission Sources and Chemical Lifetimes. Front. Environ. Sci. 2021, 9, 743894. [Google Scholar] [CrossRef]
- Chakraborty, P.; Gadhavi, H.; Prithiviraj, B.; Mukhopadhyay, M.; Khuman, S.N.; Nakamura, M.; Spak, S.N. Passive Air Sampling of PCDD/Fs, PCBs, PAEs, DEHA, and PAHs from Informal Electronic Waste Recycling and Allied Sectors in Indian Megacities. Environ. Sci. Technol. 2021, 55, 9469–9478. [Google Scholar] [CrossRef]
- Panda, U.; Boopathy, R.; Gadhavi, H.S.; Renuka, K.; Gunthe, S.S.; Das, T. Metals in Coarse Ambient Aerosol as Markers for Source Apportionment and Their Health Risk Assessment over an Eastern Coastal Urban Atmosphere in India. Environ. Monit. Assess. 2021, 193, 311. [Google Scholar] [CrossRef] [PubMed]
- Seibert, P.; Frank, A. Source-Receptor Matrix Calculation with a Lagrangian Particle Dispersion Model in Backward Mode. Atmos. Chem. Phys. 2004, 4, 51–63. [Google Scholar] [CrossRef]
- Robinson, A.J.; Fallside, F. The Utility Driven Dynamic Error Propagation Network; University of Cambridge Department of Engineering: Cambridge, UK, 1987; Volume 1. [Google Scholar]
- Werbos, P.J. Generalization of Backpropagation with Application to a Recurrent Gas Market Model. Neural Netw. 1988, 1, 339–356. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.J.; Zipser, D. Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. Back-Propag. Theory Archit. Appl. 1995, 433, 17. [Google Scholar]
- Jordan, M.I. Chapter 25—Serial Order: A Parallel Distributed Processing Approach. In Neural-Network Models of Cognition; Donahoe, J.W., Packard Dorsel, V., Eds.; Advances in Psychology; Elsevier Science Publishers: Amsterdam, The Netherlands, 1997; Volume 121. [Google Scholar]
- Donahue, J.; Hendricks, L.A.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S.; Saenko, K.; Darrell, T. Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Byeon, W.; Breuel, T.M.; Raue, F.; Liwicki, M. Scene Labeling with LSTM Recurrent Neural Networks. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3547–3555. [Google Scholar] [CrossRef]
- Mikolov, T.; Karafiát, M.; Burget, L.; Jan, C.; Khudanpur, S. Recurrent Neural Network Based Language Model. In Proceedings of the 11th Annual Conference of the International Speech Communication Association 2010 (INTERSPEECH 2010), Chiba, Japan, 6–30 September 2010; pp. 1045–1048. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Mallik, C.; Lal, S.; Venkataramani, S.; Naja, M.; Ojha, N. Variability in Ozone and Its Precursors over the Bay of Bengal during Post Monsoon: Transport and Emission Effects. J. Geophys. Res. Atmos. 2013, 118, 10190–10209. [Google Scholar] [CrossRef]
- Ambade, B.; Sankar, T.K.; Sahu, L.K.; Dumka, U.C. Understanding Sources and Composition of Black Carbon and PM2.5 in Urban Environments in East India. Urban Sci. 2022, 6, 60. [Google Scholar] [CrossRef]
