3-30-300 Benchmark: An Evaluation of Tree Visibility, Canopy Cover, and Green Space Access in Nagpur, India
Abstract
:1. Introduction
- To assess how the three components of the 3–30–300 rule—tree visibility from home, neighborhood-level canopy cover, and proximity to a green space within 300 m—can be measured and analyzed in the urban setting of Nagpur, India.
- To examine the interrelationships between these three components.
- To develop the Urban Greenness Exposure Index (UGEI) as a composite metric that identifies intra-zone disparities in greenness exposure and supports targeted intervention beyond broad greenness classifications.
2. Literature Review and Conceptual Framework
2.1. The 3–30–300 Rule as a Framework
2.2. Empirical Applications and Gaps in Global and Indian Contexts
3. Materials and Methods
3.1. Study Area
3.2. Evaluation of Urban Green Space (UGS) Exposure
3.2.1. Visibility of Trees from Home (3-Component)
3.2.2. Canopy Cover Assessment (30-Component)
3.2.3. Accessibility to Green Spaces (300 Component)
3.3. Correlation Analysis of 3–30–300 Components and Urban Greenness Exposure Index (UGEI)
4. Results
4.1. Analysis of the 3–30–300 Components
4.1.1. Tree Visibility (3-Component)
4.1.2. Canopy Cover Gaps (30-Component)
4.1.3. Accessibility to UGSs (300-Component)
4.2. The Correlation Between the 3–30–300 Components
4.3. The Urban Greenness Exposure Index (UGEI)
5. Discussion
5.1. Context-Specific Adaptation of the 3–30–300 Rule
5.2. Strengthening the 3–30–300 Rule Through UGEI
5.3. Methodological Contributions
5.4. Policy Recommendations for Strengthening the 3–30–300 Rule
5.5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. Population Division 2015; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2015.
- UN Habitat. World Cities Report; UN Habitat: Nairobi, Kenya, 2022.
- Sankhe, S.; Vittal, I.; Dobbs, R.; Mohan, A.; Gulati, A.; Ablett, J.; Gupta, S.; Kim, A.; Paul, S.; Sanghvi, A.; et al. India’s Urban Awakening: Building Inclusive Cities, Sustaining Economic Growth; McKinsey: New York, NY, USA, 2010. [Google Scholar]
- Kabisch, N.; Strohbach, M.; Haase, D.; Kronenberg, J. Urban Green Space Availability in European Cities. Ecol. Indic. 2016, 70, 586–596. [Google Scholar] [CrossRef]
- Haaland, C.; Bosch, C.K. van den Challenges and Strategies for Urban Green-Space Planning in Cities Undergoing Densification: A Review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Uy, P.D.; Nakagoshi, N. Application of Land Suitability Analysis and Landscape Ecology to Urban Greenspace Planning in Hanoi, Vietnam. Urban For. Urban Green. 2015, 7, 25–40. [Google Scholar] [CrossRef]
- Rafiee, A.; Dias, A.; Koomen, E. Local Impact of Tree Volume on Nocturnal Urban Heat Island: A Case Study in Amsterdam. Urban For. Urban Green. 2016, 16, 50–61. [Google Scholar] [CrossRef]
- Thomas, M.; Prakash, A.; Dhyani, S.; Pujari, P.R. Governing Green Change to Improve Resilience by Assessing Urban Risks for Localizing Nature Based Solutions in Fast Sprawling Dehradun, India. Int. J. Disaster Risk Reduct. 2024, 111, 104684. [Google Scholar] [CrossRef]
