Building the Smart City of Tomorrow: A Bibliometric Analysis of Artificial Intelligence in Urbanization
Abstract
:1. Introduction
2. Smart Cities and Artificial Intelligence
2.1. Smart Cities and Urbanization
2.2. Artificial Intelligence
3. Research Method
3.1. Data Collection
((“artificial intelligence” OR “machine intelligence” OR “autonomous robot*” OR “autonomous agent*” OR “intelligent robot*” OR “intelligent agent*” OR “artificial neural network*” OR “Machine learn*” OR “Deep learn*” OR “thinking computer system” OR “fuzzy expert system*” OR “evolutionary computation” OR “hybrid intelligent system*”) AND
(“smart city” OR “smart cities” OR “intelligent city” OR “intelligent cities” OR “digital city” OR “digital cities” OR “smart sustainable city” OR “smart sustainable cities”))
3.2. Data Analysis
4. Findings
4.1. Overview and General Metrics
4.2. Performance Analysis
4.3. Geographic Distribution of Research Contributions
4.4. Thematic Analysis
4.4.1. Complementing Technologies and Security
4.4.2. Intelligent Transportation and Smart Mobility
4.4.3. AI-Based Energy Efficiency
4.4.4. Computer Vision and Object Detection
4.4.5. Governance and Urban Planning
5. Future Research
5.1. Smart Energy and Smart Grids
5.2. Integration with Other Technologies
5.3. Smart Citizens and Community Engagement
5.4. Disaster Management
5.5. UAVs
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, J.; Tang, H.; Huang, T.; Yu, F.R.; Xie, R.; Liu, J.; Liu, Y. A Survey of Blockchain Technology Applied to Smart Cities: Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2794–2830. [Google Scholar] [CrossRef]
- DESTATIS. The Largest Cities Worldwide 2023: International Statistics. Available online: https://www.destatis.de/EN/Themes/Countries-Regions/International-Statistics/Data-Topic/Population-Labour-Social-Issues/DemographyMigration/UrbanPopulation.html (accessed on 5 February 2025).
- Sun, J.; Yan, J.; Zhang, K. Blockchain-based sharing services: What blockchain technology can contribute to smart cities. Financ. Innov. 2016, 2, 26. [Google Scholar] [CrossRef]
- García Fernández, C.; Peek, D. Smart and Sustainable? Positioning Adaptation to Climate Change in the European Smart City. Smart Cities 2020, 3, 511–526. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects 2018. Available online: https://population.un.org/wup/publications/ (accessed on 23 January 2025).
- Sokolov, A.; Veselitskaya, N.; Carabias, V.; Yildirim, O. Scenario-based identification of key factors for smart cities development policies. Technol. Forecast. Soc. Chang. 2019, 148, 119729. [Google Scholar] [CrossRef]
- Giffinger, R.; Haindlmaier, G.; Kramar, H. The role of rankings in growing city competition. Urban Res. Pract. 2010, 3, 299–312. [Google Scholar] [CrossRef]
- Banh, L.; Strobel, G. Generative artificial intelligence. Electron. Mark. 2023, 33, 63. [Google Scholar] [CrossRef]
- Castelvecchi, D. Can we open the black box of AI? Nature 2016, 538, 20–23. [Google Scholar] [CrossRef]
- Winston, P.H. Artificial Intelligence, 3rd ed.; reprinted with corr; Addison-Wesley: Bonn, Germany, 1992; ISBN 978-0201533774. [Google Scholar]
- Cugurullo, F. Urban Artificial Intelligence: From Automation to Autonomy in the Smart City. Front. Sustain. Cities 2020, 2, 38. [Google Scholar] [CrossRef]
- Nikitas, A.; Michalakopoulou, K.; Njoya, E.T.; Karampatzakis, D. Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability 2020, 12, 2789. [Google Scholar] [CrossRef]
- Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, P.; Sivaparthipan, C.B.; Muthu, B.A. Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustain. Energy Technol. Assess. 2021, 45, 100986. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of Artificial Intelligence and Machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Kureljusic, M.; Karger, E. Forecasting in financial accounting with artificial intelligence—A systematic literature review and future research agenda. J. Appl. Account. Res. 2024, 25, 81–104. [Google Scholar] [CrossRef]
- Taulli, T. Artificial Intelligence Basics: A Non-Technical Introduction, 1st ed.; Apress: Berkeley, CA, USA, 2019; ISBN 978-1-4842-5028-0. [Google Scholar]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107057135. [Google Scholar]
- Searle, J.R. Minds, brains, and programs. Behav. Brain Sci. 1980, 3, 417–424. [Google Scholar] [CrossRef]
- Mohammadi, M.; Al-Fuqaha, A. Enabling Cognitive Smart Cities Using Big Data and Machine Learning: Approaches and Challenges. IEEE Commun. Mag. 2018, 56, 94–101. [Google Scholar] [CrossRef]
- Ghazal, T.M.; Hasan, M.K.; Alshurideh, M.T.; Alzoubi, H.M.; Ahmad, M.; Akbar, S.S.; Al Kurdi, B.; Akour, I.A. IoT for Smart Cities: Machine Learning Approaches in Smart Healthcare—A Review. Future Internet 2021, 13, 218. [Google Scholar] [CrossRef]
- Srivastava, S.; Bisht, A.; Narayan, N. Safety and security in smart cities using artificial intelligence—A review. In Proceedings of the 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence (Confluence), Noida, India, 12–13 January 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 130–133, ISBN 978-1-5090-3519-9. [Google Scholar]
- Ang, K.L.-M.; Seng, J.K.P.; Ngharamike, E.; Ijemaru, G.K. Emerging Technologies for Smart Cities’ Transportation: Geo-Information, Data Analytics and Machine Learning Approaches. ISPRS Int. J. Geo-Inf. 2022, 11, 85. [Google Scholar] [CrossRef]
- Subramanian, M.; Cho, J.; Veerappampalayam Easwaramoorthy, S.; Murugesan, A.; Chinnasamy, R. Enhancing Sustainable Transportation: AI-Driven Bike Demand Forecasting in Smart Cities. Sustainability 2023, 15, 13840. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Casillas, J.; Acedo, F. Evolution of the Intellectual Structure of Family Business Literature: A Bibliometric Study of FBR. Fam. Bus. Rev. 2007, 20, 141–162. [Google Scholar] [CrossRef]
- Kapoor, K.K.; Tamilmani, K.; Rana, N.P.; Patil, P.; Dwivedi, Y.K.; Nerur, S. Advances in Social Media Research: Past, Present and Future. Inf. Syst. Front. 2018, 20, 531–558. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H. Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review. Logistics 2021, 5, 72. [Google Scholar] [CrossRef]
- Rejeb, A.; Treiblmaier, H.; Rejeb, K.; Zailani, S. Blockchain research in healthcare: A bibliometric review and current research trends. J. Data Inf. Manag. 2021, 3, 109–124. [Google Scholar] [CrossRef]
- Paul, J.; Criado, A.R. The art of writing literature review: What do we know and what do we need to know? Int. Bus. Rev. 2020, 29, 101717. [Google Scholar] [CrossRef]
- Bulegenova, B.B.; Turemuratov, O. Urbanization as a global trend: Causes and consequences. Bull. L.N. Gumilyov Eurasian Natl. Univ. Political Sci. Reg. Stud. Orient. Stud. Turkol. Ser. 2023, 142, 37–42. [Google Scholar] [CrossRef]
- Zhang, K.; Meng, H.; Ba, M.; Sun, Y. Characteristics Analysis of Urban Space Expansion in Luoyang, China. J. Geosci. Environ. Prot. 2022, 10, 123–139. [Google Scholar] [CrossRef]
- Qian, M.; Pu, L.; Zhang, J.; Zhang, M. Urban Spatial Expansion Characteristics in China’s Rapid Urbanization Region—A Case Study of SXC Region. Int. J. Geosci. 2013, 4, 1365–1375. [Google Scholar] [CrossRef]
- Czech, B.; Krausman, P.R.; Devers, P.K. Economic Associations among Causes of Species Endangerment in the United States. BioScience 2000, 50, 593–601. [Google Scholar] [CrossRef]
- Marzluff, J.M.; Bowman, R.; Donnelly, R. Avian Ecology and Conservation in an Urbanizing World; Springer: Boston, MA, USA, 2001; ISBN 978-1-4613-5600-4. [Google Scholar]
- McKineey, M.L. Urbanization, Biodiversity, and Conservation. BioScience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- Tukhtaeva, Z.I. Air Pollution In Uzbekistan And The Solution For For Its Improvement. Am. J. Appl. Sci. 2020, 2, 38–44. [Google Scholar] [CrossRef]
- Sedaghati, R.; Hosseynzadeh Kashi, M. The Effect of Green Architecture on Human Health. Int. J. Sci. Res. Sci. Eng. Technol. 2019, 2, 321–324. [Google Scholar] [CrossRef]
- Khan, M.H. Urban health in megacities of developing countries. Public Health Forum 2012, 20, 29–30. [Google Scholar] [CrossRef]
- van de Poel, E.; O’Donnell, O.; van Doorslaer, E. The Health Penalty of China’s Rapid Urbanization. Tinbergen Institute Discussion Paper No. 09-016/3. SSRN J. 2009. Available online: https://ssrn.com/abstract=1346351 (accessed on 13 April 2025).