- Sarkar, S.; Chauhan, A.; Kumar, R.; Singh, R.P. Impact of Deadly Dust Storms (May 2018) on Air Quality, Meteorological, and Atmospheric Parameters Over the Northern Parts of India. GeoHealth 2019, 3, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Dumka, U.C.; Tiwari, S.; Kaskaoutis, D.G.; Soni, V.K.; Safai, P.D.; Attri, S.D. Aerosol and Pollutant Characteristics in Delhi during a Winter Research Campaign. Environ. Sci. Pollut. Res. 2019, 26, 3771–3794. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M.; Tripathi, S.N. A 1 Year Record of Carbonaceous Aerosols from an Urban Site in the Indo-Gangetic Plain: Characterization, Sources, and Temporal Variability. J. Geophys. Res. Atmos. 2010, 115, D24313. [Google Scholar] [CrossRef]
- Tiwari, S.; Payra, S.; Mohan, M.; Verma, S.; Bisht, D.S. Visibility Degradation during Foggy Period Due to Anthropogenic Urban Aerosol at Delhi, India. Atmos. Pollut. Res. 2011, 2, 116–120. [Google Scholar] [CrossRef]
- Hama, S.M.L.; Kumar, P.; Harrison, R.M.; Bloss, W.J.; Khare, M.; Mishra, S.; Namdeo, A.; Sokhi, R.; Goodman, P.; Sharma, C. Four-Year Assessment of Ambient Particulate Matter and Trace Gases in the Delhi-NCR Region of India. Sustain. Cities Soc. 2020, 54, 102003. [Google Scholar] [CrossRef]
- Kumar, P.; Gulia, S.; Harrison, R.M.; Khare, M. The Influence of Odd–Even Car Trial on Fine and Coarse Particles in Delhi. Environ. Pollut. 2017, 225, 20–30. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.K.; Rohtash; Mandal, T.K. Influence of Ozone Precursors and Particulate Matter on the Variation of Surface Ozone at an Urban Site of Delhi, India. Sustain. Environ. Res. 2016, 26, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Lal, S.; Naja, M.; Subbaraya, B.H. Seasonal Variations in Surface Ozone and Its Precursors over an Urban Site in India. Atmos. Environ. 2000, 34, 2713–2724. [Google Scholar] [CrossRef]
- Mallik, C.; Lal, S.; Venkataramani, S. Trace Gases at a Semi-Arid Urban Site in Western India: Variability and Inter-Correlations. J. Atmos. Chem. 2015, 72, 143–164. [Google Scholar] [CrossRef]
- Rengarajan, R.; Sudheer, A.K.; Sarin, M.M. Aerosol Acidity and Secondary Organic Aerosol Formation during Wintertime over Urban Environment in Western India. Atmos. Environ. 2011, 45, 1940–1945. [Google Scholar] [CrossRef]
- Lal, S.; Venkataramani, S.; Chandra, N.; Cooper, O.R.; Brioude, J.; Naja, M. Transport Effects on the Vertical Distribution of Tropospheric Ozone over Western India. J. Geophys. Res. Atmos. 2014, 119, 10012–10026. [Google Scholar] [CrossRef] [Green Version]
- Matthews, P.S.J.; Baeza-Romero, M.T.; Whalley, L.K.; Heard, D.E. Uptake of HO$_{2}$ Radicals onto Arizona Test Dust Particles Using an Aerosol Flow Tube. Atmos. Chem. Phys. 2014, 14, 7397–7408. [Google Scholar] [CrossRef] [Green Version]
- de Reus, M.; Fischer, H.; Sander, R.; Gros, V.; Kormann, R.; Salisbury, G.; Van Dingenen, R.; Williams, J.; Zöllner, M.; Lelieveld, J. Observations and Model Calculations of Trace Gas Scavenging in a Dense Saharan Dust Plume during MINATROC. Atmos. Chem. Phys. 2005, 5, 1787–1803. [Google Scholar] [CrossRef]