- Qureshi, S.; Breuste, J.H.; Lindley, S.J. Green Space Functionality Along an Urban Gradient in Karachi, Pakistan: A Socio-Ecological Study. Hum. Ecol. 2010, 38, 283–294. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Assessing the Ecosystem Service of Air Pollutant Removal by Urban Trees in Guangzhou (China). J. Environ. Manag. 2008, 88, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and Green Space Dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Farahani, L.; Maller, C. Perceptions and Preferences of Urban Greenspaces: A Literature Review and Framework for Policy and Practice. Landsc. Online 2018, 61, 1–22. [Google Scholar] [CrossRef]
- Labib, S.M.; Browning, M.H.E.M.; Rigolon, A.; Helbich, M.; James, P. Nature’s Contributions in Coping with a Pandemic in the 21st Century: A Narrative Review of Evidence during COVID-19. Sci. Total Environ. 2022, 833, 155095. [Google Scholar] [CrossRef]
- Zheng, Y.; Lin, T.; Hamm, N.A.S.; Liu, J.; Zhou, T.; Geng, H.; Zhang, J.; Ye, H.; Zhang, G.; Wang, X.; et al. Quantitative Evaluation of Urban Green Exposure and Its Impact on Human Health: A Case Study on the 3–30-300 Green Space Rule. Sci. Total Environ. 2024, 924, 171461. [Google Scholar] [CrossRef]
- Artmann, M.; Sartison, K.; Ives, C.D. Urban Gardening as a Means for Fostering Embodied Urban Human–Food Connection? A Case Study on Urban Vegetable Gardens in Germany. Sustain. Sci. 2021, 16, 967–981. [Google Scholar] [CrossRef]
- Femke, B.; Andreucci, M.; Lammel, A.; Davies, Z.; Glanville, J.; Keune, H.; Marselle, M.; O’Brien, L.A.; Olszewska-Guizzo, A.; Remmen, R.; et al. Types and Characteristics of Urban and Peri-Urban Green Spaces Having an Impact on Human Mental Health and Wellbeing: A Systematic Review; UK Centre for Ecology & Hydrology: Wallingford, UK, 2020.
- De la Barrera, F.; Reyes-Paecke, S.; Banzhaf, E. Indicators for Green Spaces in Contrasting Urban Settings. Ecol. Indic. 2016, 62, 212–219. [Google Scholar] [CrossRef]
- Haq, S.M.A. Urban Green Spaces and an Integrative Approach to Sustainable Environment. J. Environ. Prot. 2011, 2, 601–608. [Google Scholar] [CrossRef]
- Dickinson, D.C.; Hobbs, R.J. Cultural Ecosystem Services: Characteristics, Challenges and Lessons for Urban Green Space Research. Ecosyst. Serv. 2017, 25, 179–194. [Google Scholar] [CrossRef]
- Kothencz, G.; Kolcsár, R.; Cabrera-Barona, P.; Szilassi, P. Urban Green Space Perception and Its Contribution to Well-Being. Int. J. Environ. Res. Public Health 2017, 14, 766. [Google Scholar] [CrossRef]
- Gupta, K.; Kumar, P.; Pathan, S.K.; Sharma, K.P. Urban Neighborhood Green Index—A Measure of Green Spaces in Urban Areas. Landsc. Urban Plan. 2012, 105, 325–335. [Google Scholar] [CrossRef]
- Miles, E. Nature Is a Human Right; Dorling Kindersley Limited: London, UK, 2022; ISBN 978-0-241-53135-8. [Google Scholar]
- Tan, P.Y.; Wang, J.; Sia, A. Perspectives on Five Decades of the Urban Greening of Singapore. Cities 2013, 32, 24–32. [Google Scholar] [CrossRef]
- Byrne, J.; Sipe, N.; Searle, G. Green around the Gills? The Challenge of Density for Urban Greenspace Planning in SEQ. Aust. Plan. 2010, 47, 162–177. [Google Scholar] [CrossRef]
- Ståhle, A. Compact Sprawl: Exploring Public Open Space and Contradictions in Urban Density. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2008; 242p. [Google Scholar]
- WHO. Urban Green Spaces: A Brief for Action; World Health Organization, Regional Office for Europe: Bonn, Germany, 2017.