- Zijlema, W.L.; Klijs, B.; Stolk, R.P.; Rosmalen, J.G.M. (Un)Healthy in the City: Respiratory, Cardiometabolic and Mental Health Associated with Urbanity. PLoS ONE 2015, 10, e0143910. [Google Scholar] [CrossRef]
- Gubler, D.J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. Trop. Med. Health 2011, 39, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Alirol, E.; Getaz, L.; Stoll, B.; Chappuis, F.; Loutan, L. Urbanisation and infectious diseases in a globalised world. Lancet Infect. Dis. 2011, 11, 131–141. [Google Scholar] [CrossRef]
- Heston, Y.P.; Setiawan, B.; Fosterharoldas, D. FACTORS CAUSING URBAN LIFE DISRUPTIONS. SPACE 2022, 3, 14–22. [Google Scholar] [CrossRef]
- Graham, S.; Aurigi, A. Urbanising cyberspace? City 1997, 2, 18–39. [Google Scholar] [CrossRef]
- Bollier, D. How Smart Growth Can Stop Sprawl: A Fledgling Citizen Movement Expands; Essential Books: Washington, DC, USA, 1998. [Google Scholar]
- Anthopoulos, L.G. Understanding Smart Cities; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-57015-0. [Google Scholar]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Herath, H.; Mittal, M. Adoption of artificial intelligence in smart cities: A comprehensive review. Int. J. Inf. Manag. Data Insights 2022, 2, 100076. [Google Scholar] [CrossRef]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for Smarter Cities. IBM J. Res. Dev. 2010, 54, 1–16. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Galán-García, J.L.; Aguilera-Venegas, G.; Rodríguez-Cielos, P. An accelerated-time simulation for traffic flow in a smart city. J. Comput. Appl. Math. 2014, 270, 557–563. [Google Scholar] [CrossRef]
- Sterbenz, J.P. Smart city and IoT resilience, survivability, and disruption tolerance: Challenges, modelling, and a survey of research opportunities. In Proceedings of the 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM), Alghero, Italy, 4–6 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6, ISBN 978-1-5386-0671-1. [Google Scholar]
- Mustafa, S.Z.; Kar, A.K. Evaluating Multi-dimensional Risk for Digital Services in Smart Cities. In Digital Nations—Smart Cities, Innovation, and Sustainability; Kar, A.K., Ilavarasan, P.V., Gupta, M.P., Dwivedi, Y.K., Mäntymäki, M., Janssen, M., Simintiras, A., Al-Sharhan, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 23–32. ISBN 978-3-319-68556-4. [Google Scholar]
- Cropf, R.A.; Benton, M. Towards a Working Model of e-Participation in Smart Cities: What the Research Suggests. In E-Participation in Smart Cities: Technologies and Models of Governance for Citizen Engagement; Bolívar, M.P.R., Alcaide Muñoz, L., Eds.; Springer: Cham, Switzerland, 2019; pp. 99–121. ISBN 978-3-319-89473-7. [Google Scholar]
- Treiblmaier, H.; Rejeb, A.; Strebinger, A. Blockchain as a Driver for Smart City Development: Application Fields and a Comprehensive Research Agenda. Smart Cities 2020, 3, 853–872. [Google Scholar] [CrossRef]
- Gupta, A.; Panagiotopoulos, P.; Bowen, F. An orchestration approach to smart city data ecosystems. Technol. Forecast. Soc. Change 2020, 153, 119929. [Google Scholar] [CrossRef]
- Jetzek, T.; Avital, M.; Bjorn-Andersen, N. Data-Driven Innovation through Open Government Data. J. Theor. Appl. Electron. Commer. Res. 2014, 9, 15–16. [Google Scholar] [CrossRef]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef]
- Cohen, B.; Almirall, E.; Chesbrough, H. The City as a Lab. Calif. Manag. Rev. 2016, 59, 5–13. [Google Scholar] [CrossRef]
- Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. J. Internet Serv. Appl. 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Wang, L.; Sng, D. Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A Survey. arXiv 2015, arXiv:1512.03131v1. Available online: https://arxiv.org/pdf/1512.03131 (accessed on 13 December 2024).