- Sudheer, A.K.; Rengarajan, R.; Sheel, V. Secondary Organic Aerosol over an Urban Environment in a Semi–Arid Region of Western India. Atmos. Pollut. Res. 2015, 6, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Palm, B.B.; Campuzano-Jost, P.; Day, D.A.; Ortega, A.M.; Fry, J.L.; Brown, S.S.; Zarzana, K.J.; Dube, W.; Wagner, N.L.; Draper, D.C.; et al. Secondary Organic Aerosol Formation from in Situ OH, O3, and NO3 Oxidation of Ambient Forest Air in an Oxidation Flow Reactor. Atmos. Chem. Phys. 2017, 17, 5331–5354. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, V.; Singh, P.; Kulkarni, P.; Sreekanth, V. Characteristics and Health Risk Assessment of Fine Particulate Matter and Surface Ozone: Results from Bengaluru, India. Environ. Monit. Assess. 2022, 194, 211. [Google Scholar] [CrossRef] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojha, N.; Girach, I.; Sharma, K.; Sharma, A.; Singh, N.; Gunthe, S.S. Exploring the Potential of Machine Learning for Simulations of Urban Ozone Variability. Sci. Rep. 2021, 11, 22513. [Google Scholar] [CrossRef] [PubMed]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN Model-Based Approach in Classification. Lect. Notes Comput. Sci. 2003, 2888, 986–996. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Apress: Berkeley, CA, USA, 2015; pp. 67–80. ISBN 978-1-4302-5990-9. [Google Scholar]
- Shahani, N.M.; Kamran, M.; Zheng, X.; Liu, C.; Guo, X. Application of Gradient Boosting Machine Learning Algorithms to Predict Uniaxial Compressive Strength of Soft Sedimentary Rocks at Thar Coalfield. Adv. Civ. Eng. 2021, 2021, 2565488. [Google Scholar] [CrossRef]
Winter | O3 (ppbv) | PM2.5(µg m−3) | T (°C) | RH (%) | WS (ms−1) | NOx(ppbv) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Del | Ahm | Ben | Del | Ahm | Ben | Del | Ahm | Ben | Del | Ahm | Ben | Del | Ahm | Ben | Del | Ahm | Ben | |
Mean | 12.3 | 22.1 | 12.6 | 181.0 | 75.6 | 37.4 | 14.0 | 20.1 | 21.6 | 42.0 | 32.9 | 61.5 | 2.7 | 3.1 | 3.4 | 87.0 | 45.6 | 29.3 |
Sigma | 8.2 | 8.9 | 7.1 | 80.0 | 22.6 | 16.9 | 2.5 | 2.4 | 1.6 | 13.9 | 13.9 | 13.3 | 0.9 | 0.7 | 0.8 | 44.0 | 26.1 | 19.9 |
Median | 10.4 | 21.3 | 11.9 | 165.0 | 73.9 | 35.1 | 13.8 | 20.1 | 21.6 | 40.5 | 30.5 | 60.9 | 2.7 | 3.1 | 3.4 | 76.9 | 39.4 | 26.1 |
Max | 49.4 | 46.8 | 30.8 | 424.0 | 164.7 | 87.9 | 20.4 | 27.1 | 26.3 | 93.0 | 80.6 | 92.8 | 6.1 | 5.7 | 7.9 | 225.0 | 133.5 | 205.9 |
Min | 3.2 | 2.5 | 2.6 | 20.0 | 18.1 | 1.7 | 6.9 | 13.8 | 16.9 | 13.5 | 6.9 | 22.4 | 0.8 | 1.1 | 1.3 | 18.4 | 7.2 | 2.4 |
95 percentile | 30.7 | 37.5 | 26.1 | 339.0 | 113.2 | 66.8 | 18.4 | 24.1 | 24.4 | 67.5 | 62.3 | 84.6 | 4.4 | 4.4 | 4.9 | 173.0 | 96.2 | 59.8 |
5 percentile | 4.3 | 9.4 | 3.0 | 74.0 | 41.8 | 14.0 | 10.1 | 16.1 | 18.9 | 21.6 | 14.4 | 41.9 | 1.3 | 2.1 | 2.1 | 29.9 | 11.2 | 6.4 |
n | 360 | 244 | 323 | 348 | 222 | 335 | 836 | 836 | 836 | 836 | 836 | 836 | 836 | 836 | 836 | 578 | 425 | 539 |
