How Do Territorial Relationships Determine the Provision of Ecosystem Services? A Focus on Italian Metropolitan Regions in Light of Von Thünen’s Theorem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. ES Economic Evaluation
2.3. Calculation of Specialization Indices
- SI > 0 showing greater specialization of the A term compared to the B term;
- SI < 0 showing lower specialization of term A compared to term B.
3. Results
3.1. ES Economic Value in Italian MRs
3.2. LULC SI for the SNAI Areas of MRs
3.3. Specialization of ES Supply in the SNAI Areas of Aggregated MRs
3.4. ES Supply Specialization of Individual MRs
3.5. Comparison of the ES Supply Specialization of SNAI Areas in MRs and SNAI Areas Nationwide
- The SNAI D area of the MRs is less specialized in food and fodder supply than the national SNAI, but it is more specialized in other ESs. Thus, it appears that, nationally, the SNAI D areas are more agricultural than those of the MRs.
- The specialization values of the national SNAI for the food supply are generally more pronounced than the SNAI of the MRs. The SNAI areas of the MRs are thus less suited for food production, compared to the national territory. This is udnerstandably due to the fact that MRs probably have more areas devoted to (anthropogenic) services and infrastructure than the national average, which is more devoted to agriculture.
- The ES of water purification does not have the same important specialization in the national A pole areas compared to the Apole areas of the MRs.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
BA | BO | CA | CT | FI | GE | ME | MI | NA | PA | RC | RA | TO | VE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LULC | A—Hubs | |||||||||||||
class | km2 | |||||||||||||
274 | 459 | 82 | 182 | 411 | 232 | 212 | 243 | 199 | 158 | 263 | 1469 | 309 | 460 | |
% | ||||||||||||||
100 | 26 | 19 | 43 | 35 | 18 | 24 | 20 | 70 | 58 | 57 | 16 | 31 | 45 | 18 |
210 | 8 | 51 | 5 | 33 | 19 | 27 | 4 | 3 | 41 | 27 | 18 | |||
220 | 42 | 15 | 10 | 1 | 10 | 9 | 8 | 14 | 2 | |||||
231 | 2 | 1 | 1 | |||||||||||
240 | 19 | 26 | 2 | 10 | 15 | 8 | 19 | 1 | 20 | 2 | 28 | 15 | 16 | 7 |
310 | 3 | 2 | 35 | 33 | 16 | 1 | 5 | 10 | 24 | 6 | 8 | |||
320 | 1 | 1 | 2 | 1 | 1 | 34 | 23 | 3 | 22 | 15 | 3 | 1 | ||
330 | 1 | 12 | 1 | 1 | 1 | |||||||||
500 | 1 | 48 | 4 | 1 | 1 | 2 | 56 | |||||||
B—Intermediate hubs | ||||||||||||||
km2 | ||||||||||||||
737 | 445 | 380 | 26 | 119 | 376 | 162 | 138 | |||||||
% | ||||||||||||||
100 | 4 | 3 | 3 | 22 | 49 | 27 | 36 | 15 | ||||||
210 | 46 | 85 | 12 | 48 | 24 | 35 | 47 | |||||||
220 | 19 | 19 | 6 | 11 | ||||||||||
231 | 1 | 2 | 4 | |||||||||||
240 | 21 | 7 | 15 | 36 | 1 | 23 | 18 | 8 | ||||||
310 | 8 | 1 | 49 | 31 | 10 | 6 | ||||||||
320 | 3 | 2 | 1 | 5 | 2 | |||||||||
330 | 3 | |||||||||||||
500 | 2 | 30 | ||||||||||||
C—belt | ||||||||||||||
km2 | ||||||||||||||
1711 | 1722 | 741 | 605 | 1607 | 755 | 173 | 1213 | 498 | 927 | 339 | 692 | 3016 | 923 | |
% | ||||||||||||||
100 | 16 | 7 | 11 | 21 | 7 | 5 | 13 | 27 | 32 | 9 | 7 | 10 | 9 | 11 |
210 | 55 | 56 | 15 | 6 | 15 | 63 | 29 | 9 | 16 | 33 | 64 | |||
220 | 1 | 1 | 2 | 12 | 18 | 1 | 31 | 5 | 20 | 24 | 16 | 1 | 3 | |
231 | 20 | 1 | 18 | 2 | 3 | |||||||||
240 | 3 | 20 | 20 | 36 | 15 | 14 | 12 | 3 | 31 | 13 | 26 | 22 | 20 | 13 |
310 | 11 | 23 | 7 | 41 | 58 | 19 | 4 | 9 | 7 | 18 | 23 | 25 | 1 | |
320 | 5 | 4 | 25 | 6 | 2 | 21 | 23 | 3 | 20 | 12 | 11 | 7 | ||
330 | 2 | 11 | 2 | 2 | 3 | 1 | ||||||||
500 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 8 |
BA | BO | CA | CT | FI | GE | ME | MI | NA | PA | RC | RM | TO | VE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D—Intermediate km2 | ||||||||||||||
LULC class | 1095 | 568 | 44 | 540 | 581 | 514 | 587 | 39 | 954 | 1230 | 2682 | 1795 | 804 | |
% | ||||||||||||||
100 | 3 | 2 | 6 | 6 | 1 | 2 | 8 | 6 | 5 | 4 | 7 | 2 | 7 | |
210 | 52 | 8 | 16 | 14 | 12 | 2 | 34 | 8 | 27 | 5 | 63 | |||
220 | 20 | 2 | 18 | 18 | 16 | 1 | 24 | 32 | 9 | 3 | ||||
231 | 1 | 34 | 27 | 1 | 1 | 2 | ||||||||
240 | 6 | 29 | 15 | 10 | 15 | 8 | 17 | 43 | 16 | 19 | 24 | 12 | 11 | |
310 | 4 | 51 | 33 | 10 | 51 | 76 | 26 | 29 | 3 | 23 | 23 | 40 | 1 | |
320 | 13 | 9 | 25 | 7 | 2 | 13 | 5 | 15 | 18 | 11 | 7 | 28 | ||
330 | 1 | 1 | 2 | 1 | 6 | 2 | 10 | |||||||
500 | 1 | 1 | 2 | 15 | ||||||||||
E—Periphereal km2 | ||||||||||||||