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Boston, MA, USA; Columbus, OH, USA; Indianapolis, IN, USA, 2020. [Google Scholar]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P.; Davis, E.; Edwards, D. Artificial Intelligence: A Modern Approach, 3rd ed.; Global edition; Pearson: London, UK, 2016; ISBN 9781292153964. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA; London, UK, 2016. [Google Scholar]
- Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef]
- Baştanlar, Y.; Ozuysal, M. Introduction to machine learning. Methods Mol. Biol. 2014, 1107, 105–128. [Google Scholar] [CrossRef] [PubMed]
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018; ISBN 978-0262039406. [Google Scholar]
- Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In Supervised and Unsupervised Learning for Data Science; Berry, M.W., Mohamed, A., Yap, B.W., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–21. ISBN 978-3-030-22474-5. [Google Scholar]
- Raschka, S. Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow 2, 3rd ed.; Packt Publishing Limited: Birmingham, UK, 2019; ISBN 9781789958294. [Google Scholar]
- Halevy, A.; Norvig, P.; Pereira, F. The Unreasonable Effectiveness of Data. IEEE Intell. Syst. 2009, 24, 8–12. [Google Scholar] [CrossRef]
- Dong, X.L.; Rekatsinas, T. Data Integration and Machine Learning: A Natural Synergy. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018; Das, G., Jermaine, C., Bernstein, P., Eds.; ACM Press: New York, NY, USA, 2018; pp. 1645–1650, ISBN 9781450347037. [Google Scholar]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Farayola, O.A.; Abdul, A.A.; Irabor, B.O.; Okeleke, E.C. INNOVATIVE BUSINESS MODELS DRIVEN BY AI TECHNOLOGIES: A REVIEW. Comput. Sci. IT Res. J. 2023, 4, 85–110. [Google Scholar] [CrossRef]
- Abousaber, I.; Abdalla, H. Review of Using Technologies of Artificial Intelligence in Companies. Int. J. Commun. Netw. Inf. Secur. 2023, 15, 217–228. [Google Scholar] [CrossRef]
- Causon, J. Destination digital? Using AI to enhance the customer experience. AIRWA 2022, 1, 285. [Google Scholar] [CrossRef]
- Domini, B.; Dewi, A.S.; Cesna, G.P. The Effects of Artificial Intelligence (AI) on Company Performance Including the Value of AI-based Business Transformation Initiatives. Itsdi 2023, 5, 24–38. [Google Scholar] [CrossRef]
- Chandgude, V.; Kawade, B. Role of Artificial Intelligence and Machine Learning in Decision Making for Business Growth. Int. J. Adv. Res. Sci. Commun. Technol. 2023, 2, 54–58. [Google Scholar] [CrossRef]
- Kureljusic, M.; Reisch, L. Revenue forecasting for European capital market-oriented firms: A comparative prediction study between financial analysts and machine learning models. Corp. Ownersh. Control. 2022, 19, 159–178. [Google Scholar] [CrossRef]
- Bahrami, M.; Bozkaya, B.; Balcisoy, S. Using Behavioral Analytics to Predict Customer Invoice Payment. Big Data 2020, 8, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.B.; Wei, W.-Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Okolo, C.A.; Olorunsogo, T.; Babawarun, O. A comprehensive review of AI applications in personalized medicine. Int. J. Sci. Res. Arch. 2024, 11, 2544–2549. [Google Scholar] [CrossRef]
- Karger, E.; Kureljusic, M. Artificial Intelligence for Cancer Detection—A Bibliometric Analysis and Avenues for Future Research. Curr. Oncol. 2023, 30, 1626–1647. [Google Scholar] [CrossRef]
- Myeong, S.; Shahzad, K. Integrating Data-Based Strategies and Advanced Technologies with Efficient Air Pollution Management in Smart Cities. Sustainability 2021, 13, 7168. [Google Scholar] [CrossRef]
- Neo, E.X.; Hasikin, K.; Mokhtar, M.I.; Lai, K.W.; Azizan, M.M.; Razak, S.A.; Hizaddin, H.F. Towards Integrated Air Pollution Monitoring and Health Impact Assessment Using Federated Learning: A Systematic Review. Front. Public Health 2022, 10, 851553. [Google Scholar] [CrossRef]
- Zhang, B.; Duan, M.; Sun, Y.; Lyu, Y.; Hou, Y.; Tan, T. Air Quality Index Prediction in Six Major Chinese Urban Agglomerations: A Comparative Study of Single Machine Learning Model, Ensemble Model, and Hybrid Model. Atmosphere 2023, 14, 1478. [Google Scholar] [CrossRef]
- Krupnova, T.G.; Rakova, O.V.; Bondarenko, K.A.; Tretyakova, V.D. Environmental Justice and the Use of Artificial Intelligence in Urban Air Pollution Monitoring. BDCC 2022, 6, 75. [Google Scholar] [CrossRef]
- Demmler, J.C.; Gosztonyi, Á.; Du, Y.; Leinonen, M.; Ruotsalainen, L.; Järvi, L.; Ala-Mantila, S. A novel approach of creating sustainable urban planning solutions that optimise the local air quality and environmental equity in Helsinki, Finland: The CouSCOUS study protocol. PLoS ONE 2021, 16, e0260009. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, R.; Kuthadi, V.M.; Baskar, S. Smart building energy management and monitoring system based on artificial intelligence in smart city. Sustain. Energy Technol. Assess. 2023, 56, 103090. [Google Scholar] [CrossRef]
- Zhou, Y.; Kankanhalli, A. AI Regulation for Smart Cities: Challenges and Principles. In Smart Cities and Smart Governance; Estevez, E., Pardo, T.A., Scholl, H.J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 101–118. ISBN 978-3-030-61032-6. [Google Scholar]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. El Profesional de la Información 2020, 29, 4. [Google Scholar] [CrossRef]
- Forliano, C.; de Bernardi, P.; Yahiaoui, D. Entrepreneurial universities: A bibliometric analysis within the business and management domains. Technol. Forecast. Soc. Chang. 2021, 165, 120522. [Google Scholar] [CrossRef]
- Jagals, M.; Karger, E.; Ahlemann, F. Already grown-up or still in puberty? A bibliometric review of 16 years of data governance research. Corp. Ownersh. Control. 2021, 19, 105–120. [Google Scholar] [CrossRef]
- Suominen, A.; Seppänen, M. Bibliometric data and actual development in technology life cycles: Flaws in assumptions. Foresight 2014, 16, 37–53. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Appolloni, A.; Seuring, S. Public procurement research: A bibliometric analysis. Int. J. Public Sect. Manag. 2024, 37, 183–214. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Wong, N.S.M.; Leung, Y.Y. Are coronectomy studies being cited? A bibliometric study. J. Investig. Clin. Dent. 2019, 10, e12366. [Google Scholar] [CrossRef]
- Ligorio, L.; Venturelli, A.; Caputo, F. Tracing the boundaries between sustainable cities and cities for sustainable development. An LDA analysis of management studies. Technol. Forecast. Soc. Chang. 2022, 176, 121447. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Kayikci, Y.; Appolloni, A.; Treiblmaier, H. Mapping the knowledge domain of green procurement: A review and bibliometric analysis. Environ. Dev. Sustain. 2023, 26, 30027–30061. [Google Scholar] [CrossRef]
- Tandon, A.; Kaur, P.; Mäntymäki, M.; Dhir, A. Blockchain applications in management: A bibliometric analysis and literature review. Technol. Forecast. Soc. Chang. 2021, 166, 120649. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Treiblmaier, H. Mapping Metaverse Research: Identifying Future Research Areas Based on Bibliometric and Topic Modeling Techniques. Information 2023, 14, 356. [Google Scholar] [CrossRef]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Zhao, F.; Fashola, O.I.; Olarewaju, T.I.; Onwumere, I. Smart city research: A holistic and state-of-the-art literature review. Cities 2021, 119, 103406. [Google Scholar] [CrossRef]