Summer | O3 (ppbv) | PM2.5(µg m−3) | T (°C) | RH (%) | WS (ms−1) | NOx(ppbv) | ||||||||||||
Del | Ahm | Ben | Del | Ahm | Ben | Del | Ahm | Ben | Del | Ahm | Ben | Del | Ahm | Ben | Del | Ahm | Ben | |
Mean | 17.3 | 21.7 | 15.9 | 107.7 | 67.8 | 32.4 | 29.3 | 31.7 | 27.9 | 26.7 | 25.3 | 48.3 | 3.3 | 3.7 | 3.2 | 59.5 | 34.6 | 23.9 |
Sigma | 8.0 | 7.2 | 7.1 | 47.0 | 36.3 | 17.4 | 5.8 | 3.7 | 1.8 | 12.5 | 8.9 | 13.6 | 1.1 | 1.1 | 1.0 | 40.0 | 24.2 | 14.8 |
Median | 16.8 | 21.9 | 15.5 | 96.8 | 60.7 | 29.7 | 30.1 | 32.6 | 27.0 | 24.5 | 24.9 | 45.9 | 3.1 | 3.6 | 3.2 | 47.5 | 26.3 | 20.6 |
Max | 45.8 | 42.8 | 30.5 | 240.7 | 220.0 | 85.9 | 39.6 | 39.5 | 33.6 | 84.2 | 60.6 | 84.3 | 6.4 | 8.7 | 7.6 | 242.6 | 120.8 | 107.8 |
Min | 3.6 | 5.3 | 2.5 | 18.1 | 6.7 | 7.0 | 15.4 | 20.3 | 22.7 | 5.9 | 3.7 | 21.3 | 0.9 | 1.4 | 0.7 | 5.6 | 5.2 | 1.6 |
95 percentile | 32.9 | 32.5 | 29.0 | 199.1 | 132.0 | 65.2 | 37.3 | 36.3 | 30.7 | 49.5 | 40.9 | 72.0 | 5.2 | 5.6 | 5.1 | 145.0 | 83.5 | 53.1 |
5 percentile | 6.4 | 9.0 | 5.4 | 44.9 | 24.0 | 9.9 | 18.9 | 24.6 | 24.9 | 10.7 | 11.1 | 29.0 | 1.7 | 2.3 | 1.7 | 16.7 | 10.3 | 8.8 |
n | 491 | 285 | 365 | 474 | 291 | 393 | 1012 | 1012 | 1012 | 1012 | 1012 | 1012 | 1012 | 1012 | 1012 | 712 | 482 | 645 |
Parameter | Value |
---|---|
Input shape | (30,50) |
Learning rate | 0.001 |
Hidden layers | 50 |
Dropout | 0.2 |
Batch size | 10 |
Epochs | 50 |
Output channels | 50 |
FC layer | 50 |
Activation function | Swish |
Optimiser | ADAM |
Delhi | Ahmedabad | Bengaluru | ||||
---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | |
RNN | 0.0942 | 0.7745 | 0.1591 | 0.2782 | 0.1499 | 0.5097 |
LSTM | 0.1166 | 0.7215 | 0.1841 | −0.0530 | 0.1679 | 0.1340 |
SVR | 0.2180 | −0.3281 | 0.1748 | −0.2968 | 0.2335 | −0.3610 |
KNN | 0.2197 | −0.3495 | 0.1850 | −0.4537 | 0.2711 | −0.8348 |
GPR | 0.2074 | −0.2020 | 0.1771 | −0.0486 | 0.2266 | −0.2813 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, R.K.; Gadhavi, H.; Arora, A.; Mohbey, K.K.; Kumar, S.; Lal, S.; Mallik, C. Relation between PM2.5 and O3 over Different Urban Environmental Regimes in India. Urban Sci. 2023, 7, 9. https://doi.org/10.3390/urbansci7010009
Yadav RK, Gadhavi H, Arora A, Mohbey KK, Kumar S, Lal S, Mallik C. Relation between PM2.5 and O3 over Different Urban Environmental Regimes in India. Urban Science. 2023; 7(1):9. https://doi.org/10.3390/urbansci7010009
Chicago/Turabian StyleYadav, Rahul Kant, Harish Gadhavi, Akanksha Arora, Krishna Kumar Mohbey, Sunil Kumar, Shyam Lal, and Chinmay Mallik. 2023. "Relation between PM2.5 and O3 over Different Urban Environmental Regimes in India" Urban Science 7, no. 1: 9. https://doi.org/10.3390/urbansci7010009
APA StyleYadav, R. K., Gadhavi, H., Arora, A., Mohbey, K. K., Kumar, S., Lal, S., & Mallik, C. (2023). Relation between PM2.5 and O3 over Different Urban Environmental Regimes in India. Urban Science, 7(1), 9. https://doi.org/10.3390/urbansci7010009