44 | 507 | 2209 | 535 | 243 | 1158 | 58 | 2270 | 1178 | 514 | 1542 | 136 | |||
% | ||||||||||||||
100 | 1 | 2 | 2 | 1 | 2 | 4 | 24 | 1 | 2 | 2 | 13 | |||
210 | 96 | 8 | 40 | 9 | 2 | 49 | 6 | 10 | 31 | |||||
220 | 17 | 12 | 9 | 20 | 6 | |||||||||
231 | 5 | 1 | 2 | 1 | 1 | |||||||||
240 | 27 | 11 | 6 | 5 | 25 | 35 | 11 | 15 | 21 | 1 | 27 | |||
310 | 59 | 12 | 66 | 80 | 25 | 26 | 10 | 39 | 42 | 27 | ||||
320 | 1 | 3 | 13 | 13 | 11 | 28 | 13 | 19 | 15 | 15 | 44 | |||
330 | 5 | 3 | 1 | 2 | 26 | |||||||||
500 | 4 | 27 | ||||||||||||
F—Ultraperipheral km2 | ||||||||||||||
37 | 0 | 54 | 1125 | 691 | 193 | |||||||||
% | ||||||||||||||
100 | 4 | 1 | 1 | 1 | ||||||||||
210 | 47 | 1 | 8 | 39 | 1 | |||||||||
220 | 15 | 9 | 12 | 2 | ||||||||||
231 | ||||||||||||||
240 | 23 | 16 | 9 | 14 | 3 | |||||||||
310 | 7 | 66 | 44 | 13 | 50 | |||||||||
320 | 3 | 16 | 28 | 19 | 42 | |||||||||
330 | 1 | 2 | 1 | 2 | ||||||||||
500 |
LULC Class | Food | Fodder | Wood | Mushrooms | Climate Regulation | Air Purification | Groundwater Recharge | Water Purification | Erosion Protection | Flood Mitigation |
---|---|---|---|---|---|---|---|---|---|---|
100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.1 | 0.4 | 0.1 | 7.0 | 3.3 |
210 | 3208.7 | 233.9 | 0.0 | 0.0 | 40.4 | 0.0 | 295.5 | 0.0 | 144.3 | 137.6 |
220 | 3332.4 | 0.0 | 0.0 | 66.3 | 21.5 | 246.3 | 1.9 | 459.4 | 251.5 | |
231 | 0.0 | 234.6 | 0.0 | 0.0 | 84.0 | 0.0 | 591.0 | 0.0 | 301.6 | 142.5 |
240 | 1647.4 | 101.1 | 6.6 | 7.2 | 63.8 | 375.5 | 326.0 | 2.2 | 295.4 | 141.8 |
310 | 0.0 | 51.5 | 167.5 | 27.1 | 200.1 | 1446.3 | 1148.0 | 20.7 | 495.2 | 334.0 |
320 | 0.0 | 67.1 | 11.0 | 11.4 | 83.1 | 773.7 | 557.0 | 5.3 | 520.5 | 212.1 |
330 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 416.4 | 2.2 | 0.0 | 155.9 |
500 | 0.0 | 10.1 | 0.0 | 0.0 | 36.5 | 10.8 | 640.5 | 85.8 | 31.4 | 298.7 |
Food | Fodder | Wood | Mushrooms | Climate Regulation | Air Purification | Groundwater Recharge | Water Purification | Erosion Control | Flood Mitigation | |
---|---|---|---|---|---|---|---|---|---|---|
SNAI | BA | |||||||||
A | 0.02 | −0.27 | −0.09 | −0.05 | 0.02 | −0.07 | −0.04 | 0.01 | 0.07 | 0.04 |
B | −0.03 | 0.18 | 0.26 | 0.13 | 0.00 | 0.10 | 0.05 | 0.05 | −0.10 | −0.05 |
C | 0.01 | −0.32 | −0.14 | −0.04 | 0.02 | −0.03 | −0.05 | 0.01 | 0.08 | 0.04 |
D | −0.01 | 0.21 | −0.01 | −0.01 | −0.03 | 0.01 | 0.05 | −0.04 | −0.08 | −0.04 |
E | 0.26 | 0.39 | −0.84 | −0.85 | −0.24 | −0.85 | −0.09 | −0.77 | −0.42 | −0.20 |
BO | ||||||||||
A | 0.35 | 0.10 | −0.73 | −0.45 | −0.24 | −0.49 | −0.24 | −0.55 | −0.15 | −0.13 |
B | 0.47 | 0.15 | −0.91 | −0.81 | −0.34 | −0.82 | −0.29 | −0.48 | −0.30 | −0.17 |
C | 0.20 | 0.06 | −0.30 | −0.23 | −0.13 | −0.25 | −0.12 | −0.20 | −0.09 | −0.07 |
D | −0.60 | −0.28 | 0.41 | 0.38 | 0.26 | 0.45 | 0.28 | 0.33 | 0.24 | 0.17 |
E | −0.63 | −0.30 | 0.45 | 0.39 | 0.28 | 0.47 | 0.30 | 0.37 | 0.23 | 0.18 |
CA | ||||||||||
A | −0.21 | −0.13 | −0.87 | −0.73 | −0.15 | −0.73 | 0.58 | 0.60 | −0.47 | 0.40 |
C | 0.04 | 0.01 | −0.05 | −0.02 | −0.08 | −0.03 | 0.15 | −0.59 | −0.06 | −0.13 |
D | −0.07 | −0.03 | 0.07 | 0.04 | −0.03 | 0.03 | 0.18 | −0.62 | −0.05 | −0.12 |
CT | ||||||||||
A | 0.33 | 0.08 | −0.84 | −0.62 | −0.20 | −0.64 | −0.20 | 0.12 | −0.16 | −0.08 |
C | −0.12 | −0.12 | 0.02 | 0.14 | 0.06 | 0.14 | 0.07 | 0.10 | 0.08 | 0.06 |
D | −0.07 | −0.11 | 0.02 | 0.09 | 0.04 | 0.09 | 0.03 | 0.06 | 0.07 | 0.03 |
E | 0.02 | 0.03 | 0.01 | −0.03 | −0.01 | −0.03 | −0.01 | −0.04 | −0.02 | −0.01 |
F | −0.12 | 0.13 | 0.30 | 0.16 | 0.07 | 0.16 | 0.09 | 0.12 | −0.08 | −0.02 |
FI | ||||||||||
A | 0.14 | 0.09 | −0.07 | −0.07 | −0.05 | −0.09 | −0.06 | −0.06 | −0.06 | −0.04 |
B | 0.03 | −0.06 | −0.01 | −0.01 | −0.01 | −0.02 | −0.02 | −0.02 | 0.00 | 0.00 |
C | 0.11 | 0.00 | −0.06 | −0.06 | −0.04 | −0.07 | −0.05 | −0.03 | −0.02 | −0.02 |
D | 0.01 | −0.06 | 0.00 | 0.00 | 0.00 | 0.00 | −0.01 | −0.02 | 0.00 | 0.00 |
E | −0.60 | 0.05 | 0.18 | 0.18 | 0.13 | 0.24 | 0.19 | 0.15 | 0.09 | 0.08 |
GE | ||||||||||
A | 0.03 | 0.08 | −0.14 | −0.03 | −0.04 | −0.02 | −0.03 | −0.08 | 0.09 | 0.01 |
B | 0.72 | 0.09 | −0.24 | −0.17 | −0.14 | −0.25 | −0.20 | −0.21 | −0.09 | −0.10 |
C | 0.14 | 0.02 | −0.03 | −0.02 | −0.01 | −0.02 | −0.02 | −0.02 | 0.00 | −0.01 |
D | −0.26 | −0.04 | 0.05 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | −0.02 | 0.01 |