- EEA. Indicators for Urban Green Infrastructure; EEA: Copenhagen, Denmark, 2021. [Google Scholar]
- Chan, L.; Hillel, O.; Elmqvist, T.; Werner, P.; Holman, N.; Mader, A.; Calcaterra, E. User’s Manual on the Singapore Index on Cities’ Biodiversity; National Parks Board: Singapore, 2014; ISBN 978-981-07-8816-2. [Google Scholar]
- Ellicott, K. Raising the Standard: The Green Flag Award Guidance Manual; Pesticides Action Network: Berkeley, CA, USA, 2016. [Google Scholar]
- Lahoti, S.; Lahoti, A.; Saito, O. Benchmark Assessment of Recreational Public Urban Green Space Provisions: A Case of Typical Urbanizing Indian City, Nagpur. Urban For. Urban Green. 2019, 44, 126424. [Google Scholar] [CrossRef]
- Lahoti, S.A.; Dhyani, S.; Sahle, M.; Kumar, P.; Saito, O. Exploring the Nexus between Green Space Availability, Connection with Nature, and Pro-Environmental Behavior in the Urban Landscape. Sustainability 2024, 16, 5435. [Google Scholar] [CrossRef]
- Browning, M.H.E.M.; Locke, D.H.; Konijnendijk, C.; Labib, S.M.; Rigolon, A.; Yeager, R.; Bardhan, M.; Berland, A.; Dadvand, P.; Helbich, M.; et al. Measuring the 3-30-300 Rule to Help Cities Meet Nature Access Thresholds. Sci. Total Environ. 2024, 907, 167739. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. Evidence-Based Guidelines for Greener, Healthier, More Resilient Neighbourhoods: Introducing the 3–30–300 Rule. J. For. Res. 2023, 34, 821–830. [Google Scholar] [CrossRef]
- Sikorska, D.; Łaszkiewicz, E.; Krauze, K.; Sikorski, P. The Role of Informal Green Spaces in Reducing Inequalities in Urban Green Space Availability to Children and Seniors. Environ. Sci. Policy 2020, 108, 144–154. [Google Scholar] [CrossRef]
- Anguluri, R.; Narayanan, P. Role of Green Space in Urban Planning: Outlook towards Smart Cities. Urban For. Urban Green. 2017, 25, 58–65. [Google Scholar] [CrossRef]
- Govindarajulu, D. Urban Green Space Planning for Climate Adaptation in Indian Cities. Urban Clim. 2014, 10, 35–41. [Google Scholar] [CrossRef]
- Lahoti, S.; Kefi, M.; Lahoti, A.; Saito, O. Mapping Methodology of Public Urban Green Spaces Using GIS: An Example of Nagpur City, India. Sustainability 2019, 11, 2166. [Google Scholar] [CrossRef]
- Lahoti, S.A.; Lahoti, A.; Dhyani, S.; Saito, O. Preferences and Perception Influencing Usage of Neighborhood Public Urban Green Spaces in Fast Urbanizing Indian City. Land 2023, 12, 1664. [Google Scholar] [CrossRef]
- TCPO. Urban Greening Guidelines; Town & Country Planning Organisation: New Delhi, India, 2014. [Google Scholar]
- MoUD. Atal Mission for Rejuvenation and Urban Transformation (AMRUT); Ministry of Urban Development: New Delhi, India, 2015.
- Imam, A.U.K.; Banerjee, U.K. Urbanisation and Greening of Indian Cities: Problems, Practices, and Policies. Ambio 2016, 45, 442–457. [Google Scholar] [CrossRef]
- Chaudhry, P.; Bagra, K.; Singh, B. Urban Greenery Status of Some Indian Cities: AShort Communication. IJESD 2011, 2, 98–101. [Google Scholar] [CrossRef]
- Shukla, J.; Pophali, M.; Dutta, S.; Lahoti, S.; Pujari, P.; Dhyani, S. A Blue–Green Ratio of Urban Wetlands as an Ecosystem Health Indicator: The Case of Urban Sprawl in Nagpur, India. Environ. Hazards 2024, 1–20. [Google Scholar] [CrossRef]
- NIUA. CSCAF in Monitoring Urban Green Spaces. Available online: https://niua.in/c-cube/blog/content/cscaf-monitoring-urban-green-spaces (accessed on 15 December 2024).