- Vieira, E.S.; Gomes, J.A. A comparison of Scopus and Web of Science for a typical university. Scientometrics 2009, 81, 587–600. [Google Scholar] [CrossRef]
- Karger, E.; Kureljusic, M. Using Artificial Intelligence for Drug Discovery: A Bibliometric Study and Future Research Agenda. Pharmaceuticals 2022, 15, 1492. [Google Scholar] [CrossRef]
- Tran, B.X.; Vu, G.T.; Ha, G.H.; Vuong, Q.-H.; Ho, M.-T.; Vuong, T.-T.; La, V.-P.; Ho, M.-T.; Nghiem, K.-C.P.; Nguyen, H.L.T.; et al. Global Evolution of Research in Artificial Intelligence in Health and Medicine: A Bibliometric Study. J. Clin. Med. 2019, 8, 360. [Google Scholar] [CrossRef]
- Guo, Y.; Hao, Z.; Zhao, S.; Gong, J.; Yang, F. Artificial Intelligence in Health Care: Bibliometric Analysis. J. Med. Internet Res. 2020, 22, e18228. [Google Scholar] [CrossRef]
- Adi Bhaskara, J.; Nurmandi, A. Role of Artificial Intelligence in the Smart City: A Bibliometric Review. In HCI International 2022—Late Breaking Posters; Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2022; pp. 589–596. ISBN 978-3-031-19681-2. [Google Scholar]
- Guo, Y.-M.; Huang, Z.-L.; Guo, J.; Li, H.; Guo, X.-R.; Nkeli, M.J. Bibliometric Analysis on Smart Cities Research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, S.; Memoria, M.; Kumar, R.; Kumar, S.; Singh, D.; Tyagi, S.; Ansari, N. Artificial Intelligence And Smart Cities: A Bibliometric Analysis. In Proceedings of the 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), Faridabad, India, 26–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 540–544, ISBN 978-1-6654-9602-5. [Google Scholar]
- Mora, L.; Bolici, R.; Deakin, M. The First Two Decades of Smart-City Research: A Bibliometric Analysis. J. Urban Technol. 2017, 24, 3–27. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact; Ding, Y., Rousseau, R., Wolfram, D., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. ISBN 978-3-319-10376-1. [Google Scholar]
- Komninos, N. The architecture of intelligent cities: Integrating human, collective and artificial intelligence to enhance knowledge and innovation. In Proceedings of the 2nd IET International Conference on Intelligent Environments (IE 06), Athens, Greece, 5–6 July 2006; IEEE: Piscataway, NJ, USA, 2006. v1-13-v1-13. ISBN 0 86341 663 2. [Google Scholar]
- Alghamdi, H.; Hafeez, G.; Ali, S.; Ullah, S.; Khan, M.I.; Murawwat, S.; Hua, L.-G. An Integrated Model of Deep Learning and Heuristic Algorithm for Load Forecasting in Smart Grid. Mathematics 2023, 11, 4561. [Google Scholar] [CrossRef]
- Gao, M.; Wei, Y.; Xie, Y.; Zhang, Y. Traffic Prediction with Self-Supervised Learning: A Heterogeneity-Aware Model for Urban Traffic Flow Prediction Based on Self-Supervised Learning. Mathematics 2024, 12, 1290. [Google Scholar] [CrossRef]
- Shah, K.; Jadav, N.K.; Tanwar, S.; Singh, A.; Pleșcan, C.; Alqahtani, F.; Tolba, A. AI and Blockchain-Assisted Secure Data-Exchange Framework for Smart Home Systems. Mathematics 2023, 11, 4062. [Google Scholar] [CrossRef]
- Cubric, M. Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technol. Soc. 2020, 62, 101257. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kankanamge, N.; Vella, K. How Are Smart City Concepts and Technologies Perceived and Utilized? A Systematic Geo-Twitter Analysis of Smart Cities in Australia. J. Urban Technol. 2021, 28, 135–154. [Google Scholar] [CrossRef]
- Gupta, S.; Modgil, S.; Lee, C.-K.; Cho, M.; Park, Y. Artificial intelligence enabled robots for stay experience in the hospitality industry in a smart city. Ind. Manag. Data Syst. 2022, 122, 2331–2350. [Google Scholar] [CrossRef]
- Mageto, J.; Twinomurinzi, H.; Luke, R.; Mhlongo, S.; Bwalya, K.; Bvuma, S. Building resilience into smart mobility for urban cities: An emerging economy perspective. Int. J. Prod. Res. 2024, 62, 5556–5573. [Google Scholar] [CrossRef]
- Ali, Z.; Mahmood, A.; Khatoon, S.; Alhakami, W.; Ullah, S.S.; Iqbal, J.; Hussain, S. A Generic Internet of Things (IoT) Middleware for Smart City Applications. Sustainability 2023, 15, 743. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Sahu, A.; Sharma, A. Internet of Things (IoT) and Smart Cities. Int. Res. J. Adv. Engg. Mgt. 2024, 2, 2526–2531. [Google Scholar] [CrossRef]
- Zeng, F.; Pang, C.; Tang, H. Sensors on Internet of Things Systems for the Sustainable Development of Smart Cities: A Systematic Literature Review. Sensors 2024, 24, 2074. [Google Scholar] [CrossRef]
- Hariri, R.H.; Fredericks, E.M.; Bowers, K.M. Uncertainty in big data analytics: Survey, opportunities, and challenges. J. Big Data 2019, 6, 44. [Google Scholar] [CrossRef]
- Brady, H.E. The Challenge of Big Data and Data Science. Annu. Rev. Polit. Sci. 2019, 22, 297–323. [Google Scholar] [CrossRef]
- Treiblmaier, H. The impact of the blockchain on the supply chain: A theory-based research framework and a call for action. Supply Chain Manag. Int. J. 2018, 23, 545–559. [Google Scholar] [CrossRef]
- Karger, E.; Brée, T.; Ziolkowski, R.; Jagals, M.; Ahlemann, F. Blockchain in Smart Cities: A Bibliometric Analysis and Overview. Int. J. Innov. Technol. Manag. 2024, 21, 2450025. [Google Scholar] [CrossRef]
- Karger, E.; Jagals, M.; Ahlemann, F. Blockchain for Smart Mobility—Literature Review and Future Research Agenda. Sustainability 2021, 13, 13268. [Google Scholar] [CrossRef]
- Lopez, D.; Farooq, B. A blockchain framework for smart mobility. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7, ISBN 978-1-5386-5959-5. [Google Scholar]
- Treiblmaier, H. Blockchain and tourism: Paradoxes, misconceptions, and a research roadmap. Tour. Econ. 2022, 28, 1956–1960. [Google Scholar] [CrossRef]
- Treiblmaier, H.; Rejeb, A.; Gault, M.; Khurshid, A.; Norta, A.; Poteet, J.; Sivagnanam, S. Harnessing Blockchain to Transform Healthcare Data Management: A Comprehensive Research Agenda. Blockchain Healthc. Today 2024, 7. [Google Scholar] [CrossRef]
- Attaran, M. Blockchain technology in healthcare: Challenges and opportunities. Int. J. Healthc. Manag. 2022, 15, 70–83. [Google Scholar] [CrossRef]
- Bhumichai, D.; Smiliotopoulos, C.; Benton, R.; Kambourakis, G.; Damopoulos, D. The Convergence of Artificial Intelligence and Blockchain: The State of Play and the Road Ahead. Information 2024, 15, 268. [Google Scholar] [CrossRef]
- Singh, P.; Elmi, Z.; Lau, Y.; Borowska-Stefańska, M.; Wiśniewski, S.; Dulebenets, M.A. Blockchain and AI technology convergence: Applications in transportation systems. Veh. Commun. 2022, 38, 100521. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, P.K.; Yoon, B.; Shojafar, M.; Cho, G.H.; Ra, I.-H. Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city. Sustain. Cities Soc. 2020, 63, 102364. [Google Scholar] [CrossRef]
- Mishra, S.; Chaurasiya, V.K. Hybrid deep learning algorithm for smart cities security enhancement through blockchain and internet of things. Multimedia Tools Appl. 2024, 83, 22609–22637. [Google Scholar] [CrossRef]
- Devarajan, G.G.; Thirunnavukkarasan, M.; Amanullah, S.I.; Vignesh, T.; Sivaraman, A. An integrated security approach for vehicular networks in smart cities. Trans. Emerg. Tel. Tech. 2023, 34, e4757. [Google Scholar] [CrossRef]
- Singh, S.K.; Rathore, S.; Park, J.H. BlockIoTIntelligence: A Blockchain-enabled Intelligent IoT Architecture with Artificial Intelligence. Future Gener. Comput. Syst. 2020, 110, 721–743. [Google Scholar] [CrossRef]