E | −0.28 | −0.03 | 0.06 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | −0.02 | 0.01 |
F | 0.16 | 0.02 | −0.01 | −0.01 | −0.01 | −0.02 | −0.01 | −0.01 | −0.02 | −0.01 |
ME | ||||||||||
A | 0.02 | −0.01 | −0.12 | −0.04 | −0.04 | −0.04 | 0.01 | −0.03 | 0.01 | 0.03 |
C | 0.28 | −0.24 | −0.20 | −0.17 | −0.09 | −0.19 | −0.14 | −0.15 | −0.01 | −0.02 |
D | 0.19 | 0.00 | −0.21 | −0.10 | −0.07 | −0.12 | −0.09 | −0.13 | −0.01 | −0.03 |
E | 0.04 | 0.01 | −0.06 | −0.02 | −0.02 | −0.02 | −0.02 | −0.04 | 0.01 | −0.01 |
F | −0.19 | 0.02 | 0.14 | 0.08 | 0.06 | 0.09 | 0.07 | 0.10 | 0.00 | 0.02 |
MI | ||||||||||
A | 0.02 | 0.01 | −0.10 | −0.10 | −0.01 | −0.10 | −0.02 | 0.01 | 0.00 | 0.01 |
B | 0.11 | 0.04 | −0.96 | −0.81 | −0.09 | −0.82 | −0.07 | −0.88 | −0.05 | −0.04 |
C | −0.01 | 0.00 | 0.04 | 0.04 | 0.01 | 0.04 | 0.01 | 0.03 | 0.00 | 0.00 |
NA | ||||||||||
A | 0.01 | −0.02 | −0.10 | −0.01 | 0.00 | −0.01 | −0.02 | −0.03 | 0.03 | 0.01 |
B | 0.10 | 0.12 | −0.08 | −0.11 | −0.06 | −0.13 | −0.04 | −0.14 | −0.09 | −0.05 |
C | 0.03 | −0.11 | −0.07 | −0.03 | −0.01 | −0.03 | −0.03 | 0.01 | 0.03 | 0.01 |
D | −0.52 | −0.04 | 0.39 | 0.34 | 0.20 | 0.41 | 0.27 | 0.29 | 0.14 | 0.11 |
E | −0.56 | −0.04 | 0.43 | 0.36 | 0.23 | 0.44 | 0.28 | 0.32 | 0.15 | 0.11 |
PA | ||||||||||
A | −0.63 | −0.37 | 0.49 | 0.44 | 0.28 | 0.51 | 0.30 | 0.42 | 0.32 | 0.22 |
C | −0.01 | −0.08 | −0.06 | 0.00 | 0.01 | 0.01 | −0.01 | 0.04 | 0.05 | 0.03 |
D | 0.10 | −0.07 | −0.37 | −0.16 | −0.06 | −0.16 | −0.09 | −0.10 | 0.01 | −0.01 |
E | 0.00 | 0.06 | 0.05 | 0.01 | −0.01 | 0.00 | 0.01 | −0.02 | −0.04 | −0.02 |
F | −0.07 | 0.00 | 0.16 | 0.09 | 0.04 | 0.09 | 0.05 | 0.07 | 0.01 | 0.01 |
RC | ||||||||||
A | −0.05 | 0.07 | −0.02 | 0.04 | 0.01 | 0.05 | 0.01 | −0.01 | 0.01 | −0.01 |
C | 0.19 | 0.06 | −0.21 | −0.13 | −0.09 | −0.15 | −0.10 | −0.14 | −0.04 | −0.04 |
D | 0.18 | −0.03 | −0.14 | −0.12 | −0.07 | −0.15 | −0.10 | −0.11 | −0.03 | −0.03 |
E | −0.13 | 0.00 | 0.11 | 0.07 | 0.05 | 0.09 | 0.07 | 0.08 | 0.01 | 0.02 |
F | −0.88 | 0.02 | 0.29 | 0.29 | 0.19 | 0.39 | 0.28 | 0.28 | 0.16 | 0.13 |
RM | ||||||||||
A | 0.31 | 0.17 | −0.43 | −0.35 | −0.20 | −0.39 | −0.19 | −0.38 | −0.18 | −0.13 |
C | −0.09 | −0.13 | 0.05 | 0.06 | 0.05 | 0.07 | 0.03 | −0.04 | 0.09 | 0.04 |
D | −0.03 | −0.03 | 0.03 | 0.02 | 0.02 | 0.03 | 0.01 | 0.04 | 0.01 | 0.01 |
E | −0.46 | −0.19 | 0.31 | 0.27 | 0.18 | 0.33 | 0.22 | 0.31 | 0.15 | 0.13 |
TO | ||||||||||
A | 0.54 | 0.16 | −0.42 | −0.38 | −0.24 | −0.46 | −0.29 | −0.14 | −0.27 | −0.18 |
B | 0.61 | 0.22 | −0.55 | −0.49 | −0.29 | −0.58 | −0.35 | −0.57 | −0.30 | −0.24 |
C | 0.33 | 0.10 | −0.13 | −0.16 | −0.10 | −0.21 | −0.16 | −0.15 | −0.14 | −0.12 |
D | −0.47 | −0.15 | 0.16 | 0.15 | 0.11 | 0.20 | 0.12 | 0.13 | 0.11 | 0.08 |
E | −0.96 | −0.21 | 0.11 | 0.17 | 0.12 | 0.27 | 0.24 | 0.16 | 0.21 | 0.19 |
VE | ||||||||||
A | −0.48 | −0.16 | 0.05 | 0.06 | 0.21 | 0.12 | 0.47 | 0.64 | −0.03 | 0.42 |
B | −0.06 | 0.00 | −0.15 | −0.13 | 0.02 | −0.12 | 0.10 | 0.22 | −0.06 | 0.09 |
C | 0.11 | 0.03 | −0.01 | −0.01 | −0.05 | −0.02 | −0.15 | −0.48 | 0.01 | −0.14 |
D | 0.08 | 0.02 | −0.02 | −0.09 | −0.04 | −0.10 | −0.09 | −0.23 | −0.01 | −0.08 |
E | −0.17 | −0.06 | 0.24 | 0.42 | 0.10 | 0.42 | 0.11 | 0.18 | 0.12 | 0.10 |
References
- Jančová, K.; Kammerhofer-Schlegel, C.; Centrone, M. The Future of EU Cohesion: Scenarios and Their Impacts on Regional Inequalities European Added Value Unit PE 762.854–December 2024; European Union: Brussels, Belgium, 2024. [Google Scholar] [CrossRef]
- Surya, B.; Hadijah, H.; Suriani, S.; Baharuddin, B.; Fitriyah, A.T.; Menne, F.; Rasyidi, E.S. Spatial Transformation of a New City in 2006–2020: Perspectives on the Spatial Dynamics, Environmental Quality Degradation, and Socio—Economic. Land 2020, 9, 324. [Google Scholar] [CrossRef]
- Padró, R.; La Rota-Aguilera, M.J.; Giocoli, A.; Cirera, J.; Coll, F.; Pons, M.; Pino, J.; Pili, S.; Serrano, T.; Villalba, G.; et al. Assessing the Sustainability of Contrasting Land Use Scenarios through the Socioecological Integrated Analysis (SIA) of the Metropolitan Green Infrastructure in Barcelona. Landsc. Urban Plan. 2020, 203, 103905. [Google Scholar] [CrossRef]
- Lauf, S.; Haase, D.; Kleinschmit, B. Linkages between Ecosystem Services Provisioning, Urban Growth and Shrinkage—A Modeling Approach Assessing Ecosystem Service Trade-Offs. Ecol. Indic. 2014, 42, 73–94. [Google Scholar] [CrossRef]