- Census of India. Census of India 2011, National Population Register & Socio Economic and Caste Census; Govement of India: New Delhi, India, 2011.
- Dhyani, S.; Lahoti, S.; Khare, S.; Pujari, P.; Verma, P. Ecosystem Based Disaster Risk Reduction Approaches (EbDRR) as a Prerequisite for Inclusive Urban Transformation of Nagpur City, India. Int. J. Disaster Risk Reduct. 2018, 32, 95–105. [Google Scholar] [CrossRef]
- Surawar, M.; Kotharkar, R. Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images. Int. J. Urban Civ. Eng 2017, 11, 868–874. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Dadvand, P.; Márquez, S.; Bartoll, X.; Barboza, E.P.; Cirach, M.; Borrell, C.; Zijlema, W.L. The Evaluation of the 3-30-300 Green Space Rule and Mental Health. Environ. Res. 2022, 215, 114387. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote Sensing Algorithms for Estimation of Fractional Vegetation Cover Using Pure Vegetation Index Values: A Review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef]
- Patel, D.K.; Thakur, T.K.; Thakur, A.; Pandey, A.; Kumar, A.; Kumar, R.; Husain, F.M. Quantifying Land Degradation in Upper Catchment of Narmada River in Central India: Evaluation Study Utilizing Landsat Imagery. Water 2024, 16, 2440. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models. Int. J. Remote Sens. 2010, 19, 1533–1543. [Google Scholar] [CrossRef]
- McDonald, R.I.; Biswas, T.; Sachar, C.; Housman, I.; Boucher, T.M.; Balk, D.; Nowak, D.; Spotswood, E.; Stanley, C.K.; Leyk, S. The Tree Cover and Temperature Disparity in US Urbanized Areas: Quantifying the Association with Income across 5,723 Communities. PLoS ONE 2021, 16, e0249715. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; De Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Navakatikyan, M.A.; Feng, X. Urban Green Space, Tree Canopy and 11-Year Risk of Dementia in a Cohort of 109,688 Australians. Environ. Int. 2020, 145, 106102. [Google Scholar] [CrossRef]
- Chen, Y.; Ke, X.; Min, M.; Cheng, P. Disparity in Perceptions of Social Values for Ecosystem Services of Urban Green Space: A Case Study in the East Lake Scenic Area, Wuhan. Front. Public Health 2020, 8, 370. [Google Scholar] [CrossRef] [PubMed]
- Kosorić, V.; Huang, H.; Tablada, A.; Lau, S.-K.; Tan, H.T.W. Survey on the Social Acceptance of the Productive Façade Concept Integrating Photovoltaic and Farming Systems in High-Rise Public Housing Blocks in Singapore. Renew. Sustain. Energy Rev. 2019, 111, 197–214. [Google Scholar] [CrossRef]
- Ekkel, E.D.; De Vries, S. Nearby Green Space and Human Health: Evaluating Accessibility Metrics. Landsc. Urban Plan. 2017, 157, 214–220. [Google Scholar] [CrossRef]
- Reklaitiene, R.; Grazuleviciene, R.; Dedele, A.; Virviciute, D.; Vensloviene, J.; Tamosiunas, A.; Nieuwenhuijsen, M.J. The Relationship of Green Space, Depressive Symptoms and Perceived General Health in Urban Population. Scand. J. Public Health 2014, 42, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Qin, B. Exploring the Link between Neighborhood Environment and Mental Wellbeing: A Case Study in Beijing, China. Landsc. Urban Plan. 2017, 164, 71–80. [Google Scholar] [CrossRef]