- Shen, M.; Tang, X.; Zhu, L.; Du, X.; Guizani, M. Privacy-Preserving Support Vector Machine Training Over Blockchain-Based Encrypted IoT Data in Smart Cities. IEEE Internet Things J. 2019, 6, 7702–7712. [Google Scholar] [CrossRef]
- Chen, D.; Wawrzynski, P.; Lv, Z. Cyber security in smart cities: A review of deep learning-based applications and case studies. Sustain. Cities Soc. 2021, 66, 102655. [Google Scholar] [CrossRef]
- Magaia, N.; Fonseca, R.; Muhammad, K.; Segundo, A.H.F.N.; Lira Neto, A.V.; de Albuquerque, V.H.C. Industrial Internet-of-Things Security Enhanced With Deep Learning Approaches for Smart Cities. IEEE Internet Things J. 2021, 8, 6393–6405. [Google Scholar] [CrossRef]
- Rashid, M.M.; Kamruzzaman, J.; Hassan, M.M.; Imam, T.; Gordon, S. Cyberattacks Detection in IoT-Based Smart City Applications Using Machine Learning Techniques. Int. J. Environ. Res. Public Health 2020, 17, 9347. [Google Scholar] [CrossRef]
- Shukla, P. ML-IDS: A machine learning approach to detect wormhole attacks in Internet of Things. In Proceedings of the 2017 Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 234–240, ISBN 978-1-5090-6435-9. [Google Scholar]
- Alabi, O.O.; Ajagbe, S.A.; Kuti, O.; Afe, O.F.; Ajiboye, G.O.; Adigun, M.O. Leveraging Environmental Data for Intelligent Traffic Forecasting in Smart Cities. In South African Computer Science and Information Systems Research Trends; Gerber, A., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 263–278. ISBN 978-3-031-64880-9. [Google Scholar]
- Kumar, R.; Sharma, N.V.K.; Chaurasiya, V.K. Adaptive traffic light control using deep reinforcement learning technique. Multimed. Tools Appl. 2024, 83, 13851–13872. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Boopalan, R.; Shree, S.K.; Dhanish, R. Deep Learning based Efficient Parking Management System Framework. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6, ISBN 979-8-3503-5968-8. [Google Scholar]
- Thangarasu, G.; Kesava, R.A.; Kannan, K.N. Hybrid Neuro Genetic Causal Convolution based Autoencoders, for Traffic Prediction in Smart Cities. In Proceedings of the 2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 24–25 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 148–152, ISBN 979-8-3503-4879-8. [Google Scholar]
- Manimozhi, S.; Arumugam, S.; Rajeshwari, G. Vehicle Identification and Counting (VIC) Using Machine Learning Algorithm- ORB. In Proceedings of the 2024 4th International Conference on Data Engineering and Communication Systems (ICDECS), Bangalore, India, 22–23 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–4, ISBN 979-8-3503-9335-4. [Google Scholar]
- Kumar, A.; Batra, N.; Mudgal, A.; Yadav, A.L. Navigating Urban Mobility: A Review of AI-Driven Traffic Flow Management in Smart Cities. In Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 14–15 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5, ISBN 979-8-3503-5035-7. [Google Scholar]
- Binbusayyis, A.; Khan, M.A.; Ahmed A, M.M.; Emmanuel, W.R.S. A deep learning approach for prediction of air quality index in smart city. Discov. Sustain. 2024, 5, 89. [Google Scholar] [CrossRef]
- Alwabli, A. Federated Learning for Privacy-Preserving Air Quality Forecasting using IoT Sensors. Eng. Technol. Appl. Sci. Res. 2024, 14, 16069–16076. [Google Scholar] [CrossRef]
- Latha Soundarraj, P.; Jamadar, V.M.; Rappai, S.; Alkhafaji, M.A.; Shareef, A.M.; Zearah, S.A. Deep Learning Approaches for Environmental Monitoring in Smart Cities. In Proceedings of the 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 4–5 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6, ISBN 979-8-3503-6509-2. [Google Scholar]
- Li, Y.; Niu, L. Prospects of Smart Cities in Energy Saving and Transportation Data Visualization under the Background of Dual Carbon. SHS Web Conf. 2024, 192, 1008. [Google Scholar] [CrossRef]
- Singar, M.K.; Suneetha, K.; Saraswat, N.; Shukla, G. Artificial Intelligence’s Role in Shaping Renewable Energy for Next-Generation Smart Cities. E3S Web Conf. 2024, 540, 8014. [Google Scholar] [CrossRef]
- Jiao, J. Application and prospect of artificial intelligence in smart grid. IOP Conf. Ser. Earth Environ. Sci. 2020, 510, 22012. [Google Scholar] [CrossRef]
- Maurya, P.K.; Howard, E. Artificial Intelligence to Enhance Energy Management and Distribution in Smart Grid Communication Networks. Tuijin Jishu/J. Propuls. Technol. 2024, 45, 4366–4378. [Google Scholar] [CrossRef]
- Almusaed, A.; Yitmen, I.; Almssad, A. Enhancing Smart Home Design with AI Models: A Case Study of Living Spaces Implementation Review. Energies 2023, 16, 2636. [Google Scholar] [CrossRef]
- Mirthubashini, J.; Santhi, V. Video Based Vehicle Counting Using Deep Learning Algorithms. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 142–147, ISBN 978-1-7281-5196-0. [Google Scholar]
- Talaat, F.M.; ZainEldin, H. An improved fire detection approach based on YOLO-v8 for smart cities. Neural Comput. Applic. 2023, 35, 20939–20954. [Google Scholar] [CrossRef]
- Sangeetha, R.G.; Hemanth, C.; Roshan, D.; Kanothara, S.; Venetha, S.; Abbas Alif, M.; Arjun, S.; Varshithram, K.S. Density Based Real-time Smart Traffic Management System along with Emergency Vehicle Detection for Smart Cities. Int. J. ITS Res. 2024, 22, 328–338. [Google Scholar] [CrossRef]
- Fang, B.; Yu, J.; Chen, Z.; Osman, A.I.; Farghali, M.; Ihara, I.; Hamza, E.H.; Rooney, D.W.; Yap, P.-S. Artificial intelligence for waste management in smart cities: A review. Environ. Chem. Lett. 2023, 21, 1959–1989. [Google Scholar] [CrossRef]
- Natalia, T.; Kumar Joshi, S.; Dixit, S.; Kanakadurga Bella, H.; Chandra Jena, P.; Vyas, A. Enhancing Smart City Services with AI: A Field Experiment in the Context of Industry 5.0. BIO Web Conf. 2024, 86, 1063. [Google Scholar] [CrossRef]
- Venigandla, K.; Vemuri, N.; Nnamere Aneke, E. Empowering Smart Cities with AI and RPA: Strategies for Intelligent Urban Management and Sustainable Development. Int. J. Sci. Res. Manag. 2024, 12, 1117–1125. [Google Scholar] [CrossRef]
- Musa, A.A.; Malami, S.I.; Alanazi, F.; Ounaies, W.; Alshammari, M.; Haruna, S.I. Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations. Sustainability 2023, 15, 9859. [Google Scholar] [CrossRef]
- Alghamdi, M. Smart city urban planning using an evolutionary deep learning model. Soft Comput. 2024, 28, 447–459. [Google Scholar] [CrossRef]
- Glass, A.; Noennig, J.R.; Bek, B.; Glass, R.; Menges, E.K.; Okhrin, I.; Baddam, P.; Sanchez, M.R.; Senthil, G.; Jäkel, R. Innovative Urban Design Simulation: Utilizing Agent-Based Modelling through Reinforcement Learning. In Proceedings of the 2023 6th International Conference on Computational Intelligence and Intelligent Systems, Tokyo, Japan, 25–27 November 2023; ACM: New York, NY, USA, 2023; pp. 20–25, ISBN 9798400709067. [Google Scholar]
- Sha, K.; Taeihagh, A.; de Jong, M. Governing disruptive technologies for inclusive development in cities: A systematic literature review. Technol. Forecast. Soc. Chang. 2024, 203, 123382. [Google Scholar] [CrossRef]
- Wolniak, R.; Stecuła, K. Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review. Smart Cities 2024, 7, 1346–1389. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J.; Kaboli, A.; Alahi, A. Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environ. Sci. Ecotechnol. 2024, 19, 100330. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Habbal, A.; Ali, M.K.; Abuzaraida, M.A. Artificial Intelligence Trust, Risk and Security Management (AI TRiSM): Frameworks, applications, challenges and future research directions. Expert Syst. Appl. 2024, 240, 122442. [Google Scholar] [CrossRef]
- Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Vincent Poor, H. Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1622–1658. [Google Scholar] [CrossRef]
- Cao, X.; Xiong, Y.; Sun, J.; Xie, X.; Sun, Q.; Wang, Z.L. Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. Nanomicro. Lett. 2022, 15, 14. [Google Scholar] [CrossRef]
- Sarker, I.H.; Khan, A.I.; Abushark, Y.B.; Alsolami, F. Internet of Things (IoT) Security Intelligence: A Comprehensive Overview, Machine Learning Solutions and Research Directions. Mob. Netw. Appl. 2023, 28, 296–312. [Google Scholar] [CrossRef]
- Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning. Arch. Comput. Methods Eng. 2020, 27, 1071–1092. [Google Scholar] [CrossRef]
- Loh, H.W.; Ooi, C.P.; Seoni, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Comput. Methods Programs Biomed. 2022, 226, 107161. [Google Scholar] [CrossRef]
- Pandya, S.; Srivastava, G.; Jhaveri, R.; Babu, M.R.; Bhattacharya, S.; Maddikunta, P.K.R.; Mastorakis, S.; Piran, M.J.; Gadekallu, T.R. Federated learning for smart cities: A comprehensive survey. Sustain. Energy Technol. Assess. 2023, 55, 102987. [Google Scholar] [CrossRef]
- Allam, Z.; Sharifi, A.; Bibri, S.E.; Jones, D.S.; Krogstie, J. The Metaverse as a Virtual Form of Smart Cities: Opportunities and Challenges for Environmental, Economic, and Social Sustainability in Urban Futures. Smart Cities 2022, 5, 771–801. [Google Scholar] [CrossRef]
- Javed, A.R.; Shahzad, F.; Rehman, S.u.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors 2023, 23, 5206. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Anwar, S.M.; Li, J.; Nadeem, L.; Mahmood, T.; Rehman, A.; Saba, T. Smart cities: The role of Internet of Things and machine learning in realizing a data-centric smart environment. Complex Intell. Syst. 2024, 10, 1607–1637. [Google Scholar] [CrossRef]
- Malekloo, A.; Ozer, E.; AlHamaydeh, M.; Girolami, M. Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Struct. Health Monit. 2022, 21, 1906–1955. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. 2020, 32, e1901958. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Wang, W.; Zheng, Y.; Lv, H.; Lv, Z. Big data analysis of the Internet of Things in the digital twins of smart city based on deep learning. Future Gener. Comput. Syst. 2022, 128, 167–177. [Google Scholar] [CrossRef]
- Javed, A.R.; Ahmed, W.; Pandya, S.; Maddikunta, P.K.R.; Alazab, M.; Gadekallu, T.R. A Survey of Explainable Artificial Intelligence for Smart Cities. Electronics 2023, 12, 1020. [Google Scholar] [CrossRef]
- Saleem, M.; Abbas, S.; Ghazal, T.M.; Adnan Khan, M.; Sahawneh, N.; Ahmad, M. Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egypt. Inform. J. 2022, 23, 417–426. [Google Scholar] [CrossRef]
- Oladimeji, D.; Gupta, K.; Kose, N.A.; Gundogan, K.; Ge, L.; Liang, F. Smart Transportation: An Overview of Technologies and Applications. Sensors 2023, 23, 3880. [Google Scholar] [CrossRef]
- Fadhel, M.A.; Duhaim, A.M.; Saihood, A.; Sewify, A.; Al-Hamadani, M.N.; Albahri, A.S.; Alzubaidi, L.; Gupta, A.; Mirjalili, S.; Gu, Y. Comprehensive systematic review of information fusion methods in smart cities and urban environments. Inf. Fusion 2024, 107, 102317. [Google Scholar] [CrossRef]
- Akhter, R.; Sofi, S.A. Precision agriculture using IoT data analytics and machine learning. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5602–5618. [Google Scholar] [CrossRef]
- Otoum, Y.; Liu, D.; Nayak, A. DL-IDS: A deep learning–based intrusion detection framework for securing IoT. Trans. Emerg. Tel. Tech. 2022, 33, e3803. [Google Scholar] [CrossRef]
- Kalapaaking, A.P.; Khalil, I.; Yi, X. Blockchain-Based Federated Learning With SMPC Model Verification Against Poisoning Attack for Healthcare Systems. IEEE Trans. Emerg. Top. Comput. 2024, 12, 269–280. [Google Scholar] [CrossRef]
- Hijazi, N.M.; Aloqaily, M.; Guizani, M.; Ouni, B.; Karray, F. Secure Federated Learning With Fully Homomorphic Encryption for IoT Communications. IEEE Internet Things J. 2024, 11, 4289–4300. [Google Scholar] [CrossRef]
- Kurunathan, H.; Huang, H.; Li, K.; Ni, W.; Hossain, E. Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2023, 26, 496–533. [Google Scholar] [CrossRef]
- Singh, S.; Rathore, S.; Alfarraj, O.; Tolba, A.; Yoon, B. A framework for privacy-preservation of IoT healthcare data using Federated Learning and blockchain technology. Future Gener. Comput. Syst. 2022, 129, 380–388. [Google Scholar] [CrossRef]
- Li, K.; Cui, Y.; Li, W.; Lv, T.; Yuan, X.; Li, S.; Ni, W.; Simsek, M.; Dressler, F. When Internet of Things Meets Metaverse: Convergence of Physical and Cyber Worlds. IEEE Internet Things J. 2023, 10, 4148–4173. [Google Scholar] [CrossRef]
- Rani, P.; Sharma, R. Intelligent transportation system for internet of vehicles based vehicular networks for smart cities. Comput. Electr. Eng. 2023, 105, 108543. [Google Scholar] [CrossRef]
- Aloqaily, M.; Bouachir, O.; Karray, F.; Al Ridhawi, I.; Saddik, A.E. Integrating Digital Twin and Advanced Intelligent Technologies to Realize the Metaverse. IEEE Consum. Electron. Mag. 2023, 12, 47–55. [Google Scholar] [CrossRef]
- Ahad, M.A.; Paiva, S.; Tripathi, G.; Feroz, N. Enabling technologies and sustainable smart cities. Sustain. Cities Soc. 2020, 61, 102301. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, K.; Shen, Z.-J. A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [Google Scholar] [CrossRef]
- Nica, E.; Popescu, G.H.; Poliak, M.; Kliestik, T.; Sabie, O.-M. Digital Twin Simulation Tools, Spatial Cognition Algorithms, and Multi-Sensor Fusion Technology in Sustainable Urban Governance Networks. Mathematics 2023, 11, 1981. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Ghadami, N.; Gheibi, M.; Kian, Z.; Faramarz, M.G.; Naghedi, R.; Eftekhari, M.; Fathollahi-Fard, A.M.; Dulebenets, M.A.; Tian, G. Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods. Sustain. Cities Soc. 2021, 74, 103149. [Google Scholar] [CrossRef]
- Alhussein, M.; Aurangzeb, K.; Haider, S.I. Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting. IEEE Access 2020, 8, 180544–180557. [Google Scholar] [CrossRef]
- Mamoshina, P.; Ojomoko, L.; Yanovich, Y.; Ostrovski, A.; Botezatu, A.; Prikhodko, P.; Izumchenko, E.; Aliper, A.; Romantsov, K.; Zhebrak, A.; et al. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 2018, 9, 5665–5690. [Google Scholar] [CrossRef]
- Ozyilmaz, K.R.; Dogan, M.; Yurdakul, A. IDMoB: IoT Data Marketplace on Blockchain. In Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 20–22 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 11–19, ISBN 978-1-5386-7204-4. [Google Scholar]
- Nassar, M.; Salah, K.; ur Rehman, M.H.; Svetinovic, D. Blockchain for explainable and trustworthy artificial intelligence. WIREs Data Min. Knowl. 2020, 10, e1340. [Google Scholar] [CrossRef]
- Singh, H.J.; Hafid, A.S. Prediction of Transaction Confirmation Time in Ethereum Blockchain Using Machine Learning. In Blockchain and Applications; Prieto, J., Das, A.K., Ferretti, S., Pinto, A., Corchado, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 126–133. ISBN 978-3-030-23812-4. [Google Scholar]
- Almasoud, A.S.; Eljazzar, M.M.; Hussain, F. Toward a Self-Learned Smart Contracts. In Proceedings of the 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE), Xi’an, China, 12–14 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 269–273, ISBN 978-1-5386-7992-0. [Google Scholar]