- Smiraglia, D.; Salvati, L.; Egidi, G.; Salvia, R.; Giménez-Morera, A.; Halbac-Cotoara-zamfir, R. Toward a New Urban Cycle? A Closer Look to Sprawl, Demographic Transitions and the Environment in Europe. Land 2021, 10, 127. [Google Scholar] [CrossRef]
- Marull, J.; Pino, J.; Tello, E.; Cordobilla, M.J. Social metabolism, landscape change and land-use planning in the Barcelona Metropolitan Region. Land Use Policy 2010, 27, 497–510. [Google Scholar]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The Impact of Projected Increases in Urbanization on Ecosystem Services. Proc. R. Soc. B Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef]
- Marino, D.; Barone, A.; Marucci, A.; Pili, S.; Palmieri, M. Impact of Land Use Changes on Ecosystem Services Supply: A Meta Analysis of the Italian Context. Land 2023, 12, 2173. [Google Scholar] [CrossRef]
- Pili, S.; Serra, P.; Salvati, L. Landscape and the City: Agro-Forest Systems, Land Fragmentation and the Ecological Network in Rome, Italy. Urban For. Urban Green. 2019, 41, 230–237. [Google Scholar] [CrossRef]
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; von Cramon-Taubadel, S.; Tscharntke, T. Implications of Agricultural Transitions and Urbanization for Ecosystem Services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef]
- Antrop, M. Landscape Change and the Urbanization Process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Martínez Alier, J. Urbanismo y Ecología En Barcelona. Pap. Rev. Sociol. 1991, 38, 73. [Google Scholar] [CrossRef]
- Fielding, A.J. Migration and Urbanization in Western Europe Since 1950. Geogr. J. 1989, 155, 60–69. [Google Scholar] [CrossRef]
- Armondi, S. Towards Geopolitical Reading of ‘Periphery’ in State Spatial Strategies: Concepts and Controversies. Geopolitics 2022, 27, 526–545. [Google Scholar] [CrossRef]
- Soja, E.W. Regional Urbanization and the End of the Metropolis Era. In Cities in the 21st Century; Routledge: New York, NY, USA, 2016; pp. 41–56. [Google Scholar] [CrossRef]
- Soja, E.W. Postmetropolis: Critical Studies of Cities and Regions; Wiley-Blackwell: Hoboken, NJ, USA, 2000; ISBN 1577180011. [Google Scholar]
- Bianchini, L.; Salvia, R.; Quaranta, G.; Egidi, G.; Salvati, L.; Marucci, A. Forest Transition and Metropolitan Transformations in Developed Countries: Interpreting Apparent and Latent Dynamics with Local Regression Models. Land 2022, 11, 12. [Google Scholar] [CrossRef]
- Mastronardi, L.; Giagnacovo, M.; Romagnoli, L. Bridging Regional Gaps: Community-Based Cooperatives as a Tool for Italian Inner Areas Resilience. Land Use Policy 2020, 99, 104979. [Google Scholar] [CrossRef]
- Marino, D.; Barone, A.; Marucci, A.; Pili, S.; Palmieri, M. The Integrated Analysis of Territorial Trans-formations in Inland Areas of Italy: The Link between Natural, Social, and Economic Capitals Using the Ecosystem Service Approach. Land 2024, 13, 1455. [Google Scholar] [CrossRef]
- Marucci, A.; Marino, D.; Palmieri, M.; Pili, S. The Role of Agroforestry Areas in the Potential Provision of Ecosystem Services: The Case of the Molise Region. L’Italia For. Mont. 2022, 77, 153–163. [Google Scholar] [CrossRef]
- Eckstein, D.; Künzel, V.; Schäfer, L. Global Climate Risk Index 2021: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2019 and 2000–2019; Germanwatch e.V.: Bonn, Germany; Berline, Germany, 2021; ISBN 9783943704143. [Google Scholar]
- Salvati, L. Agro-Forest Landscape and the ‘fringe’ City: A Multivariate Assessment of Land-Use Changes in a Sprawling Region and Implications for Planning. Sci. Total Environ. 2014, 490, 715–723. [Google Scholar] [CrossRef]
- Zambon, I.; Serra, P.; Pili, S.; Bernardini, V.; Ferrara, C.; Salvati, L. A New Approach to Land-Use Structure: Patch Perimeter Metrics as a Spatial Analysis Tool. Sustainability 2018, 10, 2147. [Google Scholar] [CrossRef]
- Pili, S.; Grigoriadis, E.; Carlucci, M.; Clemente, M.; Salvati, L. Towards Sustainable Growth? A Multi-Criteria Assessment of (Changing) Urban Forms. Ecol. Indic. 2017, 76, 71–80. [Google Scholar] [CrossRef]
- Galli, M.; Marraccini, E.; Lardon, S.; Bonari, E. Il Progetto Agro-Urbano: Brevi Riflessioni Su Categorie Teoriche e Analitiche; Paesaggi periurbani. Linee guida paesaggistiche per il governo del territorio. 2011. Available online: https://hal.science/hal-01195313v1 (accessed on 25 March 2024).