- Maldonado, M. Le Jardin Atlantique, Paris. Stud. Hist. Gard. Des. Landsc. 2000, 20, 297–312. [Google Scholar] [CrossRef]
- Amati, M.; Tiede, J.; Sun, Q.C.; Deilami, K.; Hurley, J.; Fox, A.; Dickson, J. Using Machine Learning to Identify Urban Forest Crown Bounding Boxes (CBB): Exploring a New Method to Develop Urban Forest Policy. Urban For. Urban Green. 2023, 85, 127943. [Google Scholar] [CrossRef]
- Battisti, L.; Aimar, F.; Giacco, G.; Devecchi, M. Urban Green Development and Resilient Cities: A First Insight into Urban Forest Planning in Italy. Sustainability 2023, 15, 12085. [Google Scholar] [CrossRef]
- Yao, X.; Lin, T.; Sun, S.; Zhang, G.; Zhou, H.; Jones, L.; Liu, W.; Huang, Y.; Lin, M.; Zhang, J.; et al. Greenspace’s Value Orientations of Ecosystem Service and Socioeconomic Service in China. Ecosyst. Health Sustain. 2022, 8, 2078225. [Google Scholar] [CrossRef]
Component | Data Type | UGS Considered | Analysis Method | Data Source |
---|---|---|---|---|
Visibility of Trees from Home (3-Component) | Face-to-face questionnaire survey data | No direct UGS type considered (focuses on individual tree visibility) | Chi-square test for variability by greenness level | Questionnaire survey data (author) |
Canopy Cover Assessment (30-Component) | NDVI and FVC based remote sensing data | Overall vegetation cover (not limited to public UGSs) | ANOVA test for differences across greenness levels | Cloud-free Landsat 9 satellite imagery (acquired on 5 May 2024 from USGS Earth Explorer) |
Accessibility to Green Spaces (300-Component) | QGIS-based Euclidean distance buffer analysis (QGIS 3.4) | Only publicly accessible UGSs | Chi-square test for accessibility disparities | Thematic Map * [37] |
Zone | Greenness Level | UGEI Score (0–1) |
---|---|---|
Zone 1 | Mid | 0.712 |
Zone 2 | High | 1.000 |
Zone 3 | Mid | 0.645 |
Zone 5 | Mid | 0.502 |
Zone 4 | Low | 0.191 |
Zone 6 | Low | 0.228 |
Zone 7 | Low | 0.275 |
Zone 8 | Low | 0.381 |
Zone 9 | Low | 0.420 |
Zone 10 | High | 0.864 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahoti, S.A.; Thomas, M.; Pimpalshende, P.; Dhyani, S.; Sahle, M.; Kumar, P.; Saito, O. 3-30-300 Benchmark: An Evaluation of Tree Visibility, Canopy Cover, and Green Space Access in Nagpur, India. Urban Sci. 2025, 9, 120. https://doi.org/10.3390/urbansci9040120
Lahoti SA, Thomas M, Pimpalshende P, Dhyani S, Sahle M, Kumar P, Saito O. 3-30-300 Benchmark: An Evaluation of Tree Visibility, Canopy Cover, and Green Space Access in Nagpur, India. Urban Science. 2025; 9(4):120. https://doi.org/10.3390/urbansci9040120
Chicago/Turabian StyleLahoti, Shruti Ashish, Manu Thomas, Prajakta Pimpalshende, Shalini Dhyani, Mesfin Sahle, Pankaj Kumar, and Osamu Saito. 2025. "3-30-300 Benchmark: An Evaluation of Tree Visibility, Canopy Cover, and Green Space Access in Nagpur, India" Urban Science 9, no. 4: 120. https://doi.org/10.3390/urbansci9040120
APA StyleLahoti, S. A., Thomas, M., Pimpalshende, P., Dhyani, S., Sahle, M., Kumar, P., & Saito, O. (2025). 3-30-300 Benchmark: An Evaluation of Tree Visibility, Canopy Cover, and Green Space Access in Nagpur, India. Urban Science, 9(4), 120. https://doi.org/10.3390/urbansci9040120