- Keppel, J.; Ivezić, D.; Gruenefeld, U.; Lukowicz, P.; Amft, O.; Schneegass, S. AI and Health: Using Digital Twins to Foster Healthy Behavior. In Proceedings of the Mensch und Computer 2024, Karlsruhe, Germany, 1–4 September 2024; Gesellschaft für Informatik e.V.: Bonn, Germany, 2024. [Google Scholar] [CrossRef]
- Liu, S.; Tan, C.; Deng, F.; Zhang, W.; Wu, X. A new framework for assessment of park management in smart cities: A study based on social media data and deep learning. Sci. Rep. 2024, 14, 3630. [Google Scholar] [CrossRef]
- Kumi, S.; Snow, C.; Lomotey, R.K.; Deters, R. Uncovering Concerns of Citizens Through Machine Learning and Social Network Sentiment Analysis. IEEE Access 2024, 12, 94885–94913. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.; Xu, X. Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. J. Assoc. Inf. Syst. 2016, 17, 328–376. [Google Scholar] [CrossRef]
- Yereseme, A.K.; Surendra, H.J.; Kuntoji, G. Sustainable integrated urban flood management strategies for planning of smart cities: A review. Sustain. Water Resour. Manag. 2022, 8, 85. [Google Scholar] [CrossRef]
- Abdul Kadir, E.; Listia Rosa, S.; Syukur, A.; Othman, M.; Daud, H. Forest fire spreading and carbon concentration identification in tropical region Indonesia. Alex. Eng. J. 2022, 61, 1551–1561. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Chatzitheodoridis, F.; Kalfas, D.; Patitsa, C.; Papagrigoriou, A. Socio-Psychological, Economic and Environmental Effects of Forest Fires. Fire 2023, 6, 280. [Google Scholar] [CrossRef]
- Bao, M.; Liu, J.; Ren, H.; Liu, S.; Ren, C.; Chen, C.; Liu, J. Research Trends in Wildland Fire Prediction Amidst Climate Change: A Comprehensive Bibliometric Analysis. Forests 2024, 15, 1197. [Google Scholar] [CrossRef]
- Aloqaily, M.; Bouachir, O.; Boukerche, A.; Ridhawi, I.A. Design Guidelines for Blockchain-Assisted 5G-UAV Networks. IEEE Netw. 2021, 35, 64–71. [Google Scholar] [CrossRef]
- Qadir, Z.; Ullah, F.; Munawar, H.S.; Al-Turjman, F. Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review. Comput. Commun. 2021, 168, 114–135. [Google Scholar] [CrossRef]
- Alaeddini, M.; Hajizadeh, M.; Reaidy, P. A Bibliometric Analysis of Research on the Convergence of Artificial Intelligence and Blockchain in Smart Cities. Smart Cities 2023, 6, 764–795. [Google Scholar] [CrossRef]
Year | Reference | Definition |
---|---|---|
2010 | Harrison et al. [51] | “[A smart city is] connecting the physical infrastructure, the IT infrastructure, the social infrastructure, and the business infrastructure to leverage the collective intelligence of the city”. |
2011 | Caragliu et al. [52] | “[A city is smart] when investments in human and social capital and traditional (transport) and modern (ICT) communication infrastructure fuel sustainable economic growth and a high quality of life, with a wise management of natural resources, through participatory governance”. |
2014 | Galán-García et al. [53] based on Caragliu et al. [52] | “Smart city is a very broad concept which includes not only physical infrastructure but also human and social factors”. |
2017 | Sterbenz [54] | “[…] cities […] in which ICT (information and communication technology) is deeply embedded all aspects of city operation and service delivery”. |
2017 | Mustafa and Kar [55] | “The concept of “Smart City” has emerged from “Intelligent Cities”. The basic idea of smart cities is to use the existing resources in a “Smarter” way”. |
2019 | Cropf and Benton [56] | “[…] cities that significantly incorporate new technologies into their governance”. |
2020 | Treiblmaier et al. [57] | “A smart city is a geographical area with a high population density that uses information and communication technologies (ICT) to connect and monitor critical infrastructural components and services with the goal of improving the efficiency and the environmental, economic and social sustainability of its operations as well as the quality of life for its citizens”. |
Metric | Value |
---|---|
Main information | |
Timespan of the sample | 2006–2024 |
Sources and outlets | 1875 |
Documents | 4719 |
Average citations | 17.26 |
Annual growth rate | 44.27 percent |
Average age of a document | 3.47 years |
Number of author’s keywords | 9752 |
Document Types | |
Journal article | 2310 |
Conference paper | 2182 |
Review | 227 |
Authors | |
Number of different authors | 13,081 |
Documents per author | 0.36 |
Authors of single-authored documents | 308 |
Authors of multi-authored documents | 12,773 |
Single-authored documents | 328 |
Multi-authored documents | 4391 |
Collaboration index | 2.91 |
Rank | Affiliation | Country | Publications |
---|---|---|---|
01 | King Saud University | Saudi Arabia | 64 |
02 | Prince Sattam Bin Abdulaziz University | Saudi Arabia | 56 |
03 | King Abdulaziz University | Saudi Arabia | 53 |
04 | Princess Nourah Bint Abdulrahman University | Saudi Arabia | 51 |
05 | Vellore Institute of Technology | India | 41 |
06 | King Khalid University | Saudi Arabia | 39 |
07 | Chinese Academy of Sciences | China | 34 |
08 | Wuhan University | China | 34 |
09 | Qatar University | Qatar | 34 |
10 | SRM Institute of Science and Technology | India | 33 |
11 | University of Petroleum and Energy Studies | India | 32 |
12 | Saveetha Institute of Medical and Technical Sciences | India | 31 |
13 | Sejong University | South Korea | 30 |
14 | K L Deemed to be University | India | 30 |
15 | The Hong Kong Polytechnic University | Hong Kong | 29 |
Rank | Affiliation | Country/Region | Funded Articles |
---|---|---|---|
01 | National Natural Science Foundation of China | China | 313 |
02 | European Commission | European Union | 103 |
03 | National Science Foundation | United States | 88 |
04 | National Key Research and Development Program of China | China | 84 |
05 | King Saud University | Saudi Arabia | 83 |
06 | Ministry of Science and Technology of the People’s Republic of China | China | 82 |
07 | National Research Foundation of Korea | South Korea | 71 |
08 | Horizon 2020 Framework Programme | European Union | 69 |
09 | European Regional Development Fund | European Union | 66 |
10 | Ministry of Science, ICT and Future Planning | South Korea | 51 |
11 | Fundamental Research Funds for the Central Universities | China | 46 |
12 | Fundação para a Ciência e a Tecnologia | Portugal | 42 |
13 | Natural Sciences and Engineering Research Council of Canada | Canada | 36 |
14 | Institute for Information and Communications Technology Promotion | South Korea | 34 |
15 | Ministry of Education of the People’s Republic of China | China | 31 |
Rank | Outlet | Articles |
---|---|---|
01 | IEEE Access | 152 |
02 | Lecture Notes In Networks And Systems | 101 |
03 | Sensors | 96 |
04 | Sustainability (MDPI) | 77 |
05 | Lecture Notes In Computer Science | 75 |
06 | IEEE Internet Of Things Journal | 72 |
07 | ACM International Conference Proceeding Series | 71 |
08 | Applied Sciences (MDPI) | 59 |
09 | Sustainable Cities And Society | 52 |
10 | Communications In Computer And Information Science | 51 |
11 | Smart Cities | 49 |
12 | Electronics (MDPI) | 49 |
13 | Lecture Notes In Electrical Engineering | 45 |
14 | Sensors (MDPI) | 36 |
15 | Procedia Computer Science | 36 |
Rank | Country | Articles | First Publication | Citations | Citations per Document | Annual Growth Rate |
---|---|---|---|---|---|---|
01 | India | 1055 | 2015 | 13,938 | 13.21 | 80.56% |