- Ariza-Montobbio, P.; Farrell, K.N.; Gamboa, G.; Ramos-Martin, J. Integrating Energy and Land-Use Planning: Socio-Metabolic Profiles along the Rural-Urban Continuum in Catalonia (Spain). Environ. Dev. Sustain. 2014, 16, 925–956. [Google Scholar] [CrossRef]
- Bierwagen, B.G. Connectivity in Urbanizing Landscapes: The Importance of Habitat Configuration, Urban Area Size, and Dispersal. Urban Ecosyst. 2007, 10, 29–42. [Google Scholar] [CrossRef]
- Scolozzi, R.; Geneletti, D. A Multi-Scale Qualitative Approach to Assess the Impact of Urbanization on Natural Habitats and Their Connectivity. Environ. Impact Assess. Rev. 2012, 36, 9–22. [Google Scholar] [CrossRef]
- Bahers, J.B.; Tanguy, A.; Pincetl, S. Metabolic Relationships between Cities and Hinterland: A Political-Industrial Ecology of Energy Metabolism of Saint-Nazaire Metropolitan and Port Area (France). Ecol. Econ. 2020, 167, 106447. [Google Scholar] [CrossRef]
- Mcdonnell, M.J.; Pickett, S.T.A. Ecosystem Structure and Function along Urban-Rural Gradients: An Unexploited Opportunity for Ecology. Source Ecol. 1990, 71, 1232–1237. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Pickett, S.T.A.; Groffman, P.; Bohlen, P.; Pouyat, R.V.; Zipperer, W.C.; Parmelee, R.W.; Carreiro, M.M.; Medley, K. Ecosystem Processes along an Urban-to-Rural Gradient. In Urban Ecology: An International Perspective on the Interaction Between Humans and Nature; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Baró, F.; Palomo, I.; Zulian, G.; Vizcaino, P.; Haase, D.; Gómez-Baggethun, E. Mapping Ecosystem Service Capacity, Flow and Demand for Landscape and Urban Planning: A Case Study in the Barcelona Metropolitan Region. Land Use Policy 2016, 57, 405–417. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Urban Ecosystem Services Assessment along a Rural-Urban Gradient: A Cross-Analysis of European Cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Otero, I.; Marull, J.; Tello, E.; Diana, G.L.; Pons, M.; Coll, F.; Boada, M. Land Abandonment, Landscape, and Biodiversity: Questioning the Restorative Character of the Forest Transition in the Mediterranean. Ecol. Soc. 2015, 20, 7. [Google Scholar] [CrossRef]
- Marull, J.; Padró, R.; Cirera, J.; Giocoli, A.; Pons, M.; Tello, E. A Socioecological Integrated Analysis of the Barcelona Metropolitan Agricultural Landscapes. Ecosyst. Serv. 2021, 51, 101350. [Google Scholar] [CrossRef]
- Klasen, S.; Meyer, K.M.; Dislich, C.; Euler, M.; Faust, H.; Gatto, M.; Hettig, E.; Melati, D.N.; Jaya, I.N.S.; Otten, F.; et al. Economic and Ecological Trade-Offs of Agricultural Specialization at Different Spatial Scales. Ecol. Econ. 2016, 122, 111–120. [Google Scholar]
- Pilogallo, A.; Scorza, F. Ecosystem Services Multifunctionality: An Analytical Framework to Support Sustainable Spatial Planning in Italy. Sustainability 2022, 14, 3346. [Google Scholar] [CrossRef]
- Angelsen, A. Forest Cover Change in Space and Time: Combining the von Thünen and Forest Transition; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Roos, A.; Eggers, J.; Mark-Herbert, C.; Lindhagen, A. Using von Thünen Rings and Service-Dominant Logic in Balancing Forest Ecosystem Services. Land Use Policy 2018, 79, 622–632. [Google Scholar] [CrossRef]
- Salvati, L.; Carlucci, M. Distance Matters: Land Consumption and the Mono-Centric Model in Two Southern European Cities. Landsc. Urban Plan. 2014, 127, 41–51. [Google Scholar] [CrossRef]
- Nickayin, S.S.; Tomao, A.; Quaranta, G.; Salvati, L.; Morera, A.G. Going toward Resilience? Town Planning, Peri-Urban Landscapes, and the Expansion of Athens, Greece. Sustainability 2020, 12, 10471. [Google Scholar] [CrossRef]
- Unione Europea. Accordo di Partenariato 2014–2020. In Strategia Nazionale per le Aree Interne: Definizione, Obiettivi, Strumenti e Governance; Unione Europea: Brussels, Belgium, 2020; pp. 1–69. [Google Scholar]
- Sinanet No Title. Available online: https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover (accessed on 25 March 2024).
- Robinson, P.; Van Schendel, M.; Botzen, W.; Beukering, P. Economische Waardering van Natuur en Landschap in Zuid-Limburg; Institute for Environmentale Studies: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Morri, E.; Santolini, R. Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, Italy). Land 2022, 11, 57. [Google Scholar] [CrossRef]
- Fiquepron, J.; Garcia, S.; Stenger, A. Land use impact on water quality: Valuing forest services in terms of the water supply sector. J. Environ. Manag. 2013, 126, 113–121. [Google Scholar] [CrossRef]
- Ninan, K.N.; Inoue, M. Valuing forest ecosystem services: Case study of a forest reserve in Japan. Ecosyst. Serv. 2013, 5, 78–87. [Google Scholar] [CrossRef]
- Russi, D.; ten Brink, P.; Farmer, A.; Badura, T.; Coates, D.; Förster, J.; Kumar, R.; Davidson, N. The Economics of Ecosystems and Biodiversity for Water and Wetlands; IEEP: London, UK; Brussels, Belgium, 2013; 84p. [Google Scholar]
- Marino, D. (Ed.) Agricoltura Biologica e Sviluppo Delle Aree Collinari e Montane Nel Centro Italia; RAISA CNR, Arti Grafiche La Regione: Campobasso, Italy, 1996. [Google Scholar]
- IPBES, Using Science to Create a Better Place—Ecosystem Service Case Studies Geographical Coverage Conceptual Framework, Methodology and Scope Drivers of Change in Systems and Services Year Assessment Started Assessment Outputs. 2025. Available online: https://catalog.ipbes.net/assessments/194 (accessed on 25 March 2024).
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem Service Bundles for Analyzing Tradeoffs in Diverse Landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef]
- TEEB. TEEB for Agriculture & Food Scientific and Economic Foundations Report; UN Environment: Geneva, Switzerland, 2018; ISBN 9789280737028. [Google Scholar]
- Schirpke, U.; Tasser, E.; Kandziora, M.; Burkhard, B.; Müller, F.; Pelorosso, R.; Leone, A.; Boccia, L.; Epiair, P.; Toffano, B.; et al. Linking Flood Risk Mitigation and Food Security: An Analysis of Land-Use Change in the Metropolitan Area of Rome. Ecosyst. Serv. 2023, 11, 366. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping Ecosystem Service Supply, Demand and Budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Marino, D.; Palmieri, M.; Marucci, A.; Tufano, M. Comparison between Demand and Supply of Some Ecosystem Services in National Parks: A Spatial Analysis Conducted Using Italian Case Studies. Conservation 2021, 1, 36–57. [Google Scholar] [CrossRef]
- Dworczyk, C.; Burkhard, B. Conceptualising the Demand for Ecosystem Services—An Adapted Spatial-Structural Approach. One Ecosyst. 2021, 6, 1–31. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, J.; Xu, Y.H.; Hu, W.; Cao, Y. Analysis of the Relationship between Supply–Demand Matching of Selected Ecosystem Services and Urban Spatial Governance: A Case Study of Suzhou, China. Environ. Sci. Pollut. Res. 2023, 30, 79789–79806. [Google Scholar] [CrossRef]
- Obst, C.; Hein, L.; Edens, B. National Accounting and the Valuation of Ecosystem Assets and Their Services. Environ. Resour. Econ. 2016, 64, 1–23. [Google Scholar] [CrossRef]
- Brück, M.; Fischer, J.; Law, E.A.; Schultner, J.; Abson, D.J. Drivers of Ecosystem Service Specialization in a Smallholder Agricultural Landscape of the Global South: A Case Study in Ethiopia. Ecol. Soc. 2023, 28, 1. [Google Scholar] [CrossRef]
- Marino, D.; Poli, D.; Rovai, M. (Eds.) Montagna, servizi ecosistemici e strumenti di governance in Toscana; Regione Toscana: Firenze, Italy, 2023; ISBN 0978-88-7040-151-6. [Google Scholar]
SNAI | |||||||
---|---|---|---|---|---|---|---|
MRs | A | B | C | D | E | F | TOT |
Bari | 7.1 | 19.1 | 44.3 | 28.4 | 1.1 | 0 | 100 |
Bologna | 12.4 | 12 | 46.5 | 15.4 | 13.7 | 0 | 100 |
Cagliari | 6.6 | 0 | 57.4 | 36 | 0 | 0 | 100 |
Catania | 5.1 | 0 | 16.9 | 15.1 | 61.8 | 1 | 100 |
Firenze | 11.7 | 10.8 | 45.7 | 16.5 | 15.2 | 0 | 100 |
Genova | 12.7 | 1.4 | 41.4 | 28.2 | 13.3 | 3 | 100 |
Messina | 6.5 | 0 | 5.3 | 18 | 35.6 | 34.6 | 100 |
Milano | 15.4 | 7.6 | 77 | 0 | 0 | 0 | 100 |
Napoli | 17 | 32.1 | 42.6 | 3.3 | 5 | 0 | 100 |
Palermo | 3.2 | 0 | 18.5 | 19.1 | 45.4 | 13.8 | 100 |
Reggio di Calabria | 8.2 | 0 | 10.6 | 38.4 | 36.8 | 6 | 100 |
Roma | 27.4 | 0 | 12.9 | 50.1 | 9.6 | 0 | 100 |
Torino | 4.5 | 2.4 | 44.2 | 26.3 | 22.6 | 0 | 100 |
Venezia | 18.7 | 5.6 | 37.5 | 32.7 | 5.5 | 0 | 100 |
SNAI | ||||||||
---|---|---|---|---|---|---|---|---|
Area | A | B | C | D | E | F | ||
LULC Classes | Class Description | km2 | % | |||||
100 | Urban areas | 4423 | 34 | 7 | 41 | 13 | 4 | 0 |
210 | Arable lands | 12,658 | 10 | 8 | 40 | 20 | 18 | 3 |
220 | Permanent crops | 4043 | 8 | 6 | 22 | 35 | 24 | 10 |
230 | Pastures | 1107 | 2 | 1 | 51 | 39 | 7 | 0 |
240 | Heterogeneous agricultural areas | 6989 | 11 | 5 | 35 | 27 | 19 | 0 |
310 | Forests | 9978 | 5 | 3 | 27 | 31 | 28 | 7 |
320 | Shrub and/or herbaceous vegetation | 5494 | 5 | 1 | 20 | 26 | 38 | 13 |
330 | Sparsely vegetated areas | 1047 | 4 | 1 | 14 | 22 | 57 | 3 |
500 | Wetland and water bodies | 823 | 40 | 6 | 22 | 23 | 8 | 3 |
Type of SI | Index Term | Term Calculation | |
---|---|---|---|
LULC specialization in SNAI areas of all aggregated MRs | A | (3) | |
B | (4) | ||
ES supply economic value (EV) specialization in SNAI areas of all aggregated MRs | A | (5) | |
B | (6) | ||
ES supply economic value (EV) specialization in SNAI areas of each MR | A | (7) | |
B | (8) | ||
ES supply economic value (EV) specialization in SNAI areas | A | (9) | |
B | (10) |
MRs | Food | Fodder | Wood | Mushrooms | Climate Regulation | Air Purification | Groundwater Recharge | Water Purification | Erosion Protection | Flood Mitigation | Total (MILEUR/year) | EUR/ha/year |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BA | 939 | 36 | 3 | 1 | 23 | 68 | 122 | 1 | 122 | 71 | 1387 | 3592 |