02 | China | 942 | 2007 | 19,057 | 20.23 | 34.64% |
03 | United States | 525 | 2012 | 16,946 | 32.28 | 41.05% |
04 | Saudi Arabia | 370 | 2017 | 8216 | 22.21 | 56.18% |
05 | United Kingdom | 252 | 2012 | 8760 | 34.76 | 34.16% |
06 | South Korea | 242 | 2011 | 7537 | 31.14 | 28.10% |
07 | Australia | 195 | 2015 | 10,534 | 54.02 | 28.67% |
08 | Italy | 192 | 2013 | 3073 | 16.01 | 33.99% |
09 | Canada | 184 | 2017 | 4422 | 24.03 | 47.24% |
10 | Pakistan | 172 | 2016 | 4684 | 27.23 | 49.53% |
11 | Spain | 146 | 2011 | 2679 | 18.35 | 21.81% |
12 | UAE | 143 | 2018 | 3317 | 23.20 | 50.24% |
13 | Malaysia | 134 | 2017 | 2886 | 21.54 | 48.60% |
14 | Egypt | 122 | 2017 | 2470 | 20.25 | 48.60% |
15 | Germany | 104 | 2012 | 2403 | 23.11 | 20.09% |
Rank | Keyword | Amount |
---|---|---|
01 | Internet of Things/IoT | 1437/323 |
02 | Learning Systems | 900 |
03 | Learning Algorithms | 479 |
04 | Forecasting | 425 |
05 | Network Security | 368 |
06 | Big Data | 345 |
07 | Intelligent Systems | 305 |
08 | Decision Making | 280 |
09 | Automation | 259 |
10 | Convolutional Neural Networks/Convolutional Neural Network | 254/218 |
11 | Information Management | 215 |
12 | Traffic Congestion | 214 |
13 | Energy Utilization | 212 |
14 | Edge Computing | 206 |
15 | Sustainable Development | 198 |
16 | Long Short-term Memory | 194 |
17 | Energy Efficiency | 190 |
18 | Intelligent Buildings | 185 |
19 | Object Detection | 180 |
20 | Convolution | 177 |
21 | Digital Storage | 175 |
22 | Decision Trees | 175 |
23 | Blockchain | 174 |
24 | 5G Mobile Communication Systems | 174 |
25 | Intrusion Detection | 171 |
26 | Security | 167 |
27 | Intelligent Transportation Systems | 164 |
28 | Data Handling | 164 |
29 | Security Systems | 161 |
30 | Data Mining | 159 |
Rank | NTC | Article |
---|---|---|
01 | 78.86 | Sarker [175] |
02 | 71.36 | Bibri et al. [176] |
03 | 35.86 | Fuller et al. [177] |
04 | 34.83 | Habbal et al. [178] |
05 | 32.56 | Gad [179] |
06 | 28.84 | Talaat and ZainEldin [165] |
07 | 22.31 | Nguyen et al. [180] |
08 | 20.22 | Cao et al. [181] |
09 | 19.52 | Sarker et al. [182] |
10 | 19.44 | Dargan et al. [183] |
11 | 19.02 | Loh et al. [184] |
12 | 18.99 | Pandya et al. [185] |
13 | 18.48 | Allam et al. [186] |
14 | 18.27 | Javed et al. [187] |
15 | 16.00 | Alahi et al. [188] |
16 | 15.29 | Ullah et al. [189] |
17 | 15.23 | Malekloo et al. [190] |
18 | 14.54 | Shi et al. [191] |
19 | 14.35 | Li et al. [192] |
20 | 14.24 | Javed et al. [193] |
21 | 14.15 | Saleem et al. [194] |
22 | 13.89 | Oladimeji et al. [195] |
23 | 13.60 | Ghazal et al. [21] |
24 | 13.59 | Fadhel et al. [196] |
25 | 13.33 | Akhter and Sofi [197] |
26 | 13.33 | Ullah et al. [15] |
27 | 13.06 | Otoum et al. [198] |
28 | 12.74 | Kalapaaking et al. [199] |
29 | 12.74 | Hijazi et al. [200] |
30 | 12.74 | Kurunathan et al. [201] |
31 | 12.12 | Singh et al. [202] |
32 | 11.96 | Li et al. [203] |
33 | 11.78 | Rani and Sharma [204] |
34 | 11.35 | Singh et al. [141] |
35 | 11.08 | Aloqaily et al. [205] |
36 | 11.08 | Fang et al. [167] |
37 | 10.94 | Ahad et al. [206] |
38 | 10.88 | Deng et al. [207] |
39 | 10.85 | Singh et al. [144] |
40 | 10.20 | Nica et al. [208] |
Research Area | |
---|---|
Smart energy and smart grids | How can the development of big data in smart grids be standardized to facilitate high quality datasets for the training of AI-models? How can the communication infrastructure of smart grids and communication protocols of smart grid devices be standardized? What are the most efficient AI or ML approaches for improving the performance of smart grids? How can different energy sources, such as renewable energy from wind, water, and biogas, be integrated into an efficient AI-based energy management framework for smart cities? |
Smart citizens and community engagement | How can AI be used to leverage behavioral insights to encourage environmentally friendly behavior? How can the acceptance of citizens towards AI-based solutions be guaranteed and measured? What potential do social media data offer for AI to get insights into citizens and citizens’ concerns and wishes? Which data and which social networks are most suitable for obtaining information about citizens, and what are the specific features and challenges in each case? What is the potential of theories such as UTAUT and TAM to offer additional insights into the acceptance of AI solutions in smart cities? |
Integration with other technologies | What would be an effective framework for standardized blockchain testing within smart cities? How can blockchain technology and AI be integrated to address issues of sustainability, scalability, security, and privacy? How can data in smart cities best be stored and how can efficiency and safety be balanced in the most appropriate way? How can blockchain be used within smart cities to enhance AI solutions? How can AI technologies be used to assist within blockchain use-cases? |
Disaster management | How can smart cities use AI technologies to predict the occurrence and spread of forest and wildfires, and what AI tools are most suitable for this purpose? How can smart cities use AI technologies to predict the occurrence and spread of floodwaters, and which AI tools are most suitable for this purpose? How can smart cities use and analyze seismic data to detect patterns that may precede earthquakes and how should an early warning system look like? How can smart cities use AI effectively to assess damage to buildings and infrastructure following natural disasters? How can AI predict droughts by analyzing climate and water usage data, and how can it assist in managing water resources more efficiently? How can different cities cooperate to share data, learnings, and insights to optimize the applicability of AI to fight natural disasters? |
UAV | How can the privacy and security in UAV’s communication networks be improved? How can the involvement of drones in SCs be regulated, while addressing privacy and security issues? For blockchain-assisted UAV networks, how can off-chain storage be integrated to solve the issue of efficiently storing various types of data, that are too large to store on the blockchain? For blockchain-assisted UAV networks, how can the issue of scalability be solved to ensure QoS? How can security, reliability, and trustworthiness be established within AI in UAV? What are the best path planning approaches for disaster management with UAV? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karger, E.; Rothweiler, A.; Brée, T.; Ahlemann, F. Building the Smart City of Tomorrow: A Bibliometric Analysis of Artificial Intelligence in Urbanization. Urban Sci. 2025, 9, 132. https://doi.org/10.3390/urbansci9040132
Karger E, Rothweiler A, Brée T, Ahlemann F. Building the Smart City of Tomorrow: A Bibliometric Analysis of Artificial Intelligence in Urbanization. Urban Science. 2025; 9(4):132. https://doi.org/10.3390/urbansci9040132
Chicago/Turabian StyleKarger, Erik, Aristide Rothweiler, Tim Brée, and Frederik Ahlemann. 2025. "Building the Smart City of Tomorrow: A Bibliometric Analysis of Artificial Intelligence in Urbanization" Urban Science 9, no. 4: 132. https://doi.org/10.3390/urbansci9040132
APA StyleKarger, E., Rothweiler, A., Brée, T., & Ahlemann, F. (2025). Building the Smart City of Tomorrow: A Bibliometric Analysis of Artificial Intelligence in Urbanization. Urban Science, 9(4), 132. https://doi.org/10.3390/urbansci9040132