BO | 671 | 52 | 14 | 3 | 29 | 155 | 177 | 2 | 95 | 65 | 1264 | 3416 |
CA | 101 | 10 | 6 | 1 | 11 | 76 | 70 | 1 | 41 | 25 | 342 | 2749 |
CT | 643 | 36 | 7 | 2 | 23 | 110 | 142 | 1 | 100 | 63 | 1129 | 3161 |
FI | 405 | 27 | 28 | 5 | 43 | 265 | 241 | 4 | 133 | 85 | 1236 | 3518 |
GE | 38 | 10 | 20 | 4 | 27 | 200 | 158 | 3 | 81 | 49 | 590 | 3232 |
ME | 279 | 20 | 17 | 4 | 33 | 229 | 196 | 3 | 131 | 73 | 985 | 3026 |
MI | 293 | 22 | 1 | 0,2 | 5 | 10 | 35 | 0,2 | 18 | 15 | 400 | 2540 |
NA | 141 | 7 | 2 | 1 | 6 | 32 | 35 | 0,4 | 26 | 15 | 266 | 2272 |
PA | 976 | 61 | 9 | 3 | 34 | 162 | 202 | 2 | 152 | 90 | 1690 | 3379 |
RC | 407 | 19 | 17 | 4 | 33 | 199 | 185 | 3 | 128 | 73 | 1068 | 3335 |
RM | 801 | 55 | 20 | 4 | 42 | 231 | 246 | 4 | 149 | 95 | 1647 | 3074 |
TO | 556 | 61 | 34 | 7 | 63 | 420 | 402 | 5 | 218 | 137 | 1905 | 2793 |
VE | 479 | 34 | 0,4 | 0,2 | 10 | 14 | 85 | 5 | 32 | 40 | 699 | 2839 |
Total MRs | 6731 | 452 | 178 | 39 | 382 | 2171 | 2298 | 34 | 1426 | 898 | 14,608 | 3137 |
National (Nat.) total | 41,577 | 3172 | 1403 | 291 | 2723 | 16,142 | 16,580 | 234 | 9578 | 6118 | 97,819 | 3243 |
MRs/Nat. (%) | 16.2% | 14.2% | 12.7% | 13.4% | 14.0% | 13.5% | 13.9% | 14.4% | 14.9% | 14.7% | 14.9% | −3.4% |
MR SNAI Areas | Surface (ha) | All ES Total Economic Value (MIL EUR/year) | All ES Average Economic Value (EUR/ha/year) | Provisioning ES Average Economic Value (EUR/ha/year) | Regulation ES Average Economic Value (EUR/ha/year) |
---|---|---|---|---|---|
A | 495,216 | 1153 | 2329 | 1370 | 959 |
B | 238,337 | 777 | 3261 | 2158 | 1103 |
C | 1,489,525 | 4750 | 3189 | 1800 | 1389 |
D | 1,183,770 | 3867 | 3266 | 1540 | 1726 |
E | 1,039,434 | 3355 | 3228 | 1392 | 1835 |
F | 210,065 | 706 | 3361 | 1215 | 2146 |
ALL | 4,656,347 | 14,608 | 3106 | 1579 | 1526 |
LULC Class Code | LULC Class Description | SNAI Areas | |||||
---|---|---|---|---|---|---|---|
A—Hubs | B—Intermediate Hubs | C—Belt | D—Intermediate | E—Peripheral | F—Ultraperipheral | ||
100 | Urban areas | 0.62 | 0.15 | 0.14 | −0.35 | −0.69 | −0.85 |
210 | Arable lands | −0.05 | 0.34 | 0.16 | −0.14 | −0.13 | −0.25 |
220 | Permanent crops | −0.18 | 0.12 | −0.20 | 0.18 | 0.05 | 0.02 |
230 | Pastures | −0.66 | −0.64 | 0.24 | 0.21 | −0.55 | −0.99 |
240 | Heterogeneous agricultural areas | −0.01 | 0.03 | 0.05 | 0.05 | −0.10 | −0.20 |
310 | Forests | −0.43 | −0.31 | −0.11 | 0.12 | 0.14 | 0.31 |
320 | Shrub and/or herbaceous vegetation | −0.40 | −0.75 | −0.25 | 0.02 | 0.31 | 0.44 |
330 | Sparsely vegetated areas | −0.50 | −0.61 | −0.40 | −0.07 | 0.45 | −0.28 |
500 | Wetland and water bodies | 0.60 | 0.12 | −0.19 | −0.04 | −0.46 | −0.84 |
SNAI Area | Food | Fodder | Wood | Mushrooms | Climate Regulation | Air Purification | Groundwater Recharge | Water Purification | Erosion Protection | Flood Mitigation |
---|---|---|---|---|---|---|---|---|---|---|
A | 0.16 | 0.08 | −0.23 | −0.18 | −0.09 | −0.20 | −0.06 | 0.23 | −0.10 | −0.02 |
B | 0.30 | 0.12 | −0.28 | −0.29 | −0.16 | −0.34 | −0.17 | −0.19 | −0.17 | −0.11 |
C | 0.12 | 0.02 | −0.09 | −0.09 | −0.05 | −0.11 | −0.07 | −0.11 | −0.04 | −0.04 |
D | −0.07 | −0.04 | 0.06 | 0.05 | 0.03 | 0.06 | 0.03 | 0.03 | 0.03 | 0.02 |
E | −0.16 | −0.03 | 0.09 | 0.09 | 0.06 | 0.12 | 0.08 | 0.02 | 0.06 | 0.04 |
F | −0.30 | −0.08 | 0.20 | 0.19 | 0.12 | 0.23 | 0.13 | 0.08 | 0.11 | 0.07 |
MRs | SNAI | Food | Fodder | Wood | Mushrooms | Climate Regulation | Air Purification | Groundwater Recharge | Water Purification | Erosion Protection | Flood Mitigation |
---|---|---|---|---|---|---|---|---|---|---|---|
BA | C | 0.00 | −0.13 | 0.01 | 0.01 | 0.02 | 0.00 | −0.02 | 0.02 | 0.03 | 0.02 |
I | 0.00 | 0.22 | −0.03 | −0.03 | −0.04 | −0.01 | 0.04 | −0.06 | −0.09 | −0.04 | |
BO | C | 0.27 | 0.09 | −0.44 | −0.35 | −0.18 | −0.37 | −0.17 | −0.29 | −0.13 | −0.09 |
I | −0.62 | −0.29 | 0.43 | 0.38 | 0.27 | 0.46 | 0.29 | 0.35 | 0.23 | 0.18 | |
CA | C | 0.03 | 0.01 | −0.06 | −0.03 | −0.08 | −0.05 | 0.17 | −0.45 | −0.07 | −0.10 |
I | −0.07 | −0.03 | 0.07 | 0.04 | −0.03 | 0.03 | 0.18 | −0.62 | −0.05 | −0.12 | |
CT | C | −0.02 | −0.07 | −0.10 | 0.03 | 0.01 | 0.02 | 0.01 | 0.10 | 0.03 | 0.03 |
I | 0.00 | 0.01 | 0.02 | −0.01 | 0.00 | 0.00 | 0.00 | −0.02 | −0.01 | −0.01 | |
FI | C | 0.10 | 0.00 | −0.05 | −0.05 | −0.03 | −0.07 | −0.05 | −0.04 | −0.02 | −0.02 |
I | −0.24 | −0.01 | 0.09 | 0.09 | 0.06 | 0.12 | 0.09 | 0.07 | 0.05 | 0.04 | |
GE | C | 0.15 | 0.03 | −0.05 | −0.02 | −0.02 | −0.02 | −0.02 | −0.04 | 0.02 | −0.01 |
I | −0.23 | −0.04 | 0.05 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | −0.02 | 0.01 | |
ME | C | 0.16 | −0.12 | −0.16 | −0.10 | −0.06 | −0.12 | −0.06 | −0.09 | 0.00 | 0.00 |
I | −0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | |
MI | C | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
I | / | / | / | / | / | / | / | / | / | / | |
NA | C | 0.06 | 0.00 | −0.08 | −0.06 | −0.03 | −0.07 | −0.04 | −0.05 | −0.02 | −0.01 |
I | −0.54 | −0.04 | 0.41 | 0.35 | 0.22 | 0.42 | 0.27 | 0.31 | 0.14 | 0.11 | |
PA | C | −0.06 | −0.10 | 0.01 | 0.05 | 0.03 | 0.06 | 0.02 | 0.08 | 0.07 | 0.04 |
I | 0.01 | 0.02 | 0.00 | −0.01 | −0.01 | −0.01 | 0.00 | −0.02 | −0.02 | −0.01 | |
RC | C | 0.10 | 0.06 | −0.12 | −0.06 | −0.05 | −0.07 | −0.06 | −0.08 | −0.02 | −0.03 |
I | −0.02 | −0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.00 | 0.01 | |
RM | C | 0.17 | 0.08 | −0.21 | −0.16 | −0.09 | −0.18 | −0.10 | −0.23 | −0.07 | −0.06 |
I | −0.10 | −0.05 | 0.09 | 0.07 | 0.05 | 0.09 | 0.05 | 0.10 | 0.04 | 0.03 | |
TO | C | 0.49 | 0.16 | −0.37 | −0.34 | −0.21 | −0.42 | −0.26 | −0.29 | −0.24 | −0.18 |
I | −0.72 | −0.18 | 0.14 | 0.16 | 0.11 | 0.23 | 0.18 | 0.15 | 0.16 | 0.13 | |
VE | C | −0.14 | −0.05 | −0.04 | −0.03 | 0.06 | −0.01 | 0.14 | 0.13 | −0.03 | 0.12 |
I | −0.05 | −0.02 | 0.11 | 0.16 | 0.03 | 0.16 | 0.01 | −0.03 | 0.05 | 0.01 |
SNAI | Food | Fodder | Wood | Mushrooms | Climate Regulation | Air Purification | Groundwater Recharge | Water Purification | Erosion Protection | Flood Mitigation |
---|---|---|---|---|---|---|---|---|---|---|
A | 0.31 | 0.08 | −0.34 | −0.28 | −0.16 | −0.31 | −0.18 | −0.18 | −0.12 | −0.10 |
B | 0.25 | 0.06 | −0.19 | −0.20 | −0.11 | −0.24 | −0.13 | −0.07 | −0.12 | −0.07 |
C | 0.20 | 0.06 | −0.15 | −0.15 | −0.09 | −0.18 | −0.11 | −0.13 | −0.09 | −0.06 |
D | 0.16 | 0.03 | −0.17 | −0.17 | −0.11 | −0.20 | −0.13 | −0.15 | −0.11 | −0.09 |
E | −0.06 | −0.03 | 0.06 | 0.04 | 0.03 | 0.05 | 0.03 | 0.05 | 0.02 | 0.02 |
F | −0.40 | −0.08 | 0.14 | 0.18 | 0.11 | 0.24 | 0.16 | 0.12 | 0.16 | 0.10 |
SNAI | Food | Fodder | Wood | Mushrooms | Climate Regulation | Air Purification | Groundwater Recharge | Water Purification | Erosion Protection | Flood Mitigation |
---|---|---|---|---|---|---|---|---|---|---|
A | −0.14 | 0.00 | 0.11 | 0.10 | 0.07 | 0.11 | 0.12 | 0.40 | 0.02 | 0.08 |
B | 0.06 | 0.06 | −0.10 | −0.09 | −0.04 | −0.10 | −0.04 | −0.12 | −0.05 | −0.03 |
C | −0.08 | −0.03 | 0.06 | 0.06 | 0.04 | 0.07 | 0.04 | 0.02 | 0.04 | 0.02 |
D | −0.23 | −0.08 | 0.24 | 0.22 | 0.14 | 0.26 | 0.16 | 0.19 | 0.14 | 0.11 |
E | −0.10 | 0.00 | 0.04 | 0.05 | 0.03 | 0.07 | 0.05 | −0.03 | 0.04 | 0.03 |
F | 0.09 | 0.00 | 0.06 | 0.01 | 0.00 | −0.01 | −0.03 | −0.04 | −0.04 | −0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, D.; Barone, A.; Marucci, A.; Pili, S.; Palmieri, M. How Do Territorial Relationships Determine the Provision of Ecosystem Services? A Focus on Italian Metropolitan Regions in Light of Von Thünen’s Theorem. Urban Sci. 2025, 9, 87. https://doi.org/10.3390/urbansci9030087
Marino D, Barone A, Marucci A, Pili S, Palmieri M. How Do Territorial Relationships Determine the Provision of Ecosystem Services? A Focus on Italian Metropolitan Regions in Light of Von Thünen’s Theorem. Urban Science. 2025; 9(3):87. https://doi.org/10.3390/urbansci9030087
Chicago/Turabian StyleMarino, Davide, Antonio Barone, Angelo Marucci, Silvia Pili, and Margherita Palmieri. 2025. "How Do Territorial Relationships Determine the Provision of Ecosystem Services? A Focus on Italian Metropolitan Regions in Light of Von Thünen’s Theorem" Urban Science 9, no. 3: 87. https://doi.org/10.3390/urbansci9030087
APA StyleMarino, D., Barone, A., Marucci, A., Pili, S., & Palmieri, M. (2025). How Do Territorial Relationships Determine the Provision of Ecosystem Services? A Focus on Italian Metropolitan Regions in Light of Von Thünen’s Theorem. Urban Science, 9(3), 87. https://doi.org/10.3390/urbansci